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Convex sets with semidefinite representation

Introduction

An important issue raised in e.g. Ben-Tal and Nemirovski [START_REF] Ben-Tal | Lectures on Modern Convex Optimization[END_REF], Helton and Vinnikov [START_REF] Helton | Linear matrix inequality representation of sets[END_REF], Parrilo and Sturmfels [START_REF] Parrilo | Exact semidefinite representations for genus zero curves, Talk at the Banff workshop "Positive Polynomials and Optimization[END_REF], is to characterize convex sets of R n that have a lifted LMI (Linear Matrix Inequalities) (or a semidefinite representation (SDr)), and called SDr sets in [START_REF] Ben-Tal | Lectures on Modern Convex Optimization[END_REF] (that is, sets which are semidefinite representable).

Recall that a convex set Ω ⊂ R n is SDr if there exist integers m, p and real p × p symmetric matrices {A i } n i=0 , {B j } m j=1 such that:

(1.1)

Ω = {x ∈ R n : ∃ y ∈ R m s.t. A 0 + n i=1 A i x i + m j=1
B j y j 0 } (where the notation A 0 stands for the matrix A is positive semidefinite).

In other words, Ω is the linear projection on R n of the convex set

Ω := {(x, y) ∈ R n × R m : A 0 + n i=1 A i x i + m j=1 B j y j 0 } (⊂ R n+m )
of the lifted space R n+m . The set Ω is called a semidefinite representation (SDr) of Ω and is a lifted LMI because one sometimes needs additional variables y ∈ R m to obtain a description of Ω via appropriate LMIs. For instance:

• The intersection of half-spaces, i.e., a polyhedron {x ∈ R n : Ax ≤ b}, is a trivial example of convex sets whose SDr is readily available without lifting. Indeed Ax ≤ b is an LMI with diagonal matrices A i in (1.1). • The intersection of ellipsoids Ω := {x ∈ R n : x T Q j x + b T x + c j ≥ 0, j = 1, . . . , m } (where -Q j 0 for all j =, . . . , m) is a SDr set with lifted LMI representation in R (n+1)(n+2)/2-1 :

(1.2) Ω =        (x, Y ) : 1 x T x Y 0 trace (Q j Y ) + b T x + c j ≥ 0, j = 1, . . . , m.        .
• The epigraph of a univariate convex polynomial is a SDr set.

• Convex sets of R 2 described from genus-zero plane curves are SDr sets; see Parrilo [START_REF] Parrilo | Exact semidefinite representations for genus zero curves, Talk at the Banff workshop "Positive Polynomials and Optimization[END_REF]. • Hyperbolic cones obtained from 3-variables hyperbolic homogeneous polynomials are SDr sets; see the proof of the Lax conjecture in Lewis et al. [START_REF] Lewis | The Lax conjecture is true[END_REF]. So far, and except for the special cases cited above, little is known. In addition, even if a convex set K is known to be SDr, there is no systematic procedure to obtain its SDr, i.e., the set of lifted LMIs whose projection describe K. However, Helton and Vinnikov [START_REF] Helton | Linear matrix inequality representation of sets[END_REF] have proved recently that rigid convexity is a necessary condition for a set to be SDr (and sufficient for dimension n = 2). Chua and Tuncel [START_REF] Beng Chua | Invariance and efficiency of convex representations[END_REF] consider even more general lifted conic representations of convex sets, called lifted G-representations (SDr being a special case) and discuss various geometric properties of convex sets admitting such lifted G-representations, as well as measures of "goodness" for such representations.

In this paper, we consider the convex hull co(K) of compact basic semialgebraic sets K ⊂ R n of the form

(1.3) K = { x ∈ R n : g j (x) ≥ 0, j = 1, . . . , m },
for some given polynomials g j ∈ R[X], j = 1, . . . , m. Notice that the class of sets (1.3) is fairly general as K can be nonconvex (even disconnected), as well as discrete.

Contribution: Our contribution is twofold:

I.
We first provide a sufficient condition (and a variant of it) on the defining polynomials (g j ) ⊂ R[X] of K that we call Schmüdgen's Bounded Degree Representation (S-BDR) of affine polynomials and its Putinar-Prestel variant (PP-BDR). A basic compact semi-algebraic set has the S-BDR (resp. PP-BDR) property if almost all affine polynomials f ∈ R[X] positive on K (hence on co(K)) belong to P r (g) (resp. Q r (g)), a subset of the preordering P (g) (resp. quadratic module Q(g)) generated by the g j . When f ∈ P r (g) or Q r (g), all elements in the representation of f in the preordering P (g) or in the quadratic module Q(g), have degree at most r.

Recall that when K is compact then f > 0 on

K implies f ∈ P (g) (or f ∈ Q(g) if N -X 2 ∈ Q(g)
for some N ), and so the S-BDR (or PP-BDR) property is stronger in that it requires f ∈ P r (g) (or Q r (g)). On the other hand, this requirement is only concerned with the class of positive affine polynomials.

For instance, this property holds for intersections of halfspaces and ellipsoids, i.e., when the g j 's are affine or quadratic and concave. But we also exhibit some nontrivial non convex compact semi-algebraic sets K with the PP-BDR property. For instance, we show that when m = 2 and the g j 's are quadratic, or when n = 2 and the g j 's are quartic, then the PP-BDR property holds generically, and with order r = 1 and r = 2, respectively.

When the S-BDR or PP-BDR property holds then one can immediately obtain an explicit SDr of co(K), expressed directly in terms of the defining polynomials g j .

