
HAL Id: hal-00331665
https://hal.science/hal-00331665

Submitted on 17 Oct 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Convex sets with semidefinite representation
Jean-Bernard Lasserre

To cite this version:
Jean-Bernard Lasserre. Convex sets with semidefinite representation. Mathematical Programming,
Series A, 2009, 120 (2), pp.457-477. �10.1007/s10107-008-0222-0�. �hal-00331665�

https://hal.science/hal-00331665
https://hal.archives-ouvertes.fr


CONVEX SETS WITH SEMIDEFINITE REPRESENTATION

JEAN B. LASSERRE

Abstract. We provide a sufficient condition on a class of compact ba-
sic semialgebraic sets K ⊂ Rn for their convex hull co(K) to have a
semidefinite representation (SDr). This SDr is explicitly expressed in
terms of the polynomials gj that define K. Examples are provided. We
also provide an approximate SDr; that is, for every fixed ε > 0, there
is a convex set Kε such that co(K) ⊆ Kε ⊆ co(K) + εB (where B is
the unit ball of Rn), and Kε has an explicit SDr in terms of the gj ’s.
For convex and compact basic semi-algebraic sets K defined by concave
polynomials, we provide a simpler explicit SDr when the nonnegative
Lagrangian Lf associated with K and any linear f ∈ R[X] is a sum
of squares. We also provide an approximate SDr specific to the convex
case.

1. Introduction

An important issue raised in e.g. Ben-Tal and Nemirovski [2], Helton
and Vinnikov [4], Parrilo and Sturmfels [14], is to characterize convex sets
of Rn that have a lifted LMI (Linear Matrix Inequalities) (or a semidefinite
representation (SDr)), and called SDr sets in [2] (that is, sets which are
semidefinite representable).

Recall that a convex set Ω ⊂ Rn is SDr if there exist integers m, p and
real p× p symmetric matrices {Ai}n

i=0, {Bj}m
j=1 such that:

(1.1) Ω = {x ∈ Rn : ∃ y ∈ Rm s.t. A0 +
n∑

i=1

Aixi +
m∑

j=1

Bjyj % 0 }

(where the notation A % 0 stands for the matrix A is positive semidefinite).
In other words, Ω is the linear projection on Rn of the convex set

Ω′ := {(x, y) ∈ Rn × Rm : A0 +
n∑

i=1

Aixi +
m∑

j=1

Bjyj % 0 } (⊂ Rn+m)

of the lifted space Rn+m. The set Ω′ is called a semidefinite representation
(SDr) of Ω and is a lifted LMI because one sometimes needs additional
variables y ∈ Rm to obtain a description of Ω via appropriate LMIs. For
instance:
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• The intersection of half-spaces, i.e., a polyhedron {x ∈ Rn : Ax ≤ b},
is a trivial example of convex sets whose SDr is readily available
without lifting. Indeed Ax ≤ b is an LMI with diagonal matrices Ai

in (1.1).
• The intersection of ellipsoids

Ω := {x ∈ Rn : xT Qjx + bT x + cj ≥ 0, j = 1, . . . ,m }

(where −Qj % 0 for all j =, . . . ,m) is a SDr set with lifted LMI
representation in R(n+1)(n+2)/2−1:

(1.2) Ω′ =





(x, Y ) :

[
1 xT

x Y

]
% 0

trace (QjY ) + bT x + cj ≥ 0, j = 1, . . . ,m.





.

• The epigraph of a univariate convex polynomial is a SDr set.
• Convex sets of R2 described from genus-zero plane curves are SDr

sets; see Parrilo [14].
• Hyperbolic cones obtained from 3-variables hyperbolic homogeneous

polynomials are SDr sets; see the proof of the Lax conjecture in
Lewis et al. [13].

So far, and except for the special cases cited above, little is known. In
addition, even if a convex set K is known to be SDr, there is no systematic
procedure to obtain its SDr, i.e., the set of lifted LMIs whose projection
describe K. However, Helton and Vinnikov [4] have proved recently that
rigid convexity is a necessary condition for a set to be SDr (and sufficient
for dimension n = 2). Chua and Tuncel [3] consider even more general lifted
conic representations of convex sets, called lifted G-representations (SDr be-
ing a special case) and discuss various geometric properties of convex sets
admitting such lifted G-representations, as well as measures of ”goodness”
for such representations.

In this paper, we consider the convex hull co(K) of compact basic semi-
algebraic sets K ⊂ Rn of the form

(1.3) K = { x ∈ Rn : gj(x) ≥ 0, j = 1, . . . ,m },

for some given polynomials gj ∈ R[X], j = 1, . . . ,m. Notice that the class
of sets (1.3) is fairly general as K can be nonconvex (even disconnected), as
well as discrete.

Contribution: Our contribution is twofold:

I. We first provide a sufficient condition (and a variant of it) on the
defining polynomials (gj) ⊂ R[X] of K that we call Schmüdgen’s Bounded
Degree Representation (S-BDR) of affine polynomials and its Putinar-Prestel
variant (PP-BDR). A basic compact semi-algebraic set has the S-BDR (resp.
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PP-BDR) property if almost all affine polynomials f ∈ R[X] positive on K
(hence on co(K)) belong to Pr(g) (resp. Qr(g)), a subset of the preordering
P (g) (resp. quadratic module Q(g)) generated by the gj . When f ∈ Pr(g)
or Qr(g), all elements in the representation of f in the preordering P (g) or
in the quadratic module Q(g), have degree at most r.

Recall that when K is compact then f > 0 on K implies f ∈ P (g) (or
f ∈ Q(g) if N −‖X‖2 ∈ Q(g) for some N), and so the S-BDR (or PP-BDR)
property is stronger in that it requires f ∈ Pr(g) (or Qr(g)). On the other
hand, this requirement is only concerned with the class of positive affine
polynomials.

For instance, this property holds for intersections of halfspaces and ellip-
soids, i.e., when the gj ’s are affine or quadratic and concave. But we also
exhibit some nontrivial non convex compact semi-algebraic sets K with the
PP-BDR property. For instance, we show that when m = 2 and the gj ’s
are quadratic, or when n = 2 and the gj ’s are quartic, then the PP-BDR
property holds generically, and with order r = 1 and r = 2, respectively.

