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ABSTRACT
The accuracy of the neural code is commonly investigated
using two different measures: (i) Shannon mutual informa-
tion and derived quantities when investigating very small
populations of neurons and (ii) Fisher information when
studying large populations. How these measures compare
in finite size populations has not been systematically ex-
plored. We here aim at filling this gap. We are particularly
interested in understanding which stimuli are best encoded
by a given neuron in a population and how this depends
on the chosen measure. In models of independent neurons,
we find that the predictions of Fisher information and of
a stimulus-specific decomposition of Shannon information
(the SSI) agree very well, even for relatively small popu-
lation sizes. According to both measures, the stimuli that
are best encoded are then those falling at the flanks of the
neuron’s tuning curve.
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1 Introduction

Understanding how information is represented and trans-
formed by populations of neurons is a major goal of neu-
roscience research. The accuracy with which information
is encoded is classically quantified using two types of mea-
sures: (i) Shannon mutual information (MI) and derived
quantities and (ii) Fisher information (FI). Shannon infor-
mation is commonly used to quantify the accuracy of single
neurons or pairs of neurons (see e.g. [1]). When popula-
tions of neurons are studied, however, FI is typically cho-
sen, both in theory and in experiments (see e.g. [2, 3, 4]).
This is because MI is thought to be computationally in-
tractable for more than a few cells (e.g. [5]). MI and
FI belong to different statistical fields: information the-
ory and statistical parameter estimation, respectively. MI
can be thought of as a measure of statistical dependency
between the stimulus ensemble and the response ensem-
ble and is measured in bits. FI, on the other hand, is re-
lated to the performance of an ideal estimator whose task
would be to estimate the stimulus based on the neural re-
sponses, and is measured in units of the inverse of the vari-
ance of the estimator. An asymptotic relation (i.e. in the
limit of infinite populations) between these quantities has
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Figure 1. Neurons are commonly characterized by their re-
sponse tuning curves, which describe the relationship be-
tween the stimulus and the spike count. In addition to
this description, information measures can also be used to
quantify how well each stimulus is encoded by a particular
neuron. How does the information tuning curve look like?
Is the information maximal where the response is maximal
(i.e. at the peak of the tuning curve), or where the slope of
the tuning curve is maximal? Does the answer of this ques-
tion depend on the chosen measure? Does it depend on the
population size?

recently been exposed [6, 7], showing that MI is related to
the log of the FI. What remains unclear, however, is how
these measures compare in plausible conditions with finite-
size populations of neurons, and – in situations where their
predictions differ – which measure is more relevant to the
understanding of the neural code.

In this work, we aim at clarifying these issues. We
compare these two measures to investigate the following
questions (Fig. 1): What stimuli are best encoded by a
single neuron or a population of neurons? Are neurons best
at encoding stimuli that elicit maximal response; or stimuli
that fall at the flanks of the tuning curve, where the slope is
maximal? How does the answer to these questions depend
on the chosen information measure?



2 Methods

2.1 Model Population

We consider a population of N neurons with tuning curves
f(θ) = {f1(θ), f2(θ), .., fN (θ)} describing the mean firing
rate of each neuron as a function of the a unidimensional
continuous stimulus, for e.g. the direction θ of a moving
bar. These N neurons tile the space of all directions uni-
formly and the fi(θ) are described using the circular nor-
mal distribution:

fi(θ) = fmaxexp(σ−1
i (cos(θ − θi)− 1) (1)

The response variability over many presentations of the
same stimulus is assumed to be Gaussian with a variance
proportional to the mean spike count, and independent be-
tween neurons. F denotes the Fano Factor, i.e. the rela-
tionship between the variance of the spike count and the
mean spike count. τ denotes the temporal window over
which spikes are counted. The response of neuron i can be
modeled as:

ri = τfi(s) + ηi , (2)

where the ηi’s are independent Gaussian random variables.
The response statistics of the population response to stimu-
lus θ are described by the probability density P (r|θ), where
r = {r1, r2..., rN} is the vector of the spike counts of all
neurons on each trial.