We also obtain an approximate result of the following flavor. For every fixed > 0, we exhibit a convex set K such that (a) co(K) ⊆ K ⊆ co(K) + B (where B is the unit ball of R n ), and (b) K has an explicit SDr expressed directly in terms of the polynomials g j that define K. This result improves significantly upon [START_REF] Laraki | Computing uniform convex approximations for convex envelopes and convex hulls[END_REF] where we have provided outer convex approximations of co(K), i.e., a monotone nonincreasing sequence of convex sets K r , with K r ↓ co(K), and where each K r has a SDr. And so, if x / ∈ co(K) then x ∈ K r for all r ≥ r(x) for some r(x) that depends on x, an undesirable feature. II. However, for general basic semialgebraic sets K, one cannot expect that the S-BDR (or PP-BDR) property holds (if it ever holds) for nice values of the order r. Indeed otherwise one could minimize any affine polynomial on K efficiently. Therefore, from a practical point of view, the most interesting case is essentially when K is convex ... and even more ... when the defining polynomials g j in (1.3) are concave, because then one may hope for the S-BDR or PP-BDR property to hold for interesting values of r.

So, our second contribution is concerned with the case of compact convex basic semialgebraic sets K defined by concave polynomials. We first show that the PP-BDR property holds for K whenever the Lagrangian L f associated with K and an arbitrary linear f ∈ R[X] is a sum of squares (s.o.s.) (by construction it is already nonnegative). In this case, K has a natural SDr based on the Karush-Kuhn-Tucker optimality conditions. This makes an interesting connection between convexity and s.o.s. Finally, we also provide an approximate SDr of K, specific to the convex case.

I. Semidefinite representation of co(K)

2.1. Notation and definitions. For a real symmetric matrix A the notation A 0 (resp. A 0) stands for A is positive semidefinite (resp. positive definite). Let R[X] be the ring of real polynomials in the variables X = (X 1 , . . . , X n ) and let Σ 2 ⊂ R[X] be its subset of sums of squares (s.o.s.) (whereas Σ 2 d is that of degree at most 2d). For x ∈ R n , let x denote its euclidean norm.

With d ∈ N, let s(d) := n+d n , and let u(X) ∈ R s(d) be the column vector

u d (X) = (1, X 1 , . . . , X n , X 2 1 , X 1 X 2 , . . . , X d n )
T , whose components form the usual canonical basis of the vector space R[X] d (of dimension s(d)) of real polynomials of degree at most d.

Given a infinite sequence y := {y α } α∈N n indexed in the canonical basis u ∞ (X), let L y : R[X] → R be the linear mapping

(2.1) f ∈ R[X] (= α∈N n f α X α ) -→ L y (f ) := α∈N n f α y α , and let f = {f α } ∈ R s(d) be the vector of coefficients of f ∈ R[X] d in the basis u d (X).
Moment matrix. Let M d (y) be the s(d) × s(d) real matrix with rows and columns indexed in the basis u d (X), and defined by:

(2.2) M d (y)(α, β) = y α+β , α, β ∈ N n , |α|, |β| ≤ d,
where for every α ∈ N n , the notation |α| stands for n i=1 α i . Equivalently, M d (y) = L y (u d (X)u d (X) T ), meaning that L y is applied entrywise to the polynomial matrix u d (X)u d (X) T . The matrix M d (y) is called the moment matrix associated with the sequence y; see e.g. [START_REF] Lasserre | Global optimization with polynomials and the problem of moments[END_REF]. If y has a representing measure µ y (i.e., if y α = X α dµ y for every α ∈ N n ) then, one has

(2.3) f , M d (y)f = f 2 dµ y ≥ 0, ∀f ∈ R[X] d , so that M d (y) 0.
Localizing matrix. Similarly, given y = {y α } and θ ∈ R[X], let M d (θy) be the s(d) × s(d) matrix defined by:

(2.4)

M d (θy) := L y (θ(X)u d (X)u d (X) T ),
i.e., L y is applied entrywise to the polynomial matrix θ(X)u d (X)u d (X) T . The matrix M d (θy) is called the localizing matrix associated with the sequence y and the polynomial θ (see again [START_REF] Lasserre | Global optimization with polynomials and the problem of moments[END_REF]). Notice that the localizing matrix with respect to the constant polynomial θ ≡ 1 is the moment matrix

M d (y) in (2.2).
If y has a representing measure µ y with support contained in the level set {x ∈ R n : θ(x) ≥ 0} (where θ ∈ R[X]), then

(2.5) f , M d (θy)f = f 2 θ dµ y ≥ 0 ∀ f ∈ R[X] d , so that M d (θy) 0.
2.2. Semidefinite representation of co(K). Let K ⊂ R n be the basic closed semi-algebraic set defined in (1.3) for some polynomials g j ∈ R[X], j = 1, . . . , m.

For every J ⊆ {1, . . . , m}, let g J := j∈J g j , with the convention g ∅ ≡ 1, and let P (g) ⊂ R[X] be the preordering generated by the g j 's, i.e.,

P (g) := { J⊆{1,...,m} σ J g J : σ J ∈ Σ 2 },
and given r ∈ N, define P r (g) ⊂ P (g) to be the set

(2.6) P r (g) := { J⊆{1,...,m} σ J g J : σ J ∈ Σ 2 , deg σ J + deg g J ≤ 2r}.
Similarly, let Q(g) ⊂ R[X] be the quadratic module generated by the g j 's, i.e.,

Q(g) := { m j=0 σ j g j : σ j ∈ Σ 2 }
(with the convention g 0 ≡ 1), and given r ∈ N, define Q r (g) ⊂ Q(g) to be the set

(2.7) Q r (g) := { m j=0 σ j g j : σ j ∈ Σ 2 , deg σ j + deg g j ≤ 2r}.
Definition 1 (Semi Definite representation (SDr)). A convex set Ω ⊂ R n has a SDr (or is a SDr set) if it has the form

(2.8) Ω = { x ∈ R n : ∃ y ∈ R m s.t. A 0 + n i=1 A i x i + p k=1 B k y k 0 }
for some integer p and real symmetric matrices {A i } and {B k }.

For an affine polynomial

X → f 0 + n i=1 f i X i , let (f 0 , f ) ∈ R × R n be its vector of coefficients.
Definition 2 (Schmüdgen's Bounded Degree Representation of affine polynomials). Given a compact set K ⊂ R n defined as in (1.3), one says that Schmüdgen's Bounded Degree Representation (S-BDR) of affine polynomials holds for K if there exists r ∈ N such that (2.9)

[ f affine and positive on K ] ⇒ f ∈ P r (g), except perhaps on a set of vectors f in R n with Lebesgue measure zero. Call r its order.