When the S-BDR or PP-BDR property holds then one can immediately
obtain an explicit SDr of co(K), expressed directly in terms of the defining
polynomials gj .

We also obtain an approximate result of the following flavor. For ev-
ery fixed ε > 0, we exhibit a convex set Kε such that (a) co(K) ⊆ Kε ⊆
co(K) + εB (where B is the unit ball of Rn), and (b) Kε has an explicit
SDr expressed directly in terms of the polynomials gj that define K. This
result improves significantly upon [8] where we have provided outer convex
approximations of co(K), i.e., a monotone nonincreasing sequence of con-
vex sets Kr, with Kr ↓ co(K), and where each Kr has a SDr. And so, if
x /∈ co(K) then x ,∈ Kr for all r ≥ r(x) for some r(x) that depends on x, an
undesirable feature.

II. However, for general basic semialgebraic sets K, one cannot expect
that the S-BDR (or PP-BDR) property holds (if it ever holds) for nice values
of the order r. Indeed otherwise one could minimize any affine polynomial on
K efficiently. Therefore, from a practical point of view, the most interesting
case is essentially when K is convex ... and even more ... when the defining
polynomials gj in (1.3) are concave, because then one may hope for the
S-BDR or PP-BDR property to hold for interesting values of r.

So, our second contribution is concerned with the case of compact con-
vex basic semialgebraic sets K defined by concave polynomials. We first
show that the PP-BDR property holds for K whenever the Lagrangian Lf

associated with K and an arbitrary linear f ∈ R[X] is a sum of squares
(s.o.s.) (by construction it is already nonnegative). In this case, K has a
natural SDr based on the Karush-Kuhn-Tucker optimality conditions. This
makes an interesting connection between convexity and s.o.s. Finally, we
also provide an approximate SDr of K, specific to the convex case.
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2. I. Semidefinite representation of co(K)

2.1. Notation and definitions. For a real symmetric matrix A the no-
tation A % 0 (resp. A - 0) stands for A is positive semidefinite (resp.
positive definite). Let R[X] be the ring of real polynomials in the variables
X = (X1, . . . , Xn) and let Σ2 ⊂ R[X] be its subset of sums of squares (s.o.s.)
(whereas Σ2

d is that of degree at most 2d). For x ∈ Rn, let ‖x‖ denote its
euclidean norm.

With d ∈ N, let s(d) :=
(n+d

n

)
, and let u(X) ∈ Rs(d) be the column vector

ud(X) = (1, X1, . . . , Xn, X2
1 , X1X2, . . . , X

d
n)T ,

whose components form the usual canonical basis of the vector space R[X]d
(of dimension s(d)) of real polynomials of degree at most d.

Given a infinite sequence y := {yα}α∈Nn indexed in the canonical basis
u∞(X), let Ly : R[X] → R be the linear mapping

(2.1) f ∈ R[X] (=
∑

α∈Nn

fα Xα) /−→ Ly(f) :=
∑

α∈Nn

fα yα,

and let f = {fα} ∈ Rs(d) be the vector of coefficients of f ∈ R[X]d in the
basis ud(X).

Moment matrix. Let Md(y) be the s(d)× s(d) real matrix with rows and
columns indexed in the basis ud(X), and defined by:

(2.2) Md(y)(α, β) = yα+β, α, β ∈ Nn, |α|, |β| ≤ d,

where for every α ∈ Nn, the notation |α| stands for
∑n

i=1 αi.
Equivalently, Md(y) = Ly(ud(X)ud(X)T ), meaning that Ly is applied

entrywise to the polynomial matrix ud(X)ud(X)T . The matrix Md(y) is
called the moment matrix associated with the sequence y; see e.g. [9]. If y
has a representing measure µy (i.e., if yα =

∫
Xαdµy for every α ∈ Nn) then,

one has

(2.3) 〈f ,Md(y)f〉 =
∫

f2 dµy ≥ 0, ∀f ∈ R[X]d,

so that Md(y) % 0.
Localizing matrix. Similarly, given y = {yα} and θ ∈ R[X], let Md(θy) be
the s(d)× s(d) matrix defined by:

(2.4) Md(θy) := Ly(θ(X)ud(X)ud(X)T ),

i.e., Ly is applied entrywise to the polynomial matrix θ(X)ud(X)ud(X)T .
The matrix Md(θy) is called the localizing matrix associated with the se-
quence y and the polynomial θ (see again [9]). Notice that the localizing
matrix with respect to the constant polynomial θ ≡ 1 is the moment matrix
Md(y) in (2.2).
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If y has a representing measure µy with support contained in the level set
{x ∈ Rn : θ(x) ≥ 0} (where θ ∈ R[X]), then

(2.5) 〈f ,Md(θy)f〉 =
∫

f2θ dµy ≥ 0 ∀ f ∈ R[X]d,

so that Md(θy) % 0.

2.2. Semidefinite representation of co(K). Let K ⊂ Rn be the basic
closed semi-algebraic set defined in (1.3) for some polynomials gj ∈ R[X],
j = 1, . . . ,m.

For every J ⊆ {1, . . . ,m}, let gJ :=
∏

j∈J gj , with the convention g∅ ≡ 1,
and let P (g) ⊂ R[X] be the preordering generated by the gj ’s, i.e.,

P (g) := {
∑

J⊆{1,...,m}

σJ gJ : σJ ∈ Σ2},

and given r ∈ N, define Pr(g) ⊂ P (g) to be the set

(2.6) Pr(g) := {
∑

J⊆{1,...,m}

σJ gJ : σJ ∈ Σ2, deg σJ + deg gJ ≤ 2r}.

Similarly, let Q(g) ⊂ R[X] be the quadratic module generated by the gj ’s,
i.e.,

Q(g) := {
m∑

j=0

σj gj : σj ∈ Σ2}

(with the convention g0 ≡ 1), and given r ∈ N, define Qr(g) ⊂ Q(g) to be
the set

(2.7) Qr(g) := {
m∑

j=0

σj gj : σj ∈ Σ2, deg σj + deg gj ≤ 2r}.

