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ABSTRACT
Line attractor networks have long served as the standard
model of short-term memory systems for analogue vari-
ables. In this study, we investigate the stability of attractor
states for a line attractor with monotonic tuning curves. We
furthermore quantify the stability of network states against
noise and show how the lifetime of short-term memory
states depends on the level of neural noise.
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1 Introduction

Short-term memory is the ability to store information for a
short period of time (typically∼ 10 seconds). This abil-
ity is often reflected in the persistent activity of neurons
in various regions of the brain (famous examples include
the oculomotor system and the prefrontal cortex) [1][2].
When short-term memory is concerned with analogue val-
ues, then neurons will usually sustain activity for a whole
range of firing rates, a phenomenon that has been dubbed
“graded” persistent activity.

A typical example of graded persistent activity is the
representation of eye position in the oculomotor system of
the goldfish (Fig. 1). As shown in Fig. 1, the firing rate
of this neuron persists around a value that depends on the
eye position. As eye position changes, so does the neuron’s
firing rate. Note that for certain eye positions, the firing
rates are approximately zero, suggesting a threshold below
which the neuron does not fire. Above this threshold, the
firing rate grows approximately linear with eye position.
Similar types of persistent activity feature have been found
in working memory tasks with different animal models [3].

Graded persistent activity has generated a lot of theo-
retical interest and several pieces of evidence suggest that it
is a network phenomenon [2][3][4]. Since the neural firing
rates change gradually with the stored memory variable,
the respective networks seem to have acontinuum of stable
and stationary network states (a line attractor), so that each
memory corresponds to exactly one stable point.

Such line attractor networks are most easily generated
in networks of linear neurons; with biophysically more re-
alistic, non-linear neurons, however, one can only construct

Figure 1. From [2]. Multi-level stable persistent firing in
an oculomotor neural integrator cell in a goldfish. Top:
horizontal eye position, measured in the dark. Rapid sac-
cades alternate with stable fixations. Middle: extracellu-
larly recorded action potentials. Bottom: instantaneous fir-
ing rate.

a network featuring multiple point attractors that are or-
dered along a line [5]. Such non-linear line attractor net-
works face several (known) problems, among these a lack
of robustness of the memory against small perturbations in
various biophysical parameters and a lack of robustness of
the memory against noise in the system.

In this study, we investigate the lifetime of stable
states and the stability against perturbations, as a way to
understand more deeply these working memory systems.

2 The non linear model

In [5] and [6], the authors have developed a firing-rate
model of a line attractor network which differs from previ-
ous (linear) models by the introduction of sigmoidal input-
output functions g for the neurons. The precise shape of
these functions does not matter for further theoretical de-
velopment, it can be matched to the threshold and satura-
tion features found on experimental data, for instance. In
this section, we will summarize the main features of the
model.

The firing rate of thei-th neuron,xi, is given by:

τẋi(t) = −xi(t)+g(

n
∑

j=1

Tijxj(t)+hi), i = 1, ..., n, (1)
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Figure 2. (a) Sigmoidal input-output functions for a net-
work of 10 neurons. For simplicity, we use heaviside func-
tions. (b) The weighted sum of the 10 heaviside functions
versus m. This sum oscillates around the identity line.

whereg describes the sigmoidal input-output function of
the neuron,hi the external input to neuron i, andTij the
connectivity matrix of the network.

The connectivity matrix is assumed to be a rank-1 ma-
trix,

Tij = aibj, (2)

which in turn leads to a projection of the network dynamics
onto a one-dimensional memory variable,

m(t) =

n
∑

i=1

bixi(t) (3)

This variable is then sufficient to describe the essentials of
the network dynamics and, using equations (1), (2) and (3),
we obtain a reduced, one-dimensional description of the
network

τṁ(t) = −m(t) +

n
∑

i=1

big(aim(t) + hi) (4)

To look into the possible attractor states of the net-
work, we will study the stationary solutions of this equa-
tion, i.e.,ṁ(t) = 0, so that

ms =
n

∑

i=1

big(aims + hi) (5)

Accordingly, the stationary states correspond to the
points of perfect match between a sum of sigmoidal func-
tions and a line. Due to the non-linear shape of the input-
output functions, this match can only hold for a discrete set
of points, but not for a continuum of points. In other words,
we can only approximate a line attractor through a series of
fixed points. Several approximations are possible, a par-
ticular easy one is to chooseai = 1 andbi = 1 and span
the range ofm-s by choosing differenthi for each neuron.
Next, we will look into that possibility.

In Fig. 2 we use a network of 10 neurons, and show
the input-output functions of the neurons as well as their
sum (with weightsbi = 1).

A perfect match between the weighted sum and the
identity line would mean every value ofm is a stationary
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Figure 3. Bifurcation diagrams of the m equation in rela-
tion to theai parameter for different network sizesn. In
black, the stable fixed points. The unstable fixed points are
not shown.

state, thus resulting in a continuous attractor. But, as we
can see, the weighted sum of sigmoidal functions is just an
approximation to a continuous attractor, showing oscilla-
tions around the identity line, and only a finite range be-
yond which the weighted sum diverges from the identity.
The points of intersection correspond to the stationary so-
lutions: we therefore get a series of fixed points in line.