Definition 3 (Putinar-Prestel's Bounded Degree Representation of affine polynomials). Given a compact set K ⊂ R n defined as in (1.3), one says that Putinar-Prestel's Bounded Degree Representation (PP-BDR) of affine polynomials holds for K if there exists r ∈ N such that

(2.10) [ f affine and positive on K ] ⇒ f ∈ Q r (g),
except perhaps on a set of vectors f in R n with Lebesgue measure zero. Call r its order.

Remark 1. (a) Observe that if K is compact, by Schmüdgen's Positivstel- lensatz [17] [ f ∈ R[X] and f positive on K ] ⇒ f ∈ P r (g),
for some r(f ). The S-BDR property states that r(f

) < r for almost all affine f ∈ R[X], positive on K. (b) If for some N , the polynomial N -X 2 is in Q(g), then by Putinar's Positivstellensatz [16] [ f ∈ R[X] and f positive on K ] ⇒ f ∈ Q r (g),
for some r(f ); see also Jacobi and Prestel [START_REF] Jacobi | Distinguished representations of strictly positive polynomials[END_REF]. The PP-BDR property states that r(f ) < r for almost all affine f ∈ R[X], positive on K.

(c) Finally, the PP-BDR property implies the S-BDR property.

For every J ⊆ {1, . . . , m} let r J := deg g J /2 .

Theorem 2. Let K ⊂ R n be compact and defined as in (1.3).

(a) If the S-BDR property holds for K with order r, then co(K) is a SDr set with SDr

(2.11)    (x, y) ∈ R n × R s(2r) :    M r-r J (g J y) 0, J ⊆ {1, . . . , m} L y (X i ) = x i , i = 1, . . . , n y 0 = 1    . (b) If the PP-BDR property holds for K with order r, then co(K) is a SDr set with SDr (2.12)    (x, y) ∈ R n × R s(2r) :    M r-r j (g j y) 0, j = 0, 1, . . . , m L y (X i ) = x i , i = 1, . . . , n y 0 = 1    .
Proof. We only prove (a) as (b) is proved in exactly the same manner. Let Ω ⊂ R n × R s(r) be the set defined in (2.11). We have to show that (∃ y : r) . Observe that by the definition of co(K),

(x, y) ∈ Ω) ⇔ x ∈ co(K). 1. x ∈ co(K) ⇒ (x, y) ∈ Ω for some y ∈ R s(
x ∈ co(K) ⇔ x = X dµ
for some probability measure µ supported on K. Let y = (y α ) ∈ R s(r) be the sequence of moments of µ up to order 2r, i.e.

y α = L y (X α ) = X α dµ, α ∈ N n ; |α| ≤ 2r.
The sequence y is well defined because µ has compact support; in particular y 0 = 1. From the definition of µ one has L y (X i ) = X i dµ = x i . In addition, as µ is supported on K, one has M r-r J (g J y) 0 for all subsets J ⊆ {1, . . . , m} (just take θ := g J in (2.5)). And so (x, y) ∈ Ω.

2. ∃ y : (x, y) ∈ Ω ⇒ x ∈ co(K). We prove it by contradiction. Let x ∈ co(K) and assume that there exists y ∈ R s(r) such that (x, y) ∈ Ω. As co(K) is convex and compact, by the Hahn-Banach separation theorem, there exists

(f 0 , f ) ∈ R × R n such that (2.13) f , x < f 0 and f , z > f 0 ∀ z ∈ co(K),
and so the affine polynomial

f ∈ R[X], X → f (X) := -f 0 + i f i X i is positive on K.
By the PP-BDR property of K with order r, one has f ∈ P r (g) or f ∈ P r (g) for some affine f ∈ R[X] with coefficient vector ( f , f0 ) such that f = 1 and some > 0 such that ( f , f0 ) -(f , f 0 ) < , with > 0 as small as desired. Therefore, one may choose sufficiently small to ensure that ( f , f0 ) also satisfies (2.13) and so, one may rename f as f and safely assume that f ∈ P r (g). Hence,

(2.14) f (X) = J⊆{1,...,m} σ J g J , σ J ∈ Σ 2 ; deg σ J + deg g J ≤ 2r.
Observe that as σ J is s.o.s. and deg (2.15) ]. This proves that there is no y such that (x, y) ∈ Ω, the desired result.

σ J + deg g J ≤ 2r, one has (2.15) L y (σ J g J ) ≥ 0 ∀ J ⊆ {1, . . . , m}. Applying the linear functional L y to the polynomial f in (2.14) yields the contradiction 0 > f T x -f 0 = -f 0 y 0 + n i=1 L y (f i X i ) [as y 0 = 1, L y (X i ) = x i ∀ i] = L y (f (X)) = J⊆{1,...,m} L y (g J σ J ) [ by (2.14) ] ≥ 0 [ by
Notice that in Theorem 2, the SDr (2.11) and (2.12) of co(K) are given explicitly in terms of the data g j 's that define K.

Examples of convex K.

We have already seen that the intersection K of half-spaces and/or ellipsoids is a SDr set. But we here show that the PP-BDR property holds for such sets K, and also for the intersection of level sets of quartic polynomials in two variables. Of course, one already knows how to build up a SDr for K at least in the first two cases. But this is to illustrate that the domain of application of Theorem 2 is not empty and not trivial.