We used this model to compare systematically the
predictions of FI, MI and the Stimulus-Specific Informa-
tion (SSI).

2.2 Fisher Information

For Gaussian noise, Fisher information can be directly writ-
ten and computed using [8]:

IF (θ) = τ2f ′(θ)
T

Q(θ)−1f ′(θ)

+
1
2

Tr
(
Q′(θ)Q(θ)−1Q′(θ)Q−1(θ)

)

where f ′(θ) is the derivative of the tuning curve with re-
spect to θ, and Q−1 and Q′ are the inverse and derivative
of the covariance matrix. For independent noise, Q(θ) is

defined by:
{

Qii(θ) = τFf i(θ)
Qi #=j(θ) = 0 .

2.3 Stimulus-Specific Information (SSI)

SSI is a stimulus-specific decomposition of Shannon infor-
mation. Based on the specific information (SI) [9], it was
shown to be an appropriate measure of the information as-
sociated with particular stimuli [10]. The SI is defined as:

isp(r) = H[Θ]−H[Θ|r] (3)

i.e. it is the difference between the entropy of the stimulus
ensemble H[Θ] = −

∑
p(θ)log2p(θ) and that of the stim-

ulus distribution conditional on a particular measurement

r, H[Θ] = −
∑

p(θ|r)log2p(θ|r). The SSI is the average
SI when a particular stimulus θ is present:

iSSI(θ) =
∑

r

p(r|θ)isp(r) (4)

The marginal SSI (for a particular neuron in the population)
is defined as the difference between the population SSI and
the SSI for the population of the remaining neurons after
the neuron of interest is removed.
Unlike previous investigations of the SSI [5], which used
the method of quadrature, we used Monte-Carlo Integra-
tion (see e.g. [11]) to compute the SSI. This means that we
approximated the SSI by sampling the multidimensional
gaussian P (r|θ) n times for each value of θ (giving us
r1, .., rj , ..rn) then by averaging isp(rj) at these values:

iSSI(θ) "
1
n

n∑

j=1

isp(rj) (5)

We found that this allowed the SSI to be computed for
much larger population sizes than originally investigated
(" 200 instead of 4) [12]. We systematically compare how
individual neurons participate in population codes by com-
puting the FI and the marginal SSI for increasing popula-
tion sizes, varying time-windows and different noise levels.

3 Results

3.1 Small populations

We first replicated the results of [5]. These authors ap-
plied the SSI to very small populations of neurons (N=1-4)
and showed that which stimuli are best encoded by a neu-
ron depends on the level of variability. In a ‘low noise’
regime (Fig 2a), the best encoded stimuli fall at the flanks
of the tuning curve. In a ‘high noise’ regime (Fig 2b), how-
ever, the best encoded stimulus corresponds to the peak of
the neuron curve. The authors concluded that both intu-
itions regarding which stimuli are best encoded by indi-
vidual neurons (Fig 1) are correct, depending on the level
of variability. These results are in strong contrast with the
predictions of FI, which always favors the tuning curves’
flanks.

