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Introduction

Neural continuum networks are an important aspect
of the modeling of macroscopic parts of the cortex.

They have been first studied by Amari[6]. These net-
works have then been the basis to model the visual cor-
tex by Bresslov[4]. From a computational viewpoint, the
neural masses could be used to perform image processing
like segmentation, contour detection... Thus, there is a
need to develop tools (theoretical and numerical) allow-
ing the study of the dynamical and stationary properties
of the neural masses equations.

In this paper, we look at the dependency of neural
masses stationary solutions with respect to the stiffness
of the nonlinearity. This choice is motivated by two rea-
sons. First, it shows the differences with the case of an
infinite stiffness (which corresponds formally to a heav-
iside nonlinear function) as used for example in Ermen-
trout[2]. Second, the study is generic and any other
parameter could have been used with similar tools.

The study is done by using bifurcation theory in infi-
nite dimensions. We provide a useful approximation of
the connectivity matrix and give numerical examples of
bifurcated branches which had not been yet fully com-
puted in the literature. The analysis relies on the study
of a simple model thought generic in the sense it has the
properties that any neural mass system should possess
generically.

1 General framework

We consider the following neural mass equation defined
over a bounded piece of cortex Ω ⊂ Rd, d = 1, 2, 31 :

Vt(r, t) = −L.V(r, t) + [W · S(σV − θ)] (r, t) + Iext(r)

V(., t) ∈ L2(Ω, Rp) = H, a real vector space, where p
is the number of populations of neurons and we endow
H with the inner product

〈V1,V2〉H =
∫

Ω

dr 〈V1(r),V2(r)〉Rp

S : Rp → Rp is defined by S(x) = [S(x1), · · · , S(xp)]T .
σ = diag(σ1, · · · , σp) determines the slope of each of

the p sigmoids2 at the origin.

1We can formally have Ω ⊂ Rd × (0, 2π)r, see Bresslov
2ie the funtion x→ (1 + e−x)−1

θ ∈ Rp determines the threshold of each of the p sig-
moids.

W(t) is a linear operator from H to itself:

[W ·V](r, t) =
∫

Ω

W(r̄, r)V(r̄) dr̄,

where W(r, r′, t) is a p× p matrix.
L = diag( 1

τ1
, · · · , 1

τp
) where the positive numbers τi,

i = 1, · · · , p determines the dynamics of each neural pop-
ulation. Par changing the variables, we can assume θ = 0
and = Id.

In this article we focus on the influence of the slopes
σ. We make the assumption that all slopes are equal to
λ, σ = λIdp. We can therefore rename V, W and Iext

to restrict our study to:

Vt(r, t) = −V(r, t) + [W · S(λV)] (r, t) + Iext(r) (1)

which we rewrite :

0 = −Vf + W · S(λVf ) + Iext
def= −F (Vf , λ) (2)

For λ given, let Bλ = {V/F (V, λ) = 0}
In [1] we proved :

Proposition 1.1. ∀λ ∈ R,Bλ 6= ∅

In fact we can prove much better :

Proposition 1.2. Given a < b there exits a continuous
curve s → (Vf

s , λ(s)) such that λ([0, 1]) = [a, b] and
∀s Vf

s ∈ Bλ(s)

2 Bifurcation theory

Once we have a solution Vf
λ of F (V, λ) = 0 over an

interval J = [a, b], we can study the steady states bifur-
cation i.e. find the solutions, if any, that are different
from Vf

λ. We start with a definition :

Definition 2.1. We say that the equation F (V, λ) =
0 bifurcates from (Vf

λ0
, λ0) a solution (Uλ, λ) if there

exists a sequence of solutions (Un, λn) which satisfies

lim
n→∞

λn = λ0 and lim
n→∞

‖Un −Vλ0‖ = 0



From F (V, λ) = V −W · S(λV)− Iext

Writing V = Vf
λ + U, we now consider (up to the

identification F̃ = F ) :

F (U, λ) = Lλ ·U + G̃(U, λ),

where Lλ = Id−W · (λDS(Vf
λ))

G̃(U, λ) =
∑
n≥2

D(n)G(Vf
λ, λ) ·U(n) ≡

∑
n≥2

Gn(U, λ)

Then (Implicit functions theorem) :

Proposition 2.2. A necessary condition for λ0 to be a
bifurcation point is Lλ0 non invertible.

These points λ0 are possible bifurcation points (ac-
cording to the previous definition). The bifurcation the-
ory aims at telling what happens around such point λ0,
if there are other branches of solutions and their num-
ber. This is interesting because it gives the stationary
states of the neural masses equations.