Example 1. Let us start with K being a convex polytope defined by linear inequalities, i.e., g j ∈ R[X] is affine in X for all j = 1, . . . , m. Hence co(K) ≡ K and this description of K by the g j 's is already a SDr; it is even a linear system. We briefly prove that the PP-BDR property holds for K with order 0. Let f ∈ R[X] be affine with coefficient vector (f 0 , f ) ∈ R × R n , and write

g j (X) = g j0 + n i=1 g ji X i , j = 1, . . . , m f (X) = f 0 + n i=1 f i X i .
Next, let G ∈ R m×n be the matrix G(j, i) = g ji , j = 1, . . . , m, i = 1, . . . , n, and g = (g j0 ) ∈ R m . If f is nonnegative on K then by Farkas lemma f = λ T G and f 0 ≥ λ T g, for some nonnegative vector λ ∈ R m . Therefore f (X) = u+ m j=1 λ j g j (X), for some nonnegative scalar u, which proves that f ∈ Q 1 (g). That is, the PP-BDR property holds for K with order r = 1.

Example 2. Let g j ∈ R[X] be concave and quadratic, for all j = 1, . . . , m. Then K is convex and it is well-known that K is a SDr set. Let f ∈ R[X] be affine with coefficient vector (f 0 , f ) ∈ R × R n , and nonnegative on K, so that f * := min x∈K f (x) ≥ 0. Assume that K is compact with nonempty interior. Convexity along with Slater's condition 1 imply that the KKT optimality conditions hold at any global minimizer 1 Slater's condition states that there exists x0 ∈ K such that gj(x0) > 0 for every j = 1, . . . , m. If Slater's condition holds and f is convex and differentiable, then the Karush-Kuhn-Tucker (KKT) optimality conditions hold at any minimizer x * ∈ K of the convex optimization problem: minx{f (x) : x ∈ K} that is, f ∈ Q 1 (g) (as f * ≥ 0). And so the PP-BDR property holds for K with order r = 1, and K has the SDr (2.12). Writing g j (x) = x T Q j x + b T x + c j for some positive semidefinite matrix -Q j 0, j = 1, . . . , m, the SDr (2.12) is nothing less than (1.2) already encountered in the introduction.

x * ∈ K, i.e., f - m j=1 λ j ∇g j (x * ) = 0 ; λ j g j (x * ) = 0, j = 1, . . . , m, for some nonnegative Lagrange multipliers λ ∈ R m + . Then x * is also a global minimizer of the (convex) quadratic Lagrangian L f := f -m j=1 λ j g j on the whole R n . Therefore, L f -f * ≥ 0 on R n and being quadratic, L f -f * ∈ Σ 2 . Hence f = f * + (L f -f * ) + j=1 λ j g j ,
Example 3. Let n = 2 with g j concave and deg g j = 2 or 4, for all j = 1, . . . , m, so that K is convex. Assume K is compact with nonempty interior. It is known that in general K is not representable by a LMI in the variables x 1 and x 2 only;. For instance take m = 1 and g 1 (X) = 1 -X 4 1 -X 4 2 . The rigid convexity condition of Helton and Vinnikov [START_REF] Helton | Linear matrix inequality representation of sets[END_REF] is violated, but on the other hand, K is known to be SDr.

Let f ∈ R[X] be affine and nonnegative on K with global minimum f * ≥ 0 on K. Again, convexity along with Slater's condition implies that the KKT optimality conditions hold at any global minimizer x * ∈ K. And so there exist nonnegative Lagrange multipliers λ ∈ R m + such that the (convex) Lagrangian L f := f -m j=1 λ j g j also has optimal value f * and, in addition,

x * ∈ K is a global minimizer of L f on R 2 . Therefore, the polynomial L f -f * being nonnegative on R 2 and being quadratic or quartic in 2 variables, is s.o.s. That is L f -f * = σ for some σ ∈ Σ 2 and deg σ ≤ 4. But then f = f * + (L f -f * ) + m j=1 λ j g j ∈ Q 2 (g) because as f * ≥ 0, f * + (L f -f * ) ∈ Σ 2 .
That is, the PP-BDR property holds for K with order r = 2. Hence, K has the SDr (2.12). 

g i (X) = X T A i X + c i , i = 1, 2,
for some real symmetric matrices A i , and

vector c = (c 1 , c 2 ) ∈ R 2 . Given a linear polynomial f ∈ R[X] with coefficient vector f = (f i ) n i=1 ∈ R n , consider the SDP (2.17) Q : min y { L y (f ) : M 1 (y) 0; L y (g i ) ≥ 0; i = 1, 2; y 0 = 1 }
with optimal value denoted inf Q (min Q if the infimum is achieved at some y * ), and with dual

Q * : max λ,γ,σ { γ : f -γ = σ + λ 1 g 1 + λ 2 g 2 ; λ 1 , λ 2 ≥ 0; σ ∈ Σ 2 2 }
where Σ 2 2 is the set of s.o.s. of degree 2. Let A λ := λ 1 A 1 + λ 2 A 2 and introduce the matrix

(2.18) H(λ, γ) :=   -γ -λ, c | f T /2 -------| ------- f /2 | -A λ   .
Then Q * has the equivalent form

(2.19) Q * : max λ≥0,γ { γ : H(λ, γ) 0 }, with optimal value denoted sup Q * (max Q * if the sup is achieved). Obvi- ously inf Q ≤ f * := min x { f (x) : x ∈ K },
and min Q = f * holds if for instance M 1 (y * ) is rank one at some optimal solution y * . Indeed, in this case,

y * = (1, x * , (x * 1 ) 2 , x * 1 x * 2 , . . . , (x * n ) 2 ), which implies L y * (f ) = f (x * ) and L y * (g i ) = g i (x * ) ≥ 0, i = 1, 2.
Theorem 3. Let K ⊂ R n be defined as in (1.3) with m = 2 and g j as in (2.16), and let Q be as in (2.17). Assume that K is compact with nonempty interior and

(2.20)

λ 1 A 1 + λ 2 A 2 ≺ 0 for some λ = (λ 1 , λ 2 ) ≥ 0. Then for generic f ∈ R n : (a) min Q = f * (b)
The PP-BDR property holds for co(K) with order r = 1, and so co(K) has the SDr (2.12), i.e., {M 1 (y) 0; L y (g j ) ≥ 0, j = 1, 2; L y (X i ) = x i , i = 1, . . . , n; y 0 = 1 }.

