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ABSTRACT

A new method to improve the signal-to-noise ratio of sin-

gle evoked potentials (EP) measurements is presented, in

which, contrary to previous methods, no a priori assump-

tions on the signal are necessary. This method is based on

the wavelets decomposition of the individual signals. A

statistical thresholding is applied on the coefficients of the

decomposition: we estimate whether the mean value of the

coefficients across trials and for each time point is signifi-

cantly different from a random estimate. The performance

of the method is evaluated against similar ones with simu-

lations and the method is applied to real data
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1 Introduction

Our understanding of brain functioning is largely indebted

to imagery techniques. Electro– and magnetoencephalo-

graphic (MEEG)1 techniques provide an excellent temporal

resolution allowing an investigation of brain functioning at

a time scale as low as a millisecond, along with a fair spa-

tial resolution[1, 2].

When analyzing MEEG recordings, one has to disso-

ciate two types of activities: the so-called “evoked poten-

tials”, or “signal”, induced by the brain activities related

to specific events, and the background activity not related

to the specific activity under investigation. Although the

background activity (thereafter called “noise”) can be of

interest on some special cases, evoked potentials are the

main activity of interest in MEEG, and the present work

will concentrate on them. Note that, although, for sake of

simplicity, we will call those activities “noise”, they do not

have the usual properties of “noise” in engineering litera-

ture. Indeed, since the main component of “noise” is the

background brain activity, the “signal” and the “noise” are

very similar in terms of frequencies, time course, sensitiv-

ity to brain changes etc. . . , making them particularly diffi-

cult to dissociate.

Evoked potentials are induced by the presentation of

a stimulation, a preparation and/or execution of a motor

1Since EEG and MEG, have a lot in commun, we will use the acronym

“MEEG” to refer to the two techniques

act, or by internal information processing and represent

transient electrical activities of some limited brain regions.

Those evoked potentials are of small amplitude compared

to noise: the signal/noise ratio (SNR) is typically around

-10 dB. These two activities (evoked potential and back-

ground noise) are considered as additive and represented by

an autoregressive (AR) model [3, 4]. Therefore, in order to

study brain activities related to information processing in

the brain, one has to “extract” the evoked potentials (sig-

nal) from the background activity (noise). The averaging

procedure has long been used as the only technique to ex-

tract signal from noise. Depending on the signal to extract,

one needs to average from 10 to 2000 repetitions of similar

recordings.

The averaging procedure has several drawbacks, how-

ever. Both are related to the fact that one has to assume that

the shape, the amplitude and the latency of the averaged ac-

tivity is representative of the individual recordings. This is

not necessarily true, however [5]. Another limitation comes

from the fact that the inter-repetition variability is entirely

lost in the averaging procedure, preventing, for example,

correlation analysis with behavior and/or other physiologi-

cal measures. Furthermore, recent advance in the coupling

between EEG and fMRI are based on single trial estimate

of EEG signal [6]. Thus, in order to improve our estima-

tion of brain activity as recorded by MEEG, one needs to

develop methods that do not rely on averaging techniques

and that allow to estimate the parameters of the evoked po-

tentials on a trial–by–trial basis.

To achieve this goal, two main directions have been

followed: statistical techniques (like Principal Component

Analysis – PCA, Independent Component Analysis – ICA,

etc. . . , see [7] for an overview) and signal processing tech-

niques. Here, we will focus on the later techniques.

In the signal processing approach, most of the tech-

niques consider evoked potentials as stationary signal. The

principle followed is a parametric approach [3, 4, 8].

Conventional approaches using numerical filtering

have also been applied on the EEG traces to increase the

signal/noise ratio [9, 10]. The frequency band is optimized

following a spectral analysis of a sub-set of the averaged

responses. The filters bank method, which combines the

properties of the signal in both the time and the frequency

domain in order to construct the “referent” signal has also

been used to extract the individual signals [11]. To avoid



the assumption of stationarity, Quian-Quiroga [12] used

wavelet transform to denoise the single sweep EEG sig-

nal and extract the P300 (a typical wave in EEG, see [13])

from noise. The averaged signal is decomposed into differ-

ent scales (frequency bands) and times, by using the mul-

tiresolution wavelet transform [14]. In a second step, all

the wavelets coefficients that do not correlate with the av-

eraged signal are set to zero. The remaining coefficients

describe the time-frequency plane in which the P300 wave

is expected to occur. Those coefficients are applied to the

single traces to keep only the time-frequency signature that

corresponds to the P300. Although all those approaches

have proved to be efficient and have provided useful infor-

mation about single sweep activities, they are all, in a way

or another, using the averaged signal as a template, either in

the time or in the frequency domain, to estimate the single

sweep activity. As indicated above, the averaged signal is

not necessarily representative of the individual ones, how-

ever. Therefore, such a strategy of using the averaged trace

as a template might not be fully appropriate to extract all

the variability present in the single sweep activities.