3 PG-kernel approximation of
the connectivity matrix

We focus on a class of connectivity functions which is
very rich and can represent economically all kinds of bi-
ologically plausible cortical connectivity kernels. More-
over, such kernels allows to write the neural masses equa-
tions as finite dimensional ODEs. We therefore assume
that W is a PG-kernel.

Definition 3.1 (Pincherle-Goursat Kernels). The con-
nectivity W(r, r′) is a PG-kernel if

W(r, r′) =
N−1∑
k,l=0

aklXk(r)⊗ Yl(r′)

where (Xk, k = 1..N) are linearly independent functions
of H.

We make the following assumptions :

Ω = [−1, 1]2, p = 2

and also :
S(0) = 0, Iext = 0

Thus, the persistent state Vf
λ = 0 is a trivial solution

of the equations 2.
We are interested in excitatory-inhibitory neural

fields, thus the sign of the connectivity functions has
to be like this :

sign(W) =
[

+ −
± ±

]

3.1 Description of the connectivity ma-
trix component

It is often seen in the literature that Wij is gaussian
and the cortex is chosen infinite. For example one find
in [2,5]

W11(r, r′) = exp−‖r−r̄‖2/2 = e−‖r‖
2/2e−‖r

′‖2/2e〈r,r′〉

≈ e−‖r‖
2/2e−‖r

′‖2/2
(
1 + 〈r, r′〉+

1
2
〈r, r′〉2 + ...

)
We notice two things :

• 1 + 〈r, r′〉+ 1
2 〈r, r

′〉2 + ... is a polynomial

• e−‖r‖
2/2 is bell-shaped, we will approximate it with(

1 − ‖r‖2
)a

with a > 0. This choice is also moti-

vated by the fact that e−‖r‖
2/2 tends to zero at the

edges of the infinite cortex, so we choose to keep it
ie

(
1− ‖r‖2

)a

= 0 for r ∈ ∂[−1, 1]2.

Finally we will have the following simplified (N = 2)
connectivity functions :

Wij(r, r′) = Cij+
(
1−‖r‖2

)a(
1−‖r′‖2

)a

Pij(r, r′) (3)

where P is a polynomial in r and r′ and C is a constant
matrix.

From now, we will consider such an orthonormal
family (en)n≥0 of L2(Ω, R) with e0 being the constant

function 1/2, and ∀(x, y) ∈ Ω en(x, y) =
(
1 − x2 −

y2
)a

Pn(x, y).

We deduce an orthonormal basis (Bn)n≥0 of L2(Ω, R2)
which will be used in the next section :

B2n =
[

en

0

]
, B2n+1 =

[
0
en

]

3.2 Toy model

We now choose the following connection matrix:

W(r, r′) =
[

α1 + α2en(r)en(r′) −ρ1 + ρ2eq(r)er(r′)
ρ1 + ρ2eq(r)er(r′) α1 + α2em(r)em(r′) ,

]
which can expressed as a PG-kernel. Adjusting the con-
stants αi, ρi allows to satisfy the condition on sign(W).
This connectivity matrix can be seen as the first order
approximation of a given connectivity matrix W0.

It is easy to check that σ(W) = {α1 ± Iρ1,±ρ2, α2}
with α2 6= ρ2.



We write V =
6∑

i=1

viXi and obtain the following form

for the neural masses equation by projecting on the fam-
ily (Xi)i associated to ep, eq... :

v̇k = vk +

〈
W.S

( 6∑
i=1

viXi

)
, Xk

〉
H

/‖Xk‖2H (4)

3.3 Bifurcation of the persistent states

We have prop.2.2 σ(Lλ) = −1 + λs1σn where σn ∈
σ(W). Thus the possible bifurcation points are

λn =
1

s1σn

3.3.1 Case of the simple eigenvalues

Let’s examine the case of the simple eigenvalues ±ρ2 as-
sociated with the eigenvectors f± = (±B2r+1+B2q)/

√
2.

We find for α± ≡
〈
G2(f±, λ±1 ), f±

〉
H 6= 0

that λ+
1 is a transcritical bifurcation point

and there is a unique bifurcated branch on
each side of λ±1 given (for example near λ+

1 ) by
U+

λ ≈ −2 −1+λs1ρ2

(λ+
1 )2

s2
2 ρ2[

∫
Ω e3

r+e3
q]

(
B2r+1 + B2q

)
≈ ρ2v

f
5 (λ) ≈ ρ2v

f
6 (λ)

Thus, for λ close to λ1, the bifurcated solution looks
like the eigenvector B2r+1 + B2q.

3.3.2 Case of the double eigenvalue

σ2 = α2 is a double eigenvalue of W with associated
eigenvectors f1 = B2n, f2 = B2m+1.