Proof. (a) Slater's condition holds for Q and Q * . Indeed as K has nonempty interior, let µ be the uniform probability measure on K, with (well-defined) sequence of moment y = (y α ) (hence with y 0 = 1). It satisfies M 1 (y) 0 and L y (g 1 ) > 0 as well as L y (g 2 ) > 0.

Next, in view of (2.20), one may find λ 1 , λ 2 > 0 and γ ∈ R such that

A λ ≺ 0 and H(λ, γ) 0. With X → σ(X) := (1, X) T H(λ, γ) 1 X ∈ Σ 2 2
, one obtains a strictly feasible solution (γ, λ, σ) of Q * . As the value of both primal and dual strictly feasible solutions are finite, it follows that there is no duality gap, i.e., min Q = max Q * , and both Q and Q * are solvable.

Next, zero-duality gap yields complementarity2 at optimal solutions y * and (γ * , λ * , σ * ) of Q and Q * , i.e., trace(M 1 (y * )H(λ * , γ * )) = 0. Therefore H(λ * , γ * ) must be singular. Notice that H(λ, γ) 0 implies that (2.21)

-2A λ u = f for some u ∈ R n and γ + λ 1 c 1 + λ 2 c 2 ≤ u T A λ u.
We next prove that generically (i.e., except perhaps for a set of vectors {f } ⊂ R n with zero Lebesgue measure) A λ * ≺ 0, and so rank H(λ * , γ * ) = n -1. Indeed, consider the set of λ ∈ R 2 + with λ 1 λ 2 = 0, such that A λ is singular. Equivalently, after scaling by ρ := λ 1 + λ 2 > 0, and letting α := λ 1 /(λ 1 + λ 2 ), the set of α ∈ [0, 1] such that the determinant of the real symmetric matrix B := A 2 + α(A 1 -A 2 ) vanishes. Such an α must be a root in [0, 1] of the characteristic polynomial of B, which has at most n solutions (α k ). So A λ is singular only on the (at most n) rays 

(λ k 1 , λ k 2 ) = ρ(α k , 1 -α k ), with ρ ≥ 0 and α k ∈ [0, 1]. For each α k , the image space of A λ k = ρ(α k A 1 + (1 -α k )A 2 ) is at most (n -1)-dimensional,
f = -2ρ(α k A 1 + (1 -α k )A 2 ) u, for some u ∈ R n , i.e., if and only if (2.22) v T j f = 0, j = 1, . . . , p where (v j ) p j=1 is a basis of Ker (α k A 1 + (1 -α k )A 2
). If p ≥ 1 then there is no solution in general, except perhaps on a set {f } k ⊂ R n of zero Lebesgue measure. Therefore, as the set ∪ k {f } k has zero Lebesgue measure, A λ * ≺ 0 at an optimal solution λ * > 0, for generic f ∈ R n . Similar arguments are also valid if λ 1 = 0 or λ 2 = 0, as f must belong to the image space of A 1 or A 2 .

And so, H(λ * , γ * ) has only one zero eigenvalue, which by complementarity, implies that M 1 (y * ) is rank-one. This in turn implies the desired result min

Q = f * . (b) From min Q = max Q * = f * , for generic f ∈ R n and c ∈ R 2 f -f * = σ * + λ * 1 g 1 + λ * 2 g 2 , for some λ * ∈ R 2 + and some σ * ∈ Σ 2 of degree 2, that is, f -f * ∈ Q 1 (g).
In other words, the PP-BDR property holds for K with order r = 1, and so, co(K) has the SDr (2.12) which is the same as that of Theorem 3(b).

Figures 1, 2 and 3 respectively, display three examples of sets K 1 , K 2 , K 3 ⊂ R 2 that have the PP-BDR property with order r = 1. In all cases g 1 (X) = 1 -X 2 1 -X 2 2 , and

g 2 (X) = (X 1 -1) 2 + X 2 2 -1 [ for K 1 ] = 1/8 -X 1 X 2 [ for K 2 ] = X 1 X 2 -1/8 [ for K 3 ].
Notice that K 3 is not even connected, and that for K 1 , one even has a linear term X 1 in the polynomial g 2 .

Remark 4. Theorem 3 illustrates the fact that the PP-BDR property is specific to the representation of affine polynomials.

Indeed if f ∈ R[X] is now an arbitrary quadratic polynomial X → f (X) = X T A 0 X + f T x + f 0 ,
then in general (and except in some special cases as those treated in [START_REF] Ye | New results on quadratic minimization[END_REF]) ff * ∈ Q 1 (g) even for generic data A 0 , f . See for instance some complexity results in quadratic optimization in Ye and Zhang [START_REF] Ye | New results on quadratic minimization[END_REF].

Example 5. With K as in (1.3), let K := K ∩ {-1, 1} n . The results in Lasserre [START_REF] Lasserre | Global optimization with polynomials and the problem of moments[END_REF][START_REF] Lasserre | An explicit equivalent positive semidefinite program for nonlinear 0-1 programs[END_REF] show that K has the PP-BDR property with order r = n + max j deg g j /2 . Hence co( K) has the SDr (2.12) with the additional constraints y α = y α mod 2 for all α. In this case, the PP-BDR property is not useful for practical purposes because r depends on n, and the corresponding SDP has 2 n variables y α .
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5. An approximate SDr set. With B := { x ∈ R n : x ≤ 1} and given a compact set Ω ⊂ R n and ρ > 0, let

Ω + ρ B = { x ∈ R n | inf y∈Ω x -y ≤ ρ }.
In this section we prove that given any > 0, there is a convex SDr set in sandwich between co(K) and co(K) + B and with an explicit SDr in terms of the g j 's that define K. For this purpose we use a result of Prestel (later refined by Schweighofer [START_REF] Schweighofer | On the complexity of Schmdgen's Positivstellensatz[END_REF]) on a degree bound in Schmüdgen's Positivstellensatz (and similarly a result of Nie and Schweighofer [START_REF] Nie | On the complexity of Putinar's Positivstellensatz[END_REF] on a degree bound in Putinar's Positivstellensatz).