3.2 Varying the integration time window

The results of [5] can be first extended to the temporal do-
main. Increasing the temporal window τ over which spikes
are counted has the same effect as reducing the variability:
the SSI predicts that over time, single neurons dynamically
switch from being best at encoding stimuli corresponding
to the peak of the tuning curve, to stimuli falling at the
flanks of the tuning curve (Fig. 3).
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Figure 2. Comparison between the SSI (full lines) and
Fisher Information (dashed) for a single neuron. A. When
the noise level is low (F=0.2), the stimuli that are best en-
coded according to the SSI fall at the flanks of the tuning
curve. B. For high noise (F=2), the stimuli that are best en-
coded correspond to the peak of the tuning curve [5]. On
the other hand, Fisher Information always predicts that the
stimuli that are best encoded fall at the flanks of the tuning
curve. Tuning curve parameters: fmax = 50 Hz; σ = 33
deg; T=1 sec. Both measures are normalized to their maxi-
mum value.
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Figure 3. Comparison between the SSI (A) and Fisher In-
formation (B) for a single neuron when the integration time
window is increased, from τ=200 msec to τ = 2 sec. A. The
SSI predicts that single neurons shift dynamically in time
from encoding best the stimuli falling at the peak of the
tuning curve, to encoding best the stimuli that fall at the re-
gions of maximal slopes of the tuning curve. B. The shape
of the Fisher Information, on the other hand stays similar
with maxima at regions of maximal slope. Same parame-
ters as above; F=1.

3.3 Large populations

The analysis of [5] was then extended to test whether the
low and high noise regimes continue to coexist for larger
populations of neurons. We computed the SSI for up to
200 neurons for varying temporal windows (20 msec - 1
sec).

We show that the predictions of the SSI and FI con-
verge very rapidly as a function of the number of neurons in
the population. The exact pattern of convergence depends
on the parameters of the chosen model. However, we found
that in populations of 50 neurons, they are qualitatively
identical, even for very small integration windows and high
noise (Fig. 4). The stimuli that are best encoded are then
always those falling at the flanks of the tuning curves.

This indicates that there is no need to go to extremely
large numbers for the SSI and the FI to lead to similar pre-
dictions. They actually differ in a very restricted domain
(small temporal windows, small populations, high noise)
which seems to roughly correspond to the range where
Fisher Information ‘fails’ [12] (i.e. where the Cramér-Rao
Bound is not reached by maximum-likelihood or other op-
timal decoders [13, 14]).

3.4 Extensions

We are working on a number of extensions:

• To assess the generality of our results, a similar anal-
ysis can be used to explore different Shannon-based
measures, in particular the ‘specific surprise’ [9].

• We are interested in exploring measures that include
explicitly the description of a task (e.g. fine vs broad
discrimination as in [5], or detection). The SSI and
FI can be interpreted as measures of discrimination
performance. Intuitively, information tuning curves
related to detection performance should look different,
with a peak where the response is maximal.

• We are also interested in comparing the SSI and FI
in heterogeneous populations. Of particular interest is
the situation where coding properties change locally,
for eg. when some tuning curves are gain-modulated
or sharpened due to adaptation, attention or perceptual
learning.

• Preliminary analysis shows that computing the SSI is
also possible for large populations (up to 200 neurons)
when the noise is correlated [15]. Depending on the
structure of the correlations, the convergence between
FI and MI may be disrupted.

• Other important extensions include using other mod-
els for the response variability, and models where mul-
tiple stimulus dimensions are encoded.
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Figure 4. Example comparison between the marginal SSI (plain lines) and Fisher Information (dashed) for a single neuron with
a preferred θ of 0 deg, in a population of 4 to 30 neurons, using different time windows: A. τ=1 sec; B. τ=100 msec; C. τ=20
msec. As the population size increases, the predictions of SSI and FI converge. The stimuli that are best encoded are those
falling at the flanks of the tuning curve. F=1.



4 Conclusions

We show that Monte-Carlo integration allows a direct com-
parison between Fisher Information and a Shannon-based
measure for small and large populations, thus clarifying the
relationship between these two measures in plausible neu-
ral settings. Our simulations show that the predictions of
FI are compatible with SSI, even for relatively small pop-
ulations of neurons. This is reassuring, and validates the
use of Fisher Information in finite size populations, which
is much easier to compute than Shannon-based measures.
This also suggests that the ‘high noise’ regime where the
best encoded stimuli are at the peak of the tuning curve (as
described by [5]) is in fact very restricted and occurs only
for very small numbers of neurons, very small time win-
dows and high response variability. Whether this regime is
relevant to the brain is an important question, which will
deserve further investigation.
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