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Marseille, France

ABSTRACT

In reaction time tasks, when subjects commit an error, a

negative wave peaking approximately 50-100 ms after the

erroneous response is recorded with EEG. This negativ-

ity, called “Error (Related) Negativity” (Ne or ERN[1, 2]),

is maximal fronto-centrally, above the Anterior Cingulate

Cortex and/or Supplementary Motor Area and was first in-

terpreted as reflecting an error detection mechanism. How-

ever, after Laplacian estimation, a similar component was

later observed on correct trials [3]. If this component on

correct trials were to be the same as the one observed on

errors, this would put important constraints on computa-

tional models of cognitive control. To address this issue we

used Independent Component Analysis (ICA) to evaluate

whether a single component (in ICA terms) could account

for the waves observed in both erroneous and correct trials.

For all the participants, a single component that accounts

for the waves observed in the three categories of trials was

found. The localisation of the sources is consistent with

a rostral-cingulate zone origin, where control mechanisms

are likely implemented [4]. This novel use of ICA allowed

us to conclude that the negativities observed on error and

correct trials are reflecting the same physiological mecha-

nism whose amplitude is modulated as function of the per-

formance.
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1 Introduction

Errors are essential to adapt our behaviour to the environ-

ment. In the early 90’s, Falkenstein and colleagues [1] ob-

served a fronto central EEG component just after subjects

committed an error in reaction time (RT) task: a negative

wave develops just before the response, and peaks between

50 and 100 ms after it. Since, with traditional monopo-

lar recordings, this wave has originally been observed only

in errors it was first interpreted as an “Error Detection”

mechanism and was called “Error Negativity” (Ne, [1]) or

“Error-Related Negativity” (ERN, [2]). Source localiza-

tion methods located the Ne in the anterior cingulate cortex

and/or the supplementary motor area [5, 6]. A similar ac-

tivity was later also observed on non-erroneous trials. Vidal

et al. [3] analysed correct trials in which “partial error” oc-

curred, that is a subthreshold EMG activity on the incorrect

response muscle. The EEG data on the partial error EMG

onset revealed a fronto-central negativity which a latency

similar to the Ne recorded in overt errors but with a smaller

amplitude. More importantly, after laplacian (or Current

Source Density) computation, that dramatically improves

the spatial resolution of EEG [7], they also observed a simi-

lar negativity on correct trials. This “Ne-like wave” seemed

to be a scaled-down Ne, with a smaller amplitude but the

same topography as the negativities recorded in errors and

in partial errors. If this “Ne-like” is indeed of same nature

as the Ne on errors, its significance needs to be reconsid-

ered. Although the very existence of this wave on correct

trials has been disputed [8], it has been reported by sev-

eral groups [9, 10, 11, 12], and there is now a conscensus

on the existence of this wave [13]. The question remains,

however, whether the negativities recorded in correct, er-

ror and partial error trials reflect the same functional and

physiological mechanism. Although Vidal and colleagues

[3, 13] argued for a single process, Yordanova and collabo-

rators [14] argued that the negativity on correct trials re-

flects a different processes than the one reflected by the

negativity on errors: they reported that on correct trials

the topography of the negativity is lateralized toward the

hemisphere controlateral to the responding hand whereas

on errors, the topography is central. They also reported that

time-frequency characteristics of the two waves are differ-

ent. The debate on the origin of these negativities is im-

portant since it largely constraints the neurocomputational

model of cognitive control.