We first need the following intermediate result.

Lemma 5. (a)

Let Ω ⊂ R n be a compact convex set and let > 0 be fixed. If x ∈ Ω + B then there exists a linear f ∈ R[X] whose coefficient vector

! " !# !$%& !$%' !$%( !$%) $ $%) $%( $%' $%& # !# !$%& !$%' !$%( !$%) $ $%) $%( $%' $%& # Figure 3. K 2 : g 2 (X) = X 1 X 2 -1/8 f ∈ R n satisfies f = 1, and a scalar f * such that (2.23) f (z) ≥ f * ∀ z ∈ Ω and f (x) < f * -. In addition, |f * | ≤ τ Ω := max{ x : x ∈ Ω}.
(b) For any compact set K ⊂ R n , and any f ∈ R n with f = 1, let f * := min x∈K f T x, and let τ K := max{ x : x ∈ K}. Then (2.24) min

x∈co(K) f T x = f * and |f * | ≤ τ K .
Proof. (a) With x ∈ Ω + B, let x * ∈ Ω be its projection on Ω (well defined because Ω is compact and convex). Let f := (x *x)/ xx * so that f = 1, and let

f * := f T x * , so that |f * | ≤ f max{ x : x ∈ Ω} = τ Ω .
Then with f ∈ R[X] being the linear polynomial with coefficient vector f , one has f (z) ≥ f * for all z ∈ Ω because

f (z) = f T z = f T x * + f T (z -x * ) = f * + xx * , x * z ≥ f * (since xx * , x * z ≥ 0), and f (x) -f * = f T (x -x * ) = -x -x * < -. (b) Indeed, f * = min x∈K f T x = min x∈co(K) f T x. Moreover, |f T x| ≤ f • x ≤ τ K for all x ∈ K.
Then we have the following result. Theorem 6. Let K ⊂ R n be a compact set as defined in (1.3).

(a) For every fixed > 0 there is a integer r ∈ N such that the SDr set K defined by

(2.25) K :=        x ∈ R n :        ∃ y ∈ R s(2r ) : M r -r J (g J y) 0, J ⊆ {1, . . . , m} L y (X i ) = x i , i = 1, . . . , n y 0 = 1        satisfies co(K) ⊆ K ⊂ K + B.
(b) Assume that the polynomial N -X 2 is in the quadratic module Q(g). Then for every fixed > 0 there is an integer r ∈ N such that the SDr set K defined by

(2.26) K :=        x ∈ R n :        ∃ y ∈ R s(2r ) : M r -r j (g j y) 0, j = 0, . . . , m L y (X i ) = x i , i = 1, . . . , n y 0 = 1        satisfies co(K) ⊆ K ⊂ K + B.
In both cases (a) and (b), bounds on r are available.

Proof. (a) That co(K) ⊆ K is straightforward and as in the proof of Theorem 2. Next, let x ∈ co(K) + B be fixed. Then by Lemma 5 (with

Ω := co(K)) there exists f ∈ R n and f * := min x∈co(K) f T x such that (2.23) holds. In addition, f = 1 and |f * | ≤ τ K . Let f ∈ R[X]
be the affine polynomial with coefficient vector (f , -f * ) ∈ R n × R so that f + ≥ > 0 on K. By Schmüdgen Positivstellensatz [START_REF] Schmüdgen | The K-moment problem for compact semi-algebraic sets[END_REF], f + ∈ P (g). Even more, f + ∈ P r (g) for some integer r ∈ N that does not depend on the precise value of f but only on its degree (here 1) and norm (here f = 1 and |f * | ≤ τ K ); see Schweighofer [START_REF] Schweighofer | On the complexity of Schmdgen's Positivstellensatz[END_REF]. So let K be the SDr set defined in (2.25) with this r . If x ∈ K , we obtain the contradiction

0 > f T x -f * + = ( -f * )y 0 + n i=1 L y (f i X i ) [as y 0 = 1 and L y (X i ) = x i ∀i] = L y (f (X) + ) = J⊆{1,...,m} L y (g J σ J ) [ as f + ∈ P r (g) ] ≥ 0 [ by (2.15) ].
Hence K ⊂ co(K) + B, the desired result.

(b) The proof is very similar except that now we invoke Putinar Positivstellenstaz [START_REF] Putinar | Positive polynomials on compact semi-algebraic sets[END_REF] and Nie and Schweighofer [START_REF] Nie | On the complexity of Putinar's Positivstellensatz[END_REF] to replace P r (g) with Q r (g). Finally, bounds on r can be found for both cases (a) and (b) in [START_REF] Schweighofer | On the complexity of Schmdgen's Positivstellensatz[END_REF] and [START_REF] Nie | On the complexity of Putinar's Positivstellensatz[END_REF] respectively. Hence, no matter if co(K) is SDr, for every > 0, there is always a SDr set K in sandwich between co(K) and co(K) + B. In addition, the SDr of K is explicit in terms of the polynomials (g j ) that define K. This is a significant improvement upon the outer convex approximations ∆ r ↓ co(K) of [START_REF] Laraki | Computing uniform convex approximations for convex envelopes and convex hulls[END_REF], where each ∆ r has a SDr. Indeed in [START_REF] Laraki | Computing uniform convex approximations for convex envelopes and convex hulls[END_REF], if x / ∈ co(K) then x ∈ ∆ r for all r ≥ r(x) for some r(x) that depends on x, an undesirable feature.