3 Stability of network states

We computed the bifurcation diagram of the m equation in
relation to the parametersai, bi andhi for different network
sizesn (seeai bifurcation diagrams Fig. 3). Fig. 3 indicates
that if we vary everyai around 1, even mildly, the system
will lose most of its stable fixed points, demonstrating that
the system lacks robustness to suchglobal perturbations.
The perturbation is global because all the neurons will see
a change in their corresponding synaptic weights, and in
the same direction.

As a consequence, larger networks have smaller inter-
vals in theai parameter range (range of stability) for which
they show the maximum number of stable points and also
an average smaller range of stability for a fixed number of
stable points, as verified in Fig. 3. At the same time, larger
networks are more robust againstlocal perturbations (e.g.
knockout of a single neuron; simulations not shown).
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Figure 4. (a) Lifetime of one stable state for different levels
of noise. The levels of noise are in units of percentage of
the smallest radius of the stable state domain. Mean time of
escape from a stable state inτ units. (b) Variance of escape
times inτ2 units.

4 Lifetime of network states

In networks with noisy units, the stable states derived be-
fore are no longer stable in the strict term. In fact, due to
noise, a system in a stable state has a probability to jump
out of it, and go to another one. To address that probability,
we looked to the mean lifetime during which the system
stays in that state, by performing several numerical simula-
tions.

A network of 10 neurons was simulated with the al-
ready presented Seung model [5], and several noise levels
were used. All simulations were started with the system in
one specific stable state. An escape was counted whenever
the system went out of the domain of the fixed point. We
waited for 100 escapes for each noise level. The results are
shown in Fig. 4.

As we would expect, the smaller the noise level, the
bigger the mean lifetime in the state. At very low levels
of noise, the mean lifetimes of escape were so big that the
simulations were stopped. The variance of the escape time
has the same shape as the mean lifetime curve: for low
levels of noise, the variance is very big.

These results establish clear predictions related to
the lifetime of stable states that could be tested by psy-
chophysics experiments.

5 Two network system

5.1 Persistent activity in mutual inhibitory
populations

In neural short-term memory systems, one sometimes finds
two functionally distinct and mutual inhibitory populations
of neurons that represent the same memory variable [6]. A
prime example is the oculomotor system of the goldfish [4].
Each population responds to more than half the memory
range: the activity of one population of neurons increases
as the second decreases, while the goldfish spans the visual
range with eye fixations [4] (see Fig. 5).

Here, we build a model with mutual inhibition and
investigate its stability against perturbations.

Figure 5. From [4]. Model tuning curves defined by exper-
imentally measured rate vs. position relationships. Positive
slopes are respective to right population neurons and nega-
tive slopes to left.

5.2 The model

Let’s consider two symmetrical and independent networks,
built following the procedure presented before

τṁ1(t) = −m1(t) +

n
∑

i=1

big(aim1(t) + hi) (6)

τṁ2(t) = −m2(t) +

2n
∑

i=n+1

big(aim2(t) + hi) (7)

We can couple these two networks using mutual inhibition
so that

τṁ1(t) = −m1(t) +

n
∑

i=1

big(aim1(t) + cim2(t) + hi)

(8)

τṁ2(t) = −m2(t) +

2n
∑

i=n+1

big(aim2(t) + cim1(t) + hi)

(9)

The general connectivity matrix (2n×2n) is assumed to be
a rank-2 matrix,

Tij =

[

aibj cibj

cibj aibj

]

. (10)

The stationary solutions are

m1s =

n
∑

i=1

big(aim1s + cim2s + hi) (11)

m2s =
2n
∑

i=n+1

big(aim2s + cim1s + hi) (12)

Therefore, we get two nullclines, each corresponding
to the lines of perfect match between a sum of sigmoidal
functions of two variables and a plane. Accordingly, the
stationary states correspond to the intersection between the
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Figure 6. Determination of the stationary solutions. (a) Plot
of equation (11). The colored areas are the different values
of the input-output functions’s sum versusm1s andm2s.
The gray thick lines correspond to the values wherem1s is
equal to the sum, i.e., one of the two nullclines. (b) Plot of
equation (12). (c) Intersection of the nullclines at the fixed
points. (d) Vector field ofm1 vs m2, for a system of two
networks of 40 neurons each.

nullclines. As in the one-dimensional case, we can only
approximate a line attractor through a series of fixed points.

Several approximations are possible to get a whole
range of fixed points along a line of negative proportional-
ity betweenm1 andm2 as we expect experimentally. For
example, one can tune the model similarly to the one di-
mensional case, with the addition of inhibitory inputs: for
each of the two networks, chooseai = 0, ci = −1, bi = 1
for half of it, andai = 1, ci = 0, bi = 1 for the other
half, and span them1/m2 range by choosing differenthi

for each neuron. Next, we will look into that possibility.
In Fig. 6a, b, c, we use a system of two networks of 6

neurons each, and show the sum of the input-output func-
tions of the neurons, as well as the nullclines and stationary
states. In Fig. 6d, the resultant vector field for a system of
two networks of 40 neurons each, showing several stable
points (black circles) in line.