Recently, Wang et al [15] proposed a method that

avoids averaging. They used the method proposed by

Donoho et al [16, 17] by applying a thresholding crite-

rion in the wavelet domain. The signal is recovered from

noisy data simply by setting to zero those wavelet coef-

ficients below a certain threshold. It is to be noted that

Wang et al. [15] applied this technique to so-called “Lo-

cal Field Potentials”, that is recordings performed within

the brain, offering an excellent SNR (≃ 6 dB). This proce-

dure is certainly not applicable for recovering the evoked

potentials recorded in MEEG (i.e. recorded on the scalp)

because, with those techniques, evoked potentials have a

SNR around -10 dB.

Here we present a new method to denoise MEEG ac-

tivities that avoids the use of any template and that makes

no a priori assumptions regarding the properties of the sig-

nal, neither in the time nor in the frequency domain. In

this aim, we used a well established property of the sig-

nal largely underused for this purpose: from trial to trial

the signal (i.e., the evoked potentials) is fairly stable in

time with respect to the triggering events, whereas the noise

(background MEEG) fluctuates independently from them.

Therefore, the core of the proposed method is to estimate,

at each time point, the between-trials stability of frequency

components to keep only the stable ones to reconstruct the

signal.

2 Wavelet transform

The principle underlying the wavelet transform is to de-

scribe the temporal evolution of a signal through different

time scales, by providing information about the local regu-

larity. The wavelet transform is based on a simple principle.

Let’s consider first a function not infinite in time and which

can be non-zero over a short period of time. This function

is called the analyzing wavelet. The wavelet transform con-

Figure 1. Original signal

Figure 2. Original synthetic signals(a.) and noisy synthetic

signals (b.), with a SNR=-10 dB

sists of, at any given time position, dilating or compressing

the analyzing wavelet by a scale factor, and to compute the

product of the analyzing wavelet with the signal, for each

value of the scale factor. The product is called the wavelet

coefficient. The wavelet coefficient will be high if there is a

match between the frequency of the analyzing wavelet and

the signal to analyze. Thus, a short-lasting activity will be

detected at a low scale factor, and inversely, a long-lasting

activity will be detected at a large scale factor. The contin-

uous wavelet transform (CWT) of a signal x is defined for

each time t ∈ R as :

Wc =
1
√
a

∫ +∞

−∞

ψ

(

t− b

a

)

x(t) dt (1)

where ψ is the wavelet function, a is the scale factor

and b is the time shift. The factor 1√
a

was introduced to

guarantee energy preservation.

2.1 Multiresolution Wavelet Transform

The CWT is redundant and not efficient for algorithm im-

plementations. To avoid redundancy and to increase the ef-

ficiency of algorithm implementations, the multiresolution



wavelet transform (MWT) was introduced. It is based on

the theory developed by Mallat [14], and is defined at dis-

crete scales a and discrete times b by choosing the dyadic

(basis 2) set of parameters a = 2j and b = k2j , where

j ∈ Z and k ∈ Z (Z being the integer set). This algo-

rithm allows a fast decomposition of the signal at different

scales, along with a reconstruction of the original signal.

For the decomposition, this algorithm cascades a discrete

filter and sub-samples the output. By low pass filtering and

sub-sampling, we can obtain the approximation coefficients

and by high pass filtering and sub-sampling, we obtain the

detail coefficients. Basically, the reconstruction is the re-

verse process of decomposition.

3 Multi-trial denoising by WAvelet Statisti-

cal DEnoising (WASDE)

Denoising is the main application of MWT and is per-

formed in both frequency and time domain, which is be-

yond the capacity of classical methods. The basic algo-

rithm for denoising by MWT is simple and proceeds in

three steps : 1) decomposition 2) thresholding of wavelet

coefficients and 3 ) reconstruction of the denoised signal.

The second step is the most important. The problem is to

dissociate the coefficients representing the background ac-

tivity (noise) from the coefficients of the evoked potentials

(signal). The proposed method is based on the property of

the orthogonal wavelet which compress the energy of the

signal in a relative low number of large coefficients. On

the contrary, the energy of the noise is spread across the

whole transform and provides small coefficients. Thus, in

the wavelets domain, signal and noise can be dissociated.