1.1 Independent Component Analysis to

evaluate the unicity of those waves

We assessed the unicity of those waves with Independent

Component Analysis (ICA), one of the blind source sepa-

ration (BSS) algorithms. When the signals recorded by dif-

ferent sensors are a linear mixture of independent sources,

with different sensors corresponding to different mixture

of the source, BSS allows to recover the original sources

at the origin of the recorded signals. Within this frame-

work, ICA tries to separate the raw data into components

by seeking a decomposition that maximizes the indepen-

dence between the extracted components. This methodol-

ogy is well adapted to EEG since ”ICA algorithms have

proved capable of isolating both artefactual and neurally

generated EEG sources [15, 16] whose EEG contributions,

across the training data are maximally independent of one

another”[17]. We reasoned that, if the three negativities

recorded on errors, partial errors and correct trials reflect

different mechanisms, the ICA algorithm will not be able

to find any single component accounting for those three

waves, whereas, if they correspond to the same physio-

logical phenomenon whose amplitude is modulated, they

should be accounted for by a single component (in ICA

terms). If a component of this type exists in all subjects, we

will localize them with a dipolar inverse problem method-

ology. In parallels, we will localize the Ne in errors, in

partial errors and in correct trials. Then we will able to

compare the results of the ICA component localization and

the EEG data localization. This new analysis will probably

help us to conclude on the origin(s) of the negativities.

2 Methods

2.1 Participants

Ten subjects aged from 20 to 31 years (mean: 25 years)

volunteered for this experiment. All of them were right-

handed and had normal or corrected-to-normal vision.

2.2 Task and recordings

The participants performed the Eriksen’s flanker task [18].

On each trial, three letters were presented to participants

who had to respond to the central one (target) while ig-

noring the others (distractors). They ran 20 experimen-

tal blocks of 128 trials each. Electroencephalographic ac-

tivity (EEG) was recorded with 64 Ag/AgCl scalp elec-

trodes and electromyographic activity (EMG) from the

flexor pollicis brevis of each hand was recorded by paired

surface Ag/AgCl electrodes (BIOSEMI Active-two elec-

trodes, Amsterdam). For further details, see [19]

2.3 EEG Data analysis

The trials were sorted as function of the nature of the re-

sponse. We distinguished three types of trial: correct, er-

ror and partial error trials. The two first types are charac-

terized by full blown EMG bursts on the side of the cor-

rect or the erroneous response, respectively. The third one

is characterized by a small incorrect EMG burst followed

by a correct EMG burst. EEG data were analyzed time-

locked to the correct EMG onset for correct trials, and to

the incorrect-EMG onset on errors and on partial errors.

2.4 Independent Component Analysis (ICA)

The monopolar recordings were segmented in windows

centered on EMG onset for each trial (from -400 to

400 ms). For each electrode, all the segments were

paste to create a single time–course vector. Those

vectors were composed of all the segments of all

trial types (correct, errors and partial errors). This

resulted in a matrix of size (number of segments ×

number points per segment)×number of electrodes

in which each line corresponds to the electrical activity

recorded by one electrode and each columns corresponds

to a time step. Note that the data matrix is mainly com-

posed of correct trials (76.8%) compared to errors and

partial errors trials (5.2% and 18% respectively).

ICA algorithm decomposes the input matrix X (elec-

trodes space) into two new matrices:

X = A× S.

where A is the mixing matrix, and S the time-course of the

sources. The A matrix (size: sources× electrodes) repre-

sent the contribution of each source to each captor. Those

values are time-independent and each column of the A ma-

trix corresponds to the topography of one source. The S

matrix is organized as the X matrix, with lines correspond-

ing to sources (instead of captors) and rows corresponding

to the time-course.

ICA computations were performed with EEGLAB

software [17]. The infomax ICA algorithm (function

runica()) was used. The time course of the compo-

nents were then averaged (time–locked to EMG onset, see

above), for the three types of trials separately.

For each participant, we searched for a component

with a fronto-central distribution and with a time course

in errors trials that fits the one of the Ne recorded in errors

trials after the Laplacian transform. Note that the selec-

tion of the component of interest was based only on errors.

