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ABSTRACT

Brain  Computers  Interfaces  (BCI)  are  emerging  as  a 
new means of communication, aiming to make a direct 
link  between  the  brain  and  an  external  device, 
bypassing  conventional  motor  outputs,  such  as 
peripheral nerves and muscles. A BCI extracts features 
from  a  brain  signal  and  classifies  them  in  order  to 
interpret  them  in  terms  of  the  user's  volition.  For 
communication  to  be  effective,  the  computer  has  to 
provide feedback to the user allowing him/her to judge 
how  the  brain  activity  is  being  classified  and 
interpreted. Similarly, the user must produce patterns of 
brain  activity  which  can  easily  be  learned  and 
recognized  by  the  computer.  Here,  we  describe  a 
method for selecting mental tasks that are best classified 
by a subject using support vector machines (SVM).
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1. Introduction

Brain Computer Interfaces, which aim to make a direct 
link between the brain and an external device, may offer 
the hope to provide  the severely disabled with a new 
functional means to communicate with the outer world. 

BCI was defined at  the first  international  meeting for 
BCI technology in 1999 as a system that “must not rely 
on  normal  output  pathways  of  peripheral  nerves  and 
muscles”. It measures signals coming directly from the 
brain,  either  invasively  or  non-invasively.  Invasive 
recordings have a high signal to noise ratio (SNR) and 
are specific but have a small sensitivity volume.  Non-
invasive measurements such as electroencephalography 
(EEG),  magnetoencephalography (MEG) or functional 
MRI have wider fields of view but are more difficult to 
analyze  statistically.  This  paper  focuses  on  EEG 
because of its simpler use in everyday life for people 
without normal motor abilities.
Because  of  the  difficulty  of  reliably  extracting 
information, up to now, successful BCI systems mostly 
function  in  a  “synchronous”  mode,  i.e.  where  the 
system  controls  the  timings  at  which  the  user's 
commands can be interpreted. This is for example the 
case of  BCI spellers  which use  the evoked  potentials 

elicited by a visual stimulation to detect which letter a 
subject is attending to [1]. 
It would seem more natural  for the user to decide the 
pace at which commands can be issued to the system. 
BCI systems which comply with the user's timings are 
said to operate in an “asynchronous”  mode [2].  Since 
asynchronous BCI are not triggered by external stimuli, 
they  rely  instead  on  the  analysis  of  the  individual 
characteristics  of  the  subject's  spontaneous  activity. 
Among  these,  Slow  Cortical  Potentials  (SCPs)  and 
cortical oscillations are of particular interest.
SCPs  correspond  to  low  frequency  (0.5  -  3Hz)  EEG 
signals.  Negative  SCPs  are  often  associated  with 
movement  and  high  cortical  activity  whereas  positive 
SCPs reflect  reduced cortical  activation.  SCPs can be 
modulated to control  the movement  of an object  on a 
computer screen or to select a letter by a succession of 
two choices [3].
Primary sensory and motor cortical areas often display 
8-12Hz  activity  when  they  are  not  engaged  in 
processing sensory inputs or producing motor outputs. 
Mu rhythms are mostly localized in the somatosensory 
and  motor  cortices  whereas  alpha  rhythms are  more 
prominent in the visual cortex. Beta rhythms (18-26 Hz) 
are  often  associated  with  mu  rhythms  [4].  These 
oscillatory activities are involved in a variety of mental 
tasks  –  for  instance,  mu  and  beta  rhythms  decrease 
during the preparation of movements and increase after 
movements  and  during  relaxation.  By  producing  mu 
and  beta  rhythms  through  mental  states  such  as 
imaginary  hand  movements,  whole  body  activity  or 
relaxation,  it  is  possible  to control  a cursor  in one  or 
two directions [5]. 
Mental  task  classification  relies  on  state-of-the-art 
classification  algorithms.  For  a  given  classification 
algorithm,  the  learning  stage  is  subject-  and  session-
dependent.  It is unlikely that all  types of mental  tasks 
should perform equally well for all subjects with respect 
to their  classification [6].  It  is  therefore  interesting  to 
evaluate the mental tasks that are best classified by the 
algorithm for a given subject, and this paper provides a 
method to guide the selection of mental states which are 
best distinguishable by an SVM classifier.
In  section  2,  we  describe  our  BCI  system,  and 
experimental  protocol.  Section  3  focuses  on  the 
classification  algorithm,  and  section  4  presents  our 
preliminary results.
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2. Material and Methods
 