Definition 1 (Semi Definite representation (SDr)). A convex set Ω ⊂ Rn

has a SDr (or is a SDr set) if it has the form

(2.8) Ω = { x ∈ Rn : ∃ y ∈ Rm s.t. A0 +
n∑

i=1

Aixi +
p∑

k=1

Bkyk % 0 }

for some integer p and real symmetric matrices {Ai} and {Bk}.

For an affine polynomial X /→ f0 +
∑n

i=1 fiXi, let (f0, f) ∈ R×Rn be its
vector of coefficients.

Definition 2 (Schmüdgen’s Bounded Degree Representation of affine poly-
nomials). Given a compact set K ⊂ Rn defined as in (1.3), one says that
Schmüdgen’s Bounded Degree Representation (S-BDR) of affine polynomials
holds for K if there exists r ∈ N such that

(2.9) [ f affine and positive on K ] ⇒ f ∈ Pr(g),
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except perhaps on a set of vectors f in Rn with Lebesgue measure zero. Call
r its order.

Definition 3 (Putinar-Prestel’s Bounded Degree Representation of affine
polynomials). Given a compact set K ⊂ Rn defined as in (1.3), one says
that Putinar-Prestel’s Bounded Degree Representation (PP-BDR) of affine
polynomials holds for K if there exists r ∈ N such that

(2.10) [ f affine and positive on K ] ⇒ f ∈ Qr(g),

except perhaps on a set of vectors f in Rn with Lebesgue measure zero. Call
r its order.

Remark 1. (a) Observe that if K is compact, by Schmüdgen’s Positivstel-
lensatz [17]

[ f ∈ R[X] and f positive on K ] ⇒ f ∈ Pr(g),

for some r(f). The S-BDR property states that r(f) < r for almost all affine
f ∈ R[X], positive on K.

(b) If for some N , the polynomial N −‖X‖2 is in Q(g), then by Putinar’s
Positivstellensatz [16]

[ f ∈ R[X] and f positive on K ] ⇒ f ∈ Qr(g),

for some r(f); see also Jacobi and Prestel [7]. The PP-BDR property states
that r(f) < r for almost all affine f ∈ R[X], positive on K.

(c) Finally, the PP-BDR property implies the S-BDR property.

For every J ⊆ {1, . . . ,m} let rJ := 5deg gJ/26.

Theorem 2. Let K ⊂ Rn be compact and defined as in (1.3).

(a) If the S-BDR property holds for K with order r, then co(K) is a SDr
set with SDr
(2.11)



(x, y) ∈ Rn × Rs(2r) :






Mr−rJ (gJ y) % 0, J ⊆ {1, . . . ,m}
Ly(Xi) = xi, i = 1, . . . , n
y0 = 1




 .

(b) If the PP-BDR property holds for K with order r, then co(K) is a
SDr set with SDr
(2.12)



(x, y) ∈ Rn × Rs(2r) :






Mr−rj (gj y) % 0, j = 0, 1, . . . ,m
Ly(Xi) = xi, i = 1, . . . , n
y0 = 1




 .

Proof. We only prove (a) as (b) is proved in exactly the same manner. Let
Ω ⊂ Rn × Rs(r) be the set defined in (2.11). We have to show that (∃ y :
(x, y) ∈ Ω) ⇔ x ∈ co(K).
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1. x ∈ co(K) ⇒ (x, y) ∈ Ω for some y ∈ Rs(r). Observe that by the
definition of co(K),

x ∈ co(K) ⇔ x =
∫

X dµ

for some probability measure µ supported on K. Let y = (yα) ∈ Rs(r) be
the sequence of moments of µ up to order 2r, i.e.

yα = Ly(Xα) =
∫

Xα dµ, α ∈ Nn; |α| ≤ 2r.

The sequence y is well defined because µ has compact support; in particular
y0 = 1. From the definition of µ one has Ly(Xi) =

∫
Xidµ = xi. In

addition, as µ is supported on K, one has Mr−rJ (gJ y) % 0 for all subsets
J ⊆ {1, . . . ,m} (just take θ := gJ in (2.5)). And so (x, y) ∈ Ω.

2. ∃ y : (x, y) ∈ Ω ⇒ x ∈ co(K). We prove it by contradiction.
Let x ,∈ co(K) and assume that there exists y ∈ Rs(r) such that (x, y) ∈ Ω.

As co(K) is convex and compact, by the Hahn-Banach separation theorem,
there exists (f0, f) ∈ R× Rn such that

(2.13) 〈f , x〉 < f0 and 〈f , z〉 > f0 ∀ z ∈ co(K),

and so the affine polynomial f ∈ R[X], X /→ f(X) := −f0 +
∑

i fiXi is
positive on K.

By the PP-BDR property of K with order r, one has f ∈ Pr(g) or f̃ ∈
Pr(g) for some affine f̃ ∈ R[X] with coefficient vector (f̃ , f̃0) such that
‖f̃‖ = 1 and some ε > 0 such that ‖(f̃ , f̃0) − (f , f0)‖ < ε, with ε > 0 as
small as desired. Therefore, one may choose ε sufficiently small to ensure
that (f̃ , f̃0) also satisfies (2.13) and so, one may rename f̃ as f and safely
assume that f ∈ Pr(g). Hence,

(2.14) f(X) =
∑

J⊆{1,...,m}

σJ gJ , σJ ∈ Σ2; deg σJ + deg gJ ≤ 2r.

Observe that as σJ is s.o.s. and deg σJ + deg gJ ≤ 2r, one has

(2.15) Ly(σJ gJ) ≥ 0 ∀J ⊆ {1, . . . ,m}.
Applying the linear functional Ly to the polynomial f in (2.14) yields the

contradiction

0 > fT x− f0 = −f0y0 +
n∑

i=1

Ly(fiXi) [as y0 = 1, Ly(Xi) = xi ∀ i]

= Ly(f(X)) =
∑

J⊆{1,...,m}

Ly(gJ σJ) [ by (2.14) ]

≥ 0 [ by (2.15) ].

This proves that there is no y such that (x, y) ∈ Ω, the desired result. !
Notice that in Theorem 2, the SDr (2.11) and (2.12) of co(K) are given

explicitly in terms of the data gj ’s that define K.