In typical MEEG experiments, several sweeps are

recorded in the same conditions. Each sweep is decom-

posed in L detail levels (D1 . . . DL) and the approximation

AL. L depends of the sampling rate (fs), with fs = 2L+1.

For example, for fs = 256 Hz, the number of decompo-

sition is set to L = 7. For each decomposition level, the

wavelet coefficients of all the sweeps are stored in a matrix

whose horizontal rows represent the trials and each vertical

row represents the successive time points. With L = 7, we

obtain eight matrices (D1, . . . , D7, A7).

For each level, the empirical distribution of coeffi-

cients is estimated by random permutation of the coeffi-

cients within each row (that is within each trial). For each

permutation of the matrix, we compute the marginal mean

values for each columns. One thus obtains the empirical

distribution of the mean of the coefficients, and from there

compute the inferior and the superior threshold correspond-

ing to a confidence set at 0.05. The coefficients whose

significance is below this confidence interval are retained

while the other coefficients are set to zero. This threshold-

ing is applied on the coefficients for each detail levels. One

can then compute the inverse wavelet transform to obtain

the denoised signal.

Figure 3. Comparison of three methods (Wasde, Guiroga

and Wang), for a SNR = -10dB

Figure 4. Mean square error for various SNR

4 Simulation

For the simulation, we built 60 synthetic traces of 512

points, composed of a series of waves (Fig. 1). The la-

tency and the amplitude of those waves are varied to match

the variability in latencies and amplitude of evoked poten-

tials. EEG noise, whose level was scaled to alter the SNR

between −10 dB and +2 dB, has been added to evoked

potentials (Fig. 2). The analysing wavelet used in this sim-

ulation was a quadratic BSplines.

The three methods (Wasde, Guiroga and Wang) were

fist compared for a SNR = -10 dB (Fig. 3). Visually, the

Wasde method allows the best reconstruction of the original

signal. To further the comparison between the three meth-

ods, we computed the mean square error, for SNR com-

prised between -10 dB and +2 dB. (Fig. 4). For low SNR

(-10 dB < SNR < -4 dB), the Wasde method results in the

lowest errors. For higher SNR ( SNR > -4 dB ), Wang and

Wasde give similar results (Fig. 4).



Figure 5. ERPs before denoising

5 Real data processing

The data were acquired with a 1024 Hz sampling fre-

quency. Fig. 5 represents 125 trials. The X axis represents

the time. At time 0, a visual stimulation was applied to the

subject. The upper part of the Y axis represents the sweep

number and lower part is the average value of the records.

On the average, one can see on an evoked potential start-

ing around 100 ms after stimulus presentation. However,

on the individual sweeps, it is very difficult to extract the

individual evoked potentials. Fig. 6 shows the same data

after the denoising by the wasde method. First, one can see

that the noise is removed before the apparition of the sim-

ulation. Second, on individual trials, on can now see the

characteristics of the individual signals (Fig. 6).

6 Conclusions

We proposed a method to improve the SNR of an individual

signal which can be applied without any a priori assump-

tions about the signal and the distribution of the wavelet co-

efficients. Comparison with recent methods by simulation

and results obtained on real data has shown the efficiency

of the proposed algorithm.
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processing of cognitive evoked potentials]. PhD the-

sis, Paris XII University, 1998.

[12] R. Quian Quiroga. Obtaining single stimulus evoked

potentials with wavelet denoising. Physica D,

145:278–292, 2000.

[13] T. W. Picton. The p300 wave of the human event-

related potential. Journal of Clinical Neurophysiol-

ogy, 9:456–479, 1992.

[14] S.G. Mallat. A theory of multiresolution signal de-

composition : the wavelet representation. IEEE

Transactions on Pattern Analysis and Machine Intel-

ligence, 11:674–693, 1989.

[15] Z. Wang, A. Maier, D. A. Leopold, N. K. Logothetis,

and H. Liang. Single-trial evoked potential estimation

using wavelets. Computers in Biology and Medecine,

37:463–473, 2007.

[16] D. L. Donoho and I. M. Johnstone. Ideal spatial adap-

tation via wavelet shrinkage. Biometrika, 81:425–

455, 1994.

[17] D.L. Donoho. De-noising by soft-thresholding. IEEE

Transactions on Information Theory, 41:613–627,

1995.