5.3 Global perturbations in the 2 network
system

We computed the bifurcation diagram of them1 andm2

equations in relation to the parametersai, ci, bi, andhi

for a system of two networks of 40 neurons each (seeai

bifurcation diagram Fig. 7). Fig. 7 shows the fixed points
m1s − m2s as a function of the perturbation added to ev-
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Figure 7. Bifurcation diagram of the them1 andm2 equa-
tions in relation to theai parameter for a system of two
networks of 40 neurons each.∆ai corresponds to the value
of the perturbation added to everyai. In black, the stable
fixed points. The unstable fixed points are not shown.
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Figure 8. Hyperpolarization of one neuron. In gray, neuron
firing rate; in black, hyperpolarization current in adimen-
sional units.

eryai. The figure indicates that if we vary everyai around
its original value, even mildly, the system will lose most of
its stable fixed points, demonstrating that the system lacks
robustness to suchglobal perturbations, as in the one di-
mensional case.

5.4 Local perturbations in the 2 network sys-
tem

In [7], the authors hyperpolarized one neuron from the ocu-
lomotor system of the goldfish for periods of 100ms. The
neuron stopped its activity for the period of hyperpolariza-
tion but regained its previous activity after it. Our model
behaves in accordance with experiments (see Fig. 8).

6 Conclusion

In this study, we performed a first step towards investigat-
ing the stability of a neural network that features a set of
point attractors, ordered on a line, a line attractor.

We found configurations that capture some of the bio-
logical features observed in neural short-term memory sys-
tems. In these configurations, the system is robust to par-
ticular perturbations.

We furthermore quantified the stability of network
states against noise and showed the dependency of the life-



time of short-term memory states on the level of neural
noise.

However, one hasn’t yet been able to construct real-
istic line attractor models robust to perturbations, without
resorting to additional assumptions about single neurons
(the study [8] solves the robustness problem by assuming
that neurons are hysteretic, an assumption that has yet to be
proven true).

Additionaly, in the oculomotor system of the gold-
fish, mechanisms of retuning of the connectivity matrix to
compensate perturbations are known and generally act on
longer time scales than the robustness to hyperpolarization
perturbations [9] [10], and should be integrated in future
work.

This line of research could help us to enlighten archi-
tectural principles and parameters’s ranges underlying the
biological neural networks involved in short-term memory.

The theoretical approach performed here aims at ob-
taining a deeper view on the functioning of short-term
memory systems.
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Pedro Gonçalves is from the PhD Program in Computa-
tional Biology of Instituto Gulbenkian de Ciência, sup-
ported by Fundação Calouste Gulbenkian, Siemens SA
and Fundação para a Ciência e Tecnologia through grant
SFRH/BD/33210/2007.

References

[1] P. S. Goldman-Rakic. Cellular basis of working mem-
ory. Neuron, 14(3):477–485, Mar 1995.

[2] Guy Major and David Tank. Persistent neural activity:
prevalence and mechanisms.Curr Opin Neurobiol,
14(6):675–684, Dec 2004.

[3] Carlos D Brody, Ranulfo Romo, and Adam Kepecs.
Basic mechanisms for graded persistent activity: dis-
crete attractors, continuous attractors, and dynamic
representations.Curr Opin Neurobiol, 13(2):204–
211, Apr 2003.

[4] Emre Aksay, Itsaso Olasagasti, Brett D Mensh,
Robert Baker, Mark S Goldman, and David W Tank.
Functional dissection of circuitry in a neural integra-
tor. Nat Neurosci, 10(4):494–504, Apr 2007.

[5] H. S. Seung. How the brain keeps the eyes still.Proc
Natl Acad Sci U S A, 93(23):13339–13344,Nov 1996.

[6] Christian K Machens and Carlos D Brody. Design
of continuous attractor networks with monotonic tun-
ing using a symmetry principle. Neural Comput,
20(2):452–485, Feb 2008.

[7] E. Aksay, G. Gamkrelidze, H. S. Seung, R. Baker, and
D. W. Tank. In vivo intracellular recording and per-
turbation of persistent activity in a neural integrator.
Nat Neurosci, 4(2):184–193, Feb 2001.

[8] Alexei A Koulakov, Sridhar Raghavachari, Adam
Kepecs, and John E Lisman. Model for a robust neu-
ral integrator.Nat Neurosci, 5(8):775–782, Aug 2002.

[9] Guy Major, Robert Baker, Emre Aksay, Brett Mensh,
H. Sebastian Seung, and David W Tank. Plastic-
ity and tuning by visual feedback of the stability
of a neural integrator.Proc Natl Acad Sci U S A,
101(20):7739–7744, May 2004.

[10] Guy Major, Robert Baker, Emre Aksay, H. Sebastian
Seung, and David W Tank. Plasticity and tuning of
the time course of analog persistent firing in a neural
integrator.Proc Natl Acad Sci U S A, 101(20):7745–
7750, May 2004.