8 JEAN B. LASSERRE

2.3. Examples of convex K. We have already seen that the intersection
K of half-spaces and/or ellipsoids is a SDr set. But we here show that the
PP-BDR property holds for such sets K, and also for the intersection of level
sets of quartic polynomials in two variables. Of course, one already knows
how to build up a SDr for K at least in the first two cases. But this is to
illustrate that the domain of application of Theorem 2 is not empty and not
trivial.

Example 1. Let us start with K being a convex polytope defined by linear
inequalities, i.e., gj ∈ R[X] is affine in X for all j = 1, . . . ,m. Hence
co(K) ≡ K and this description of K by the gj ’s is already a SDr; it is even
a linear system. We briefly prove that the PP-BDR property holds for K
with order 0. Let f ∈ R[X] be affine with coefficient vector (f0, f) ∈ R×Rn,
and write

gj(X) = gj0 +
n∑

i=1

gjiXi, j = 1, . . . ,m

f(X) = f0 +
n∑

i=1

fi Xi.

Next, let G ∈ Rm×n be the matrix G(j, i) = gji, j = 1, . . . ,m, i = 1, . . . , n,
and g = (gj0) ∈ Rm. If f is nonnegative on K then by Farkas lemma
f = λT G and f0 ≥ λTg, for some nonnegative vector λ ∈ Rm. Therefore
f(X) = u+

∑m
j=1 λjgj(X), for some nonnegative scalar u, which proves that

f ∈ Q1(g). That is, the PP-BDR property holds for K with order r = 1.

Example 2. Let gj ∈ R[X] be concave and quadratic, for all j = 1, . . . ,m.
Then K is convex and it is well-known that K is a SDr set. Let f ∈ R[X] be
affine with coefficient vector (f0, f) ∈ R×Rn, and nonnegative on K, so that
f∗ := minx∈K f(x) ≥ 0. Assume that K is compact with nonempty interior.
Convexity along with Slater’s condition1 imply that the KKT optimality
conditions hold at any global minimizer x∗ ∈ K, i.e.,

f −
m∑

j=1

λj ∇gj(x∗) = 0 ; λjgj(x∗) = 0, j = 1, . . . ,m,

for some nonnegative Lagrange multipliers λ ∈ Rm
+ . Then x∗ is also a global

minimizer of the (convex) quadratic Lagrangian Lf := f−
∑m

j=1 λj gj on the
whole Rn. Therefore, Lf −f∗ ≥ 0 on Rn and being quadratic, Lf −f∗ ∈ Σ2.
Hence

f = f∗ + (Lf − f∗) +
∑

j=1

λjgj ,

1Slater’s condition states that there exists x0 ∈ K such that gj(x0) > 0 for every
j = 1, . . . , m. If Slater’s condition holds and f is convex and differentiable, then the
Karush-Kuhn-Tucker (KKT) optimality conditions hold at any minimizer x∗ ∈ K of the
convex optimization problem: minx{f(x) : x ∈ K}
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that is, f ∈ Q1(g) (as f∗ ≥ 0). And so the PP-BDR property holds for
K with order r = 1, and K has the SDr (2.12). Writing gj(x) = xT Qjx +
bT x + cj for some positive semidefinite matrix −Qj % 0, j = 1, . . . ,m, the
SDr (2.12) is nothing less than (1.2) already encountered in the introduction.

Example 3. Let n = 2 with gj concave and deg gj = 2 or 4, for all j =
1, . . . ,m, so that K is convex. Assume K is compact with nonempty interior.
It is known that in general K is not representable by a LMI in the variables
x1 and x2 only;. For instance take m = 1 and g1(X) = 1 −X4

1 −X4
2 . The

rigid convexity condition of Helton and Vinnikov [4] is violated, but on the
other hand, K is known to be SDr.

Let f ∈ R[X] be affine and nonnegative on K with global minimum
f∗ ≥ 0 on K. Again, convexity along with Slater’s condition implies that
the KKT optimality conditions hold at any global minimizer x∗ ∈ K. And so
there exist nonnegative Lagrange multipliers λ ∈ Rm

+ such that the (convex)
Lagrangian Lf := f −

∑m
j=1 λjgj also has optimal value f∗ and, in addition,

x∗ ∈ K is a global minimizer of Lf on R2. Therefore, the polynomial Lf−f∗

being nonnegative on R2 and being quadratic or quartic in 2 variables, is
s.o.s. That is Lf − f∗ = σ for some σ ∈ Σ2 and deg σ ≤ 4. But then

f = f∗ + (Lf − f∗) +
m∑

j=1

λj gj ∈ Q2(g)

because as f∗ ≥ 0, f∗ + (Lf − f∗) ∈ Σ2. That is, the PP-BDR property
holds for K with order r = 2. Hence, K has the SDr (2.12).

2.4. Examples with nonconvex K.

Example 4. Let m = 2 with

(2.16) gi(X) = XT AiX + ci , i = 1, 2,

for some real symmetric matrices Ai, and vector c = (c1, c2) ∈ R2.
Given a linear polynomial f ∈ R[X] with coefficient vector f = (fi)n

i=1 ∈
Rn, consider the SDP

(2.17) Q : min
y

{ Ly(f) : M1(y) % 0; Ly(gi) ≥ 0; i = 1, 2; y0 = 1 }

with optimal value denoted inf Q (minQ if the infimum is achieved at some
y∗), and with dual

Q∗ : max
λ,γ,σ

{ γ : f − γ = σ + λ1g1 + λ2g2; λ1, λ2 ≥ 0; σ ∈ Σ2
2 }

where Σ2
2 is the set of s.o.s. of degree 2. Let Aλ := λ1A1 + λ2A2 and

introduce the matrix

(2.18) H(λ, γ) :=




−γ − 〈λ, c〉 | fT /2

−−−−−−− | − −−−−−−
f/2 | −Aλ



 .
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Then Q∗ has the equivalent form

(2.19) Q∗ : max
λ≥0,γ

{ γ : H(λ, γ) % 0 },

with optimal value denoted supQ∗ (maxQ∗ if the sup is achieved). Obvi-
ously

inf Q ≤ f∗ := min
x

{ f(x) : x ∈ K },

and minQ = f∗ holds if for instance M1(y∗) is rank one at some optimal
solution y∗. Indeed, in this case, y∗ = (1, x∗, (x∗1)2, x∗1x∗2, . . . , (x∗n)2), which
implies Ly∗(f) = f(x∗) and Ly∗(gi) = gi(x∗) ≥ 0, i = 1, 2.