II. SDr for Compact convex basic semialgebraic sets

In this section, K ⊂ R n defined in (1.3) is compact and convex, and we assume that one knows a scalar τ K such that:

(3.1) x ∈ K ⇒ x ≤ τ K .
Lemma 7. Let K ⊂ R n be as in (1.3), and assume that the g j 's that define K are all concave and Slater's condition holds. Given

f ∈ R[X], let f * := min ∈K f (x). For every linear f ∈ R[X] with f = 1, there exists λ(f ) ∈ R m + such that X → L f (X) := f (X) -f * - m j=1 λ j (f ) g j (X) ≥ 0 on R n (3.2) |f * | ≤ τ K ; λ j (f ) ≤ M K , j = 1, . . . , m, (3.3)
where M K is independent of f . Proof. As the g j 's are concave, K is compact and convex. In addition, as Slater's condition holds and f is convex, there exist nonnegative Lagrange multipliers λ(f

) ∈ R m + such that ∇f (x * ) = m j=1
λ j (f )∇g j (x * ); λ j (f )g j (x * ) = 0, ∀ j = 1, . . . , m, where x * ∈ K is a (global) minimizer of f on K. Therefore the Lagrangian L f defined in (3.2) is convex, with f * as its global minimum on R n and x * as global minimizer. Recall that Slater's condition states that g j (x 0 ) > 0, j = 1, . . . , m, for some x 0 . And so, from

L f (x 0 ) = f (x 0 ) -f * - m j=1 λ j (f ) g j (x 0 ) ≥ 0,
we deduce that for every j = 1, . . . , m,

0 ≤ λ j (f ) ≤ f (x 0 ) -f * g j (x 0 ) ≤ 2τ K g j (x 0 ) ≤ 2τ K min j=1,...,m g j (x 0 ) =: M K ,
where we have used f = 1. Therefore (3.3) holds and M K above is independent of f . Theorem 8. Let K ⊂ R n be compact and defined as in (1.3). Assume that the g j 's that define K are all concave and Slater's condition holds. Given a linear polynomial f ∈ R[X], let L f be the Lagrangian defined in (3.2).

If L f is s.o.s. for every linear f ∈ R[X], then the PP-BDR property holds for K with order r = max j=1,...,m deg g j /2 , and K is a SDr set. In addition, the convex set

(3.4) Ω :=        (x, y) ∈ R n × R s(2r) :     M r (y) 0 L y (g j ) ≥ 0, j = 1, . . . , m L y (X i ) = x i , i = 1, . . . , n y 0 = 1        is a SDr of K.
Proof. Let x ∈ K and let y = (x α ) ∈ R s (r) . Then M r (y) 0 and L y (g j ) = g j (x) ≥ 0 for all j = 1, . . . , m. Therefore, (x, y) ∈ Ω.

Conversely, let x ∈ K, and suppose that (x, y) ∈ Ω for some y ∈ R s(r) . As x ∈ K there exists (f

* , f ) ∈ R × R n with f = 1 such that f T z ≥ f * for all z ∈ K and f T x < f * . Actually, f * = min x∈K f (x) where f ∈ R[X] is linear with vector of coefficients f . Let L f be as in (3.2). If L f is s.o.s. then f -f * = σ + m j=1
λ j (f ) g j for some s.o.s. polynomial σ ∈ R[X] of degree at most 2r. Therefore, one obtains the contradiction

0 > f T x -f * = f (x) -f * ≥ L y (f -f * ) = L y (σ + m j=1 λ j g j ) ≥ 0 [ as (x, y) ∈ Ω ].
Remark 9. Interestingly, Theorem 8 has a rephrasing in terms of the support function f → σ K (f ) of K, defined by:

f → σ K (f ) := sup { f , x : x ∈ K }.
For more details on the support function and its properties, the interested reader is referred to e.g. Hiriart-Urruty and Lemarechal [6, Chapter V].

For every linear polynomial f ∈ R[X], let f ∈ R n be its vector of coefficients. Then observe that in Theorem 8, and with r = max j=1,...,m deg g j /2 , the statement "L f is s.o.s. for every linear f ∈ R[X]" can be replaced with the new statement "f

+ σ K (-f ) ∈ Q r (g) for every linear f ∈ R[X]".
The SDr (3.4) of K is very natural as it is based on the Karush-Kuhn-Tucker optimality conditions. Existence of such a SDr reduces to the real algebraic problem of checking whether the Lagrangian L f is s.o.s. for every (in fact, almost all) linear f ∈ R[X]. Examples 2 and 3 in §2.3 provide such instances of sets K with the PP-BDR property and with SDr (3.4).

Hence, an important issue to find sufficient conditions to ensure that the Lagrangian L f is s.o.s., and if possible, conditions that can be checked directly from the data g j . For instance, in Lasserre [START_REF] Lasserre | Conditions for a real polynomial to be sum of squares[END_REF] one finds sets of sufficient conditions on the coefficients of a polynomial f to ensure it is s.o.s. Also, after the present paper was written, Helton and Nie [START_REF] Helton | Semidefinite representation of convex sets[END_REF] have provided several sufficient conditions for the Lagrangian L f to be s.o.s. In particular, if the Hessian -∇ 2 g j (X) can be written P j (X)P j (X) T for some (not necessarily square) matrix P j (X) (i.e. -∇ 2 g j (X) is a sum of squares), j = 1, . . . , m, then L f is s.o.s. Example 6. Consider the class of convex sets K ⊂ R n with g j ∈ R[X] concave and of the form

(3.5) g j (X) = - n i=1 g ji X 2d i + h j (X) + g j0 , j = 1, . . . , m,
with (g ji ) ⊂ R + , and h j ∈ R[X] linear for every j = 1, . . . , m. Then -∇ 2 g j (X) is the diagonal matrix with diagonal elements (g ii X 2d-2 i

) and so can be written as P j (X)P j (X) T with P j (X) = (∇ 2 g j (X)) 1/2 . Therefore, by Theorem 8, K has the SDr (3.4).

Taking

K := {x ∈ R n : x d (:= ( n i=1 x 2d i ) 1/2d
) ≤ 1} as a particular case of Example 6, one may thus conclude that the p-Euclidean ball is SDr, for all d ≥ 1.