Although our long-term objective is asynchronous BCI, 
this  study  is  concerned  with  a  learning  stage  in  a 
synchronous  mode.  During  this  stage,  the  subject  is 
required  to  perform  a  set  of  mental  tasks,  one  after 
another,  with  a  timing  provided  by  visual  prompts. 
After  the  learning,  the  performances  of  the  algorithm 
were compared on tasks, taken two by two. The method 
enabled us to select the labels that were best classified 
by the algorithm and therefore that were likely to give 
the best results in asynchronous BCI, assuming that the 
mental  states  and  concentration  of  the  subject  do not 
differ too much between synchronous and asynchronous 
BCI. 

2.1 Experimental protocol

2.1.1 Mental states

In this paper,  we report on results obtained with three 
volunteers, two 23 year-old (S1, S2) and one 24 year-
old (S3) male students, who were asked to perform a set 
of four mental tasks:
− cube rotation (CB)
− calculus: iterative subtraction (C)
− imagination of hand movement (HM)
− imagination of foot movement (FM)
Each mental task lasted ten seconds. There was a break 
of three seconds between two successive mental tasks. 
The  computer  indicated  both  the  starting  and  ending 
times, together with the nature of the tasks to perform, 
which  was  selected  randomly  and  displayed  on  the 
screen,  using  eevoke  (Advanced  Neuro  Technology, 
Enschede, The Netherlands). Each task was performed 
four to six times depending on the subject:
S1:
− CB : 4 times
− C : 6 times
− HM : 4 times
− FM : 5 times

S2 and S3:
− CB : 6 times
− C : 6 times
− HM : 6 times
− FM : 6 times

2.1.2 Signal acquisition and preprocessing

EEG potentials were recorded at 64 standard positions 
over  the scalp,  with a  commercial  cap and  integrated 
electrodes.  The  data  acquisition  was  performed  using 
ASA-lab (Advanced Neuro Technology, Enschede, The 
Netherlands) at a 256 Hz sampling rate for S1. For S2 
and  S3,  the  data  were  recorded  at  512  Hz  and  we 
resampled them at 256 Hz using eeglab.  Apart from a 
50Hz  filtering,  we  chose  not  to  perform  further 
preprocessing  because  our  purpose  is  to  use  BCI  for 
real-time  applications  and  preprocessing  would  slow 

down  the  process  of  data  analysis.  Moreover,  data 
recorded outside the laboratory are likely to be noisier 
than  those  recorded  inside.  So  we  assumed  that 
processing noisier data would have better generalization 
properties.

2.1.3 Feature extraction

The  features  we  used  were  based  on  a  short-time 
Fourier transform. Although other features can be used 
(parameters  of  autoregressive  models  or  wavelets...), 
their benefits  are not  self-evident  [7].  To estimate the 
power spectrum of each channel  over one second,  we 
used a Welch periodogram. Specifically,  we averaged 
the  FFT  of  three  segments  of  0.5  second  with  50% 
overlap,  which  yields  a  frequency  resolution  of  1Hz. 
We divided the frequency spectrum in five bands (4-7 
Hz,  8-12Hz,  13-17Hz,  18-26Hz  and  27-35  Hz), 
averaged  the  powers  in  each  frequency  band  and 
normalized them, following the M1 method described 
in [6] to obtain 5 power values, for each channel. Thus 
an EEG sample had 320 features (64 channels times 5 
components each).  A new feature vector was obtained 
every 0.25 second.