Theorem 3. Let K ⊂ Rn be defined as in (1.3) with m = 2 and gj as in
(2.16), and let Q be as in (2.17). Assume that K is compact with nonempty
interior and

(2.20) λ1A1 + λ2A2 ≺ 0

for some λ = (λ1, λ2) ≥ 0. Then for generic f ∈ Rn:
(a) minQ = f∗

(b) The PP-BDR property holds for co(K) with order r = 1, and so co(K)
has the SDr (2.12), i.e.,

{M1(y) % 0;Ly(gj) ≥ 0, j = 1, 2; Ly(Xi) = xi, i = 1, . . . , n; y0 = 1 }.

Proof. (a) Slater’s condition holds for Q and Q∗. Indeed as K has nonempty
interior, let µ be the uniform probability measure on K, with (well-defined)
sequence of moment y = (yα) (hence with y0 = 1). It satisfies M1(y) - 0
and Ly(g1) > 0 as well as Ly(g2) > 0.

Next, in view of (2.20), one may find λ1, λ2 > 0 and γ ∈ R such that

Aλ ≺ 0 and H(λ, γ) - 0. With X /→ σ(X) := (1, X)T H(λ, γ)
[

1
X

]
∈ Σ2

2,

one obtains a strictly feasible solution (γ, λ, σ) of Q∗. As the value of both
primal and dual strictly feasible solutions are finite, it follows that there is
no duality gap, i.e., minQ = maxQ∗, and both Q and Q∗ are solvable.

Next, zero-duality gap yields complementarity2 at optimal solutions y∗

and (γ∗, λ∗, σ∗) of Q and Q∗, i.e., trace(M1(y∗)H(λ∗, γ∗)) = 0. Therefore
H(λ∗, γ∗) must be singular. Notice that H(λ, γ) % 0 implies that

(2.21) −2Aλ u = f

for some u ∈ Rn and γ + λ1c1 + λ2c2 ≤ uT Aλu.
We next prove that generically (i.e., except perhaps for a set of vectors

{f} ⊂ Rn with zero Lebesgue measure) Aλ∗ ≺ 0, and so rank H(λ∗, γ∗) =
n − 1. Indeed, consider the set of λ ∈ R2

+ with λ1λ2 ,= 0, such that Aλ

is singular. Equivalently, after scaling by ρ := λ1 + λ2 > 0, and letting
α := λ1/(λ1 + λ2), the set of α ∈ [0, 1] such that the determinant of the
real symmetric matrix B := A2 + α(A1 −A2) vanishes. Such an α must be
a root in [0, 1] of the characteristic polynomial of B, which has at most n

2See for instance Alizadeh et al. [1] or Pataki and Tuncel [15]
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solutions (αk). So Aλ is singular only on the (at most n) rays (λk
1, λ

k
2) =

ρ(αk, 1 − αk), with ρ ≥ 0 and αk ∈ [0, 1]. For each αk, the image space of
Aλk = ρ(αkA1 +(1−αk)A2) is at most (n−1)-dimensional, and (2.21) holds
if and only if

f = −2ρ(αkA1 + (1− αk)A2) u,

for some u ∈ Rn, i.e., if and only if

(2.22) vT
j f = 0, j = 1, . . . , p

where (vj)p
j=1 is a basis of Ker (αkA1 + (1− αk)A2).

If p ≥ 1 then there is no solution in general, except perhaps on a set
{f}k ⊂ Rn of zero Lebesgue measure. Therefore, as the set ∪k{f}k has
zero Lebesgue measure, Aλ∗ ≺ 0 at an optimal solution λ∗ > 0, for generic
f ∈ Rn. Similar arguments are also valid if λ1 = 0 or λ2 = 0, as f must
belong to the image space of A1 or A2.

And so, H(λ∗, γ∗) has only one zero eigenvalue, which by complementar-
ity, implies that M1(y∗) is rank-one. This in turn implies the desired result
minQ = f∗.

(b) From minQ = maxQ∗ = f∗, for generic f ∈ Rn and c ∈ R2

f − f∗ = σ∗ + λ∗1g1 + λ∗2g2,

for some λ∗ ∈ R2
+ and some σ∗ ∈ Σ2 of degree 2, that is, f − f∗ ∈ Q1(g). In

other words, the PP-BDR property holds for K with order r = 1, and so,
co(K) has the SDr (2.12) which is the same as that of Theorem 3(b). !

Figures 1, 2 and 3 respectively, display three examples of sets K1,K2,K3 ⊂
R2 that have the PP-BDR property with order r = 1. In all cases g1(X) =
1−X2

1 −X2
2 , and

g2(X) = (X1 − 1)2 + X2
2 − 1 [ for K1 ]

= 1/8−X1X2 [ for K2 ]
= X1X2 − 1/8 [ for K3 ].

Notice that K3 is not even connected, and that for K1, one even has a linear
term X1 in the polynomial g2.

Remark 4. Theorem 3 illustrates the fact that the PP-BDR property is
specific to the representation of affine polynomials. Indeed if f ∈ R[X] is
now an arbitrary quadratic polynomial X /→ f(X) = XT A0X + fT x + f0,
then in general (and except in some special cases as those treated in [21])
f−f∗ ,∈ Q1(g) even for generic data A0, f . See for instance some complexity
results in quadratic optimization in Ye and Zhang [21].

Example 5. With K as in (1.3), let K̂ := K ∩ {−1, 1}n. The results in
Lasserre [9, 10] show that K̂ has the PP-BDR property with order r =
n + maxj5deg gj/26. Hence co(K̂) has the SDr (2.12) with the additional
constraints yα = yα mod 2 for all α. In this case, the PP-BDR property is not
useful for practical purposes because r depends on n, and the corresponding
SDP has 2n variables yα.
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Figure 1. K1 : g2(X) = (X1 − 1)2 + X2 − 1
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Figure 2. K2 : g2(X) = 1/8−X1X2

2.5. An approximate SDr set. With B := { x ∈ Rn : ‖x‖ ≤ 1} and
given a compact set Ω ⊂ Rn and ρ > 0, let

Ω + ρB = { x ∈ Rn | inf
y∈Ω

‖x− y‖ ≤ ρ }.