The last possible steady state bifurcation parameter
is

λ2 =
1

s1α2

Following [3], we find that (2) reduces (to the first
order) to find (x, y) ∈ R2 such that{

(−1 + λs1α2)x + λ2s2α2x
2
∫
Ω

e3
n = 0

(−1 + λs1α2)y + λ2s2α2y
2
∫
Ω

e3
m = 0

which leads to {
xf = 1−λs1α2

λ2s2α2
∫
Ω e3

n

yf = 1−λs1α2
λ2s2α2

∫
Ω e3

m

Thus, from (0, λ2) bifurcates one branch of solution on
each side of λ2.

3.3.3 Global bifurcation analysis of steady
states

The bifurcation analysis gives us insight on the local
vicinity of the bifurcation point, but what can we tell if
we want information far away from a given bifurcation
point. In that case, one has to use global bifurcation
(Cf [3]). We first study the case of the bifurcation point
(0, λ+

1 ).

Theorem 3.2 (Global Bifurcation). Under some veri-
fied assumptions, any bifurcated branch can be either

• unbounded in F × R

• contains an odd number of points (0, λi) 6= (0, λ0)
such that λ−1

i are eigenvalues of Lλ with odd alge-
braic multiplicities.

Using Cauchy Schwarz inequality one find that :∥∥∥Vf
λ

∥∥∥
F
≤ Cλ,with C ∈ R (recall that p = 2)

Case of the bifurcation point (0, λ+
1 ) :

Using these results, one find the following diagram for
the persistent states on fig.1.

Figure 1: Predicted shape of the bifurcated branches.
The cone represents the domain where the steady states
cannot be.

3.3.4 Case of the complex eigenvalue

Recall that −1+λs1

(
α1±Iρ1

)
are complex eigenvalues

of Lλ. The singular value

λH =
1

s1α1



and the eigenvalue is

β(λH) = I
ρ1

α1

Recall that the neural masses equation is dV
dt =

−F (V, λ). To have an Hopf bifurcation, we need to
check if Reβ′(λH) 6= 0. Here, we find

Re
dβ

dλ
(λH) = 2s1α1 > 0

In order to know if we are in the supercritical or the
subcritical case, we compute the Floquet exponent :

µ̈2(0) = 2

(
α1

2 + ρ1
2
)2 (

s2
2 − s1 s3

)
α1

2s1
4

, s1 = S′(0), s2 = S(2)(0)/2

The Floquet exponent tells if the bifurcated periodic
solution is attractive (µ2 > 0) or repulsive (µ2 < 0).
⇒ We have an Hopf bifurcation and the appear-

ance of a periodic solution to equation (1), it is called
Breathers in [5].

3.4 Numerical example

In this section, we do a simulation of the evolution equa-
tion (??). A simple way to ensure the assumptions on
the non linearity is to choose :

S(z) = Sig(z − 2)− Sig(−2)

where Sig is the sigmoid function define on page 1. Note
that any sigmoidal function would work.

We use the Gegenbauer polynomials Gq (Cf. eq.3) as
a basis of L2((−1, 1), R). They are associated to the dot
product :

〈f, g〉 =
∫ 1

−1

(1−x2)a−1/2f(x)g(x)dx, a > 0 or
−1
2

< a < 0

For a the polynomials, we use the functions Pn(x, y) =
Gn1(x)Gn2(y). For the numerical applications, we take
the following parameters :

n = [4, 2], m = [6, 6], q = [2, 2], r = [4, 4], a = 4

α1 = 6, α2 = 3, ρ1 = 6, ρ2 = 4

From this family added with the constant e0 = 1/2,
we build an orthonormal family (ei)i=0..4.

Figure 2: Representation of e2 used for the orthonormal
family.

We use the ODE representation of the neural masses
equation to compute the evolution of a given initial state
V(0). This reduces to a 6-dimensional ODE system,
easily solved using MATLAB or SCILAB.

For example, the following picture shows the peri-
odic orbit arising at the Hopf bifurcation point, the plot
shows the coordinates used in the definition of eq.4.

Figure 3: The periodic orbit

As we know the bifurcation type around λ+
1 , we can

use the pseudo - arc length continuation method in order
to follow the steady states numerically when the slope
varies. We find for the first bifurcation point, the
predicted turning point by the global analysis.
This is shown on fig.4.



Figure 4: Representation of the different branch of solu-
tions (λ, ~v) near the bifurcation point λ+

1 .The red line
represent the bifurcation point λ+

1 .

Conclusion

We provided theoretical tool to study the dynamics of
the neural masses. Once we have a global understanding
of the dynamics, we can perform numerical simulation.
To this hand, a convenient method of approximation
have been presented allowing to follow the bifurcated
branches even if there are dynamically unstable. We
think that this will prove to be useful when considering
computational applications of the neural masses.

There still lack a study of the asymptotic behavior
when the nonlinearity stiffness goes to infinity.
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