Once the component was selected, we evaluated if the av-

eraged time-course of this component on partial errors and

on correct trials correspond to the time-course of the EEG

Laplacian data on partial errors and correct trials. We also

localized the source of interest thanks to the “Dipfit” plug-

ins of EEGLAB for each subject. We then compared those

components localization with a source localization of the

raw data using the LORETA algorithm [20].
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Figure 1. In the three graphs the time-zero corresponds to the EMG

onset. Colours correspond to the nature of the trial: error trials (red),

partial errors (green) and correct trials (blue). (a) grand average of the

monopolar data (µV ) and (b) Laplacian ones (in µV/cm2), (c) grand

average of the ICA component (in arbitrary units). (d) the 3-D topography

of the grand average Ne in partial errors. (e) topographical 2-D scalp map

of the ICA-components selected for their fronto-central distribution from

each of 10 participants

3 Results

As expected, in both monopolar EEG data and after the

Laplacian estimation, the Ne is clearly visible in errors and

in partials errors trials (the red and the green line in Fig.1a

and Fig.1b). The scalp distribution of the Ne is fronto-

central (FCz electrode, Fig.1d) and its amplitude is higher

in errors than in partial error trials. Note that, on correct

trials, no Ne–like activity is visible on monopolar record-

ings. Such a component emerges after laplacian compu-

tation (blue line Fig.1b) although its amplitude is much

smaller.

For all the participants, ICA was able to find a single

component with a fronto-central distribution (Fig.1e), and

whose time-course accounts for the Ne on errors (Fig.1c).

More importantly, the averaged time course of the same

component for correct and partial-error revealed a smaller

negativity just after EMG onset, whose time course and am-

plitude nicely fit the one of the Laplacian transformed data

(Fig.1b, Fig.1c).

The localizations of the selected sources for each indi-

vidual subjects (Fig 2a) revealed a clear cluster of sources

in the Rostral Cingulate Zone [4], although some sources

are a bit deeper. LORETA applied to the raw data on errors

and partial error trials confirms the clear localization in the

ACC and/or the SMA, as already reported (Fig 2b). More

importantly, the localization in correct trials also shows an

activity focused in the Rostral Cingulate Zone which is

known to be involved on cognitive control mechanism [4].

4 Discussion

ICA is a powerful algorithm to recover the sources at the

origin of a mixed signal, and is therefore often used to sep-
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Figure 2. (a) Dipole localisation of the ICA component projected in a

brain template. (b) Solutions of the LORETA inverse problem at timing

when the negativity is at its maximum in the three categories of trials:

in errors on the left panel at 173 ms post-EMG, in partial errors on the

middle panel at 96 ms post-EMG and correct trials on the right panel at

119 ms post-EMG .

arate activities. In the present study, we used it in a slightly

different way, since we investigated whether a single com-

ponent could account for electrical activities in different

conditions. To do so, we applied ICA on a dataset matrix

containing all the trial types of interest. After the extraction

of a component for one condition, we analyzed whether

this component could account for the other conditions. In

the present case, this new approach revealed that the Ne ob-

served on error and the “Ne–like” observed on correct trials

can be accounted for by a single process, hence revealing

the unicity of the processes underlying those activities. In-

deed, although the time course may appear slightly differ-

ent for correct trials, maybe signaling some later activity

more intense for erroneous trials, this activity on correct

trials was identified as the same as on errors by ICA. This

unicity has important consequences for neural-modeling of

cognitive control, since it shows that the difference between

correct and erroneous trials, is a matter of degree, not a

matter of nature.

Another conclusion that derives from the present

study is the proximity of the results obtained with two

mathematically independent source separation methods.

Indeed, as can be seen from Figure 1a, on monopolar

recordings, the “Ne-like” wave is not observable on cor-

rect trials. It was, however, revealed by laplacian compu-

tation [3, 13], which acts as a high-pass spatial filter [7].

The same holds for the present data: a negative wave ap-

pears after laplacian computation. Interestingly, the time

course and the topographies of the laplacian transformed

data nicely fit with the ICA component ones. However,

although both laplacian and ICA aim at separating over-

lapping sources, their mathematical foundations are com-

pletely different, and there is thus no theoretical reason to

expect such a similarity. The fact that these two methods

lead to very similar results strengthen the validity of those

findings.
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