In this section we prove that given any ε > 0, there is a convex SDr set
in sandwich between co(K) and co(K) + εB and with an explicit SDr in
terms of the gj ’s that define K. For this purpose we use a result of Pres-
tel (later refined by Schweighofer [18]) on a degree bound in Schmüdgen’s
Positivstellensatz (and similarly a result of Nie and Schweighofer [19] on a
degree bound in Putinar’s Positivstellensatz).

We first need the following intermediate result.

Lemma 5. (a) Let Ω ⊂ Rn be a compact convex set and let ε > 0 be fixed.
If x ,∈ Ω + εB then there exists a linear f ∈ R[X] whose coefficient vector
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Figure 3. K2 : g2(X) = X1X2 − 1/8

f ∈ Rn satisfies ‖f‖ = 1, and a scalar f∗ such that

(2.23) f(z) ≥ f∗ ∀ z ∈ Ω and f(x) < f∗ − ε.

In addition, |f∗| ≤ τΩ := max{ ‖x‖ : x ∈ Ω}.

(b) For any compact set K ⊂ Rn, and any f ∈ Rn with ‖f‖ = 1, let
f∗ := minx∈K fT x, and let τK := max{‖x‖ : x ∈ K}. Then

(2.24) min
x∈co(K)

fT x = f∗ and |f∗| ≤ τK.

Proof. (a) With x ,∈ Ω + εB, let x∗ ∈ Ω be its projection on Ω (well defined
because Ω is compact and convex). Let f := (x∗ − x)/‖x − x∗‖ so that
‖f‖ = 1, and let f∗ := fT x∗, so that |f∗| ≤ ‖f‖ max{‖x‖ : x ∈ Ω} = τΩ.

Then with f ∈ R[X] being the linear polynomial with coefficient vector
f , one has f(z) ≥ f∗ for all z ∈ Ω because

f(z) = fT z = fT x∗ + fT (z − x∗) = f∗ + 〈 *xx∗, *x∗z〉 ≥ f∗

(since 〈 *xx∗, *x∗z〉 ≥ 0), and

f(x)− f∗ = fT (x− x∗) = −‖x− x∗‖ < − ε.

(b) Indeed, f∗ = min
x∈K

fT x = min
x∈co(K)

fT x. Moreover, |fT x| ≤ ‖f‖·‖x‖ ≤ τK

for all x ∈ K. !

Then we have the following result.

Theorem 6. Let K ⊂ Rn be a compact set as defined in (1.3).
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(a) For every fixed ε > 0 there is a integer rε ∈ N such that the SDr set
Kε defined by

(2.25) Kε :=





x ∈ Rn :






∃ y ∈ Rs(2rε) :
Mrε−rJ (gJ y) % 0, J ⊆ {1, . . . ,m}
Ly(Xi) = xi, i = 1, . . . , n
y0 = 1






satisfies co(K) ⊆ Kε ⊂ K + εB.
(b) Assume that the polynomial N − ‖X‖2 is in the quadratic module

Q(g). Then for every fixed ε > 0 there is an integer rε ∈ N such that the
SDr set Kε defined by

(2.26) Kε :=





x ∈ Rn :






∃ y ∈ Rs(2rε) :
Mrε−rj (gj y) % 0, j = 0, . . . ,m
Ly(Xi) = xi, i = 1, . . . , n
y0 = 1






satisfies co(K) ⊆ Kε ⊂ K + εB.
In both cases (a) and (b), bounds on rε are available.

Proof. (a) That co(K) ⊆ Kε is straightforward and as in the proof of The-
orem 2. Next, let x ,∈ co(K) + εB be fixed. Then by Lemma 5 (with
Ω := co(K)) there exists f ∈ Rn and f∗ := minx∈co(K) fT x such that (2.23)
holds. In addition, ‖f‖ = 1 and |f∗| ≤ τK.

Let f ∈ R[X] be the affine polynomial with coefficient vector (f ,−f∗) ∈
Rn × R so that f + ε ≥ ε > 0 on K. By Schmüdgen Positivstellensatz [17],
f + ε ∈ P (g). Even more, f + ε ∈ Prε(g) for some integer rε ∈ N that does
not depend on the precise value of f but only on its degree (here 1) and
norm (here ‖f‖ = 1 and |f∗| ≤ τK); see Schweighofer [18]. So let Kε be the
SDr set defined in (2.25) with this rε. If x ∈ Kε, we obtain the contradiction

0 > fT x− f∗ + ε

= (ε− f∗)y0 +
n∑

i=1

Ly(fiXi) [as y0 = 1 and Ly(Xi) = xi ∀i]

= Ly(f(X) + ε) =
∑

J⊆{1,...,m}

Ly(gJ σJ) [ as f + ε ∈ Prε(g) ]

≥ 0 [ by (2.15) ].

Hence Kε ⊂ co(K) + εB, the desired result.
(b) The proof is very similar except that now we invoke Putinar Pos-

itivstellenstaz [16] and Nie and Schweighofer [19] to replace Prε(g) with
Qrε(g). Finally, bounds on rε can be found for both cases (a) and (b) in [18]
and [19] respectively. !

Hence, no matter if co(K) is SDr, for every ε > 0, there is always a SDr
set Kε in sandwich between co(K) and co(K) + εB. In addition, the SDr
of Kε is explicit in terms of the polynomials (gj) that define K. This is a
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significant improvement upon the outer convex approximations ∆r ↓ co(K)
of [8], where each ∆r has a SDr. Indeed in [8], if x /∈ co(K) then x ,∈ ∆r for
all r ≥ r(x) for some r(x) that depends on x, an undesirable feature.

3. II. SDr for Compact convex basic semialgebraic sets

In this section, K ⊂ Rn defined in (1.3) is compact and convex, and we
assume that one knows a scalar τK such that:

(3.1) x ∈ K ⇒ ‖x‖ ≤ τK.

Lemma 7. Let K ⊂ Rn be as in (1.3), and assume that the gj’s that
define K are all concave and Slater’s condition holds. Given f ∈ R[X], let
f∗ := min∈K f(x).