Approximate SDr. When one does not know whether the Lagrangian L f is s.o.s. for all (in fact, almost all) linear f ∈ R[X], we next provide an approximation result. Namely we provide a semidefinite representation Ω r for an arbitrarily close convex approximation K r of K. This approximation is in the spirit of that of §2.5, but specific to the convex case. We first need the following crucial auxiliary results. Lemma 10. Let K ⊂ R n be as in (1.3), τ K as in (3.1), and assume that the g j 's that define K are all concave and Slater's condition holds. Let

X → Θ r (X) := n i=1 X i τ K 2r .
Then for every > 0 there exists r( ) such that for every linear

f ∈ R[X] with f = 1 and L f as in (3.2), (3.6) L f + (1 + Θ r ) is s.o.s. ∀ r ≥ r( ). Equivalently, f -f * + (1 + Θ r ) ∈ Q r (g).
Proof. By Lemma 7, L f ≥ 0 and observe that the coefficients of the polynomial L f are all uniformly bounded in f whenever f = 1. Indeed,

0 ≤ λ j (f ) ≤ M K ∀ j = 1, . . . , m;
|f * | ≤ τ K , with τ K as in (3.1) and M K as in Lemma 7. Hence, in view of the definition (3.2) of the polynomial L f , its coefficients (L f ) α are all bounded, uniformly in f .

Next, L f ≥ 0 implies that L f is nonnegative on the box [-τ K , τ K ] n . Therefore (3.6) follows from Lasserre and Netzer [11, §3.3], where it was proved that the degree r( ) does not depend on the precise value of the coefficients of L f but only on , the dimension n, the degree of L f and the size of its coefficients. Here, whenever f varies, the degree of L f takes finitely many values (depending on which Lagrange multipliers λ j are zero), and its coefficients are uniformly bounded.

Next, in view of (3.1) and with Θ r ∈ R[X] as in Lemma 10,

(3.7) Θ r (x) ≤ 1 ∀ x ∈ K, ∀ r ∈ N. Theorem 11. Let K ⊂ R n as in (1.
3) be compact, with τ K as in (3.1). Assume that the g j 's that define K are all concave and Slater's condition holds. With r ∈ N, r ≥ deg g j /2 , j = 1, . . . , m, let Θ r (X) = n i=1 X i τ K 2r , and let K r ⊂ R n be the convex set:

(3.8) K r :=                x ∈ R n :         ∃ y ∈ R s(2r) s.t. M r (y) 0 L y (g j ) ≥ 0, j = 1, . . . , m L y (Θ r ) ≤ 1 L y (X i ) = x i , i = 1, . . . , n y 0 = 1                .
Then for every > 0, there exists r ∈ N such that Proof. Let x ∈ K. Then the vector y = (x α ) ∈ R s(r) satisfies the constraints described in (3.8), so that K ⊆ K r for all r ≥ deg g j /2 , j = 1, . . . , m.

To prove K r ⊆ K + B, we proceed by contradiction. With > 0 fixed, let x ∈ K + B be fixed but arbitrary, and with r( /2) as in Lemma 10, let r ≥ r( /2) be fixed arbitrary. Let f ∈ R[X] be as in Lemma 5 so that f (x)f * < -. Next, with L f being the Lagrangian associated with f , by Lemma 10, Now, suppose that x ∈ K r . There exists y ∈ R s(r) such that (x, y) ∈ Ω r . In particular, L y (Θ r ) ≤ 1, L y (g j ) ≥ 0, j = 1, . . . , m, and L y (σ) ≥ 0 for every σ ∈ Σ 2 r (because M r (y) 0). And so, we obtain the contradiction 0 The SDr Ω r of the convex set K r in Theorem 11 resembles the SDr Ω of K in Theorem 8. The only difference is the index r which is larger than max j deg g j /2 , and the additional constraint L y (Θ r ) ≤ 1.

> f T x -f * + = f (x) -f * + 2 + 2 ≥ L y (f -f * ) + 2 L y (1 + Θ r ) = L y (σ) +
Hence, it is worth noticing that if K does not admit the SDr Ω of Theorem 8, one still obtains a SDr Ω r of an arbitrarily close convex approximation K r of K, explicit in terms of the concave polynomials (g j ) that define K.

Conclusion

We have considered the class of compact basic semialgebraic sets K ⊂ R n , and have provided sufficient conditions for its convex hull co(K) to have a SDr expressed directly in terms of the polynomials that define K. When K is convex and defined by concave polynomials, we have shown that if for every linear polynomial f ∈ R[X], the associated (nonnegative) Lagrangian L f is s.o.s., then K has a simpler specific SDr. Finally, we have also provided a SDr of an arbitrarily close approximation K of co(K) (and of K in the convex case). An interesting issue of further investigation is to provide concrete conditions on the concave polynomials g j 's, to ensure that the Lagrangian L f is s.o.s. The work in [START_REF] Helton | Semidefinite representation of convex sets[END_REF] provides some interesting results in this direction.

2. 4 .

 4 Examples with nonconvex K. Example 4. Let m = 2 with (2.16)

(3. 9 )= 1 

 91 K ⊆ K r ⊆ K + B,and the convex set(3.10) Ω r :=            (x, y) ∈ R n × R s(2r) : g j ) ≥ 0, j = 1, . . . , m L y (Θ r ) ≤ 1 L y (X i ) = x i , i = 1, . . . , n y 0 SDr of K r .

  r ) = σ, for some s.o.s. polynomial σ ∈ R[X] of degree 2r. Equivalently, ff * + 2 (1 + Θ r ) = σ + m j=1 λ j (f ) g j .

λ

  j (f )L y (g j ) [ by (3.11) ] ≥ 0 [ as (x, y) ∈ Ω r ]. Therefore x ∈ K r . As x ∈ K + B was arbitrary, this implies K r ⊆ K + B.Finally, that Ω r in (3.10) is a SDr of K r , follows from the definition (3.8) of K r .

See for instance Alizadeh et al.[START_REF] Alizadeh | Complementarity and nondegeneracy in semidefinite programming[END_REF] or Pataki and Tuncel[START_REF] Pataki | On the generic properties of convex optimization problems in conic form[END_REF] 
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