For every linear f ∈ R[X] with ‖f‖ = 1, there exists λ(f) ∈ Rm
+ such that

X /→ Lf (X) := f(X)− f∗ −
m∑

j=1

λj(f) gj(X) ≥ 0 on Rn(3.2)

|f∗| ≤ τK; λj(f) ≤ MK, j = 1, . . . ,m,(3.3)

where MK is independent of f .

Proof. As the gj ’s are concave, K is compact and convex. In addition, as
Slater’s condition holds and f is convex, there exist nonnegative Lagrange
multipliers λ(f) ∈ Rm

+ such that

∇f(x∗) =
m∑

j=1

λj(f)∇gj(x∗); λj(f)gj(x∗) = 0, ∀ j = 1, . . . ,m,

where x∗ ∈ K is a (global) minimizer of f on K. Therefore the Lagrangian
Lf defined in (3.2) is convex, with f∗ as its global minimum on Rn and x∗

as global minimizer. Recall that Slater’s condition states that gj(x0) > 0,
j = 1, . . . ,m, for some x0. And so, from

Lf (x0) = f(x0)− f∗ −
m∑

j=1

λj(f) gj(x0) ≥ 0,

we deduce that for every j = 1, . . . ,m,

0 ≤ λj(f) ≤ f(x0)− f∗

gj(x0)
≤ 2τK

gj(x0)
≤ 2τK

min
j=1,...,m

gj(x0)
=: MK,

where we have used ‖f‖ = 1. Therefore (3.3) holds and MK above is inde-
pendent of f . !

Theorem 8. Let K ⊂ Rn be compact and defined as in (1.3). Assume that
the gj’s that define K are all concave and Slater’s condition holds. Given a
linear polynomial f ∈ R[X], let Lf be the Lagrangian defined in (3.2).
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If Lf is s.o.s. for every linear f ∈ R[X], then the PP-BDR property holds
for K with order r = max

j=1,...,m
5deg gj/26, and K is a SDr set. In addition,

the convex set

(3.4) Ω :=





(x, y) ∈ Rn × Rs(2r) :





Mr(y) % 0
Ly(gj) ≥ 0, j = 1, . . . ,m
Ly(Xi) = xi, i = 1, . . . , n
y0 = 1






is a SDr of K.

Proof. Let x ∈ K and let y = (xα) ∈ Rs(r). Then Mr(y) % 0 and Ly(gj) =
gj(x) ≥ 0 for all j = 1, . . . ,m. Therefore, (x, y) ∈ Ω.

Conversely, let x ,∈ K, and suppose that (x, y) ∈ Ω for some y ∈ Rs(r).
As x ,∈ K there exists (f∗, f) ∈ R × Rn with ‖f‖ = 1 such that fT z ≥ f∗

for all z ∈ K and fT x < f∗. Actually, f∗ = minx∈K f(x) where f ∈ R[X] is
linear with vector of coefficients f . Let Lf be as in (3.2). If Lf is s.o.s. then

f − f∗ = σ +
m∑

j=1

λj(f) gj for some s.o.s. polynomial σ ∈ R[X] of degree at

most 2r. Therefore, one obtains the contradiction

0 > fT x− f∗ = f(x)− f∗

≥ Ly(f − f∗) = Ly(σ +
m∑

j=1

λjgj)

≥ 0 [ as (x, y) ∈ Ω ].

!
Remark 9. Interestingly, Theorem 8 has a rephrasing in terms of the sup-
port function f /→ σK(f) of K, defined by:

f /→ σK(f) := sup { 〈f , x〉 : x ∈ K }.
For more details on the support function and its properties, the interested
reader is referred to e.g. Hiriart-Urruty and Lemarechal [6, Chapter V].

For every linear polynomial f ∈ R[X], let f ∈ Rn be its vector of coef-
ficients. Then observe that in Theorem 8, and with r = max

j=1,...,m
5deg gj/26,

the statement ”Lf is s.o.s. for every linear f ∈ R[X]” can be replaced with
the new statement ”f + σK(−f) ∈ Qr(g) for every linear f ∈ R[X]”.

The SDr (3.4) of K is very natural as it is based on the Karush-Kuhn-
Tucker optimality conditions. Existence of such a SDr reduces to the real
algebraic problem of checking whether the Lagrangian Lf is s.o.s. for every
(in fact, almost all) linear f ∈ R[X]. Examples 2 and 3 in §2.3 provide such
instances of sets K with the PP-BDR property and with SDr (3.4).

Hence, an important issue to find sufficient conditions to ensure that
the Lagrangian Lf is s.o.s., and if possible, conditions that can be checked
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directly from the data gj . For instance, in Lasserre [12] one finds sets of
sufficient conditions on the coefficients of a polynomial f to ensure it is
s.o.s. Also, after the present paper was written, Helton and Nie [5] have
provided several sufficient conditions for the Lagrangian Lf to be s.o.s. In
particular, if the Hessian −∇2gj(X) can be written Pj(X)Pj(X)T for some
(not necessarily square) matrix Pj(X) (i.e. −∇2gj(X) is a sum of squares),
j = 1, . . . ,m, then Lf is s.o.s.

Example 6. Consider the class of convex sets K ⊂ Rn with gj ∈ R[X]
concave and of the form

(3.5) gj(X) = −
n∑

i=1

gji X
2d
i + hj(X) + gj0, j = 1, . . . ,m,

with (gji) ⊂ R+, and hj ∈ R[X] linear for every j = 1, . . . ,m. Then
−∇2gj(X) is the diagonal matrix with diagonal elements (giiX

2d−2
i ) and so

can be written as Pj(X)Pj(X)T with Pj(X) = (∇2gj(X))1/2. Therefore, by
Theorem 8, K has the SDr (3.4).

Taking K := {x ∈ Rn : ‖x‖d (:= (
∑n

i=1 x2d
i )1/2d) ≤ 1} as a particular

case of Example 6, one may thus conclude that the p-Euclidean ball is SDr,
for all d ≥ 1.

Approximate SDr. When one does not know whether the Lagrangian Lf

is s.o.s. for all (in fact, almost all) linear f ∈ R[X], we next provide an
approximation result. Namely we provide a semidefinite representation Ωr

for an arbitrarily close convex approximation Kr of K. This approximation
is in the spirit of that of §2.5, but specific to the convex case. We first need
the following crucial auxiliary results.

Lemma 10. Let K ⊂ Rn be as in (1.3), τK as in (3.1), and assume that
the gj’s that define K are all concave and Slater’s condition holds. Let

X /→ Θr(X) :=
∑n

i=1

(
Xi
τK

)2r
.

Then for every ε > 0 there exists r(ε) such that for every linear f ∈ R[X]
with ‖f‖ = 1 and Lf as in (3.2),

(3.6) Lf + ε (1 + Θr) is s.o.s. ∀ r ≥ r(ε).

Equivalently, f − f∗ + ε (1 + Θr) ∈ Qr(g).

Proof. By Lemma 7, Lf ≥ 0 and observe that the coefficients of the poly-
nomial Lf are all uniformly bounded in f whenever ‖f‖ = 1. Indeed,

0 ≤ λj(f) ≤ MK ∀ j = 1, . . . ,m; |f∗| ≤ τK,

with τK as in (3.1) and MK as in Lemma 7. Hence, in view of the definition
(3.2) of the polynomial Lf , its coefficients (Lf )α are all bounded, uniformly
in f .

Next, Lf ≥ 0 implies that Lf is nonnegative on the box [−τK, τK]n.
Therefore (3.6) follows from Lasserre and Netzer [11, §3.3], where it was
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proved that the degree r(ε) does not depend on the precise value of the
coefficients of Lf but only on ε, the dimension n, the degree of Lf and the
size of its coefficients. Here, whenever f varies, the degree of Lf takes finitely
many values (depending on which Lagrange multipliers λj are zero), and its
coefficients are uniformly bounded. !

Next, in view of (3.1) and with Θr ∈ R[X] as in Lemma 10,

(3.7) Θr(x) ≤ 1 ∀x ∈ K, ∀ r ∈ N.

Theorem 11. Let K ⊂ Rn as in (1.3) be compact, with τK as in (3.1).
Assume that the gj’s that define K are all concave and Slater’s condition

holds. With r ∈ N, r ≥ 5deg gj/26, j = 1, . . . ,m, let Θr(X) =
∑n

i=1

(
Xi
τK

)2r
,

and let Kr ⊂ Rn be the convex set:

(3.8) Kr :=






x ∈ Rn :





∃ y ∈ Rs(2r) s.t.
Mr(y) % 0
Ly(gj) ≥ 0, j = 1, . . . ,m
Ly(Θr) ≤ 1
Ly(Xi) = xi, i = 1, . . . , n
y0 = 1






.

Then for every ε > 0, there exists r ∈ N such that

(3.9) K ⊆ Kr ⊆ K + εB,

and the convex set

(3.10) Ωr :=






(x, y) ∈ Rn × Rs(2r) :





Mr(y) % 0
Ly(gj) ≥ 0, j = 1, . . . ,m
Ly(Θr) ≤ 1
Ly(Xi) = xi, i = 1, . . . , n
y0 = 1






is a SDr of Kr.

Proof. Let x ∈ K. Then the vector y = (xα) ∈ Rs(r) satisfies the constraints
described in (3.8), so that K ⊆ Kr for all r ≥ 5deg gj/26, j = 1, . . . ,m.

To prove Kr ⊆ K + εB, we proceed by contradiction. With ε > 0 fixed,
let x ,∈ K + εB be fixed but arbitrary, and with r(ε/2) as in Lemma 10,
let r ≥ r(ε/2) be fixed arbitrary. Let f ∈ R[X] be as in Lemma 5 so that
f(x)− f∗ < − ε. Next, with Lf being the Lagrangian associated with f , by
Lemma 10,

(3.11) Lf +
ε

2
(1 + Θr) = σ,

for some s.o.s. polynomial σ ∈ R[X] of degree 2r. Equivalently,

f − f∗ +
ε

2
(1 + Θr) = σ +

m∑

j=1

λj(f) gj .
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Now, suppose that x ∈ Kr. There exists y ∈ Rs(r) such that (x, y) ∈ Ωr. In
particular, Ly(Θr) ≤ 1, Ly(gj) ≥ 0, j = 1, . . . ,m, and Ly(σ) ≥ 0 for every
σ ∈ Σ2

r (because Mr(y) % 0). And so, we obtain the contradiction

0 > fT x− f∗ + ε = f(x)− f∗ +
ε

2
+

ε

2
≥ Ly(f − f∗) +

ε

2
Ly(1 + Θr)

= Ly(σ) +
m∑

j=1

λj(f)Ly(gj) [ by (3.11) ]

≥ 0 [ as (x, y) ∈ Ωr ].

Therefore x ,∈ Kr. As x ,∈ K+ εB was arbitrary, this implies Kr ⊆ K+ εB.
Finally, that Ωr in (3.10) is a SDr of Kr, follows from the definition (3.8)
of Kr. !

The SDr Ωr of the convex set Kr in Theorem 11 resembles the SDr Ω
of K in Theorem 8. The only difference is the index r which is larger than
maxj5deg gj/26, and the additional constraint Ly(Θr) ≤ 1.

Hence, it is worth noticing that if K does not admit the SDr Ω of Theorem
8, one still obtains a SDr Ωr of an arbitrarily close convex approximation
Kr of K, explicit in terms of the concave polynomials (gj) that define K.

4. Conclusion

We have considered the class of compact basic semialgebraic sets K ⊂ Rn,
and have provided sufficient conditions for its convex hull co(K) to have a
SDr expressed directly in terms of the polynomials that define K. When K
is convex and defined by concave polynomials, we have shown that if for ev-
ery linear polynomial f ∈ R[X], the associated (nonnegative) Lagrangian Lf

is s.o.s., then K has a simpler specific SDr. Finally, we have also provided a
SDr of an arbitrarily close approximation Kε of co(K) (and of K in the con-
vex case). An interesting issue of further investigation is to provide concrete
conditions on the concave polynomials gj ’s, to ensure that the Lagrangian
Lf is s.o.s. The work in [5] provides some interesting results in this direction.
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