2.2 Learning and classification
Formally, classification consists of finding the label of a 
feature vector  x,  using a mapping  f, where f is  learnt 
from a training set T. The purpose of the learning stage 
is  to provide  the algorithm with preclassified  labelled 
data  (here,  vectors  of  320  features),  from  which  the 
algorithm  builds  the  mapping  in  order  to  predict  the 
labels of new data. 

2.2.1 Methodology

To perform the learning, we divided our data into two 
parts:  the  testing  part  containing  the  last  epoch  (10 
seconds)  for  each  mental  task  and  the  learning  part, 
with the rest of the data. For S1, we removed the last 
FM epoch because S1 reported having made a mistake 
in performing the last FM task. Each 10 second epoch 
was composed of 37 feature vectors. Thus the learning 
set was composed of 518 feature vectors for S1 and 740 
feature vectors for S2 and S3 (for four tasks).  For all 
three  subjects,  the  testing  set  was  composed  of  148 
feature  vectors.  The  results  obtained  with  the  testing 
part  were  used  to  assess  the  performance  of  the 
algorithm on the mental tasks.

2.2.2 Choice of algorithm

Some  critical  properties  of  features  need  to  be  taken 
into consideration to select an algorithm [8]:
- Raw signals have a very low signal-to-noise ratio.
- Feature vectors are often of high dimensionality. 
- BCI features are non-stationary,  may vary over time 
and particularly over sessions, which may imply doing 
training in each session.



-  Learning  sets  are  usually  small  compared  to  the 
number of features, because training is time consuming 
for the subject, and the features often change over time. 

Among the five main categories of classifiers for BCI 
defined in [8] (linear classifiers, neural networks (NN), 
non linear Bayesian classifiers, nearest neighbours, and 
combinations of classifiers),  we focus our attention on 
Neural Networks and Linear Classifiers, which are the 
most readily available and widely used.

 Neural  Networks,  along  with  linear  classifiers  are 
widely  used  in  BCI  research,  especially  Multilayer 
Perceptrons (MLPs), which consist of several layers of 
neurons, each neuron being connected with the outputs 
of the previous layer: the first layer is connected with 
the input (ie: the vector of features) and the output of 
the  last  layer  gives  the  label.  NN  are  very  flexible 
classifiers which have been used in many different BCI 
problems  (binary,  multiclass,  synchronous, 
asynchronous...). However, since they can approximate 
any  continuous  function,  they  are  sensitive  to 
overtraining  especially  with  noisy  and  non-stationary 
data.

- Linear Disciminant  Analysis (LDA) assumes that all 
classes  have  an  equal  variance  and  calculates  the 
hyperplane  that  minimizes  interclass  variance  while 
maximizing  the  distance  between  the  classes’  means. 
They introduce a regularization parameter that allows or 
penalizes  classification  errors  and  thus  can 
accommodate  outliers,  which  are  common  in  BCI 
signals.  However,  because  of  its  linearity,  LDA often 
gives poor results on complex nonlinear EEG data.
- Support  Vector Machines  (SVM) use a discriminant 
hyperplane that maximizes the margins, which is known 
to  allow  better  generalization.  SVM  also  permit  non 
linear decision boundaries by introducing a kernel, for 
example  Gaussian  or  Radial  Basis  Functions  (RBF). 
SVM  have  several  advantages:  they  have  good 
generalization properties and are not too sensitive to the 
curse  of  dimensionality.  SVM,  which  are  stable  and 
have a low variance,  are efficient  with noisy data that 
often contain outliers. In a review article, Lotte et al. [8] 
noted  that  a  Gaussian  SVM  applied  to  a  correlative 
time-frequency representation had 86% accuracy. Non 
linear  SVM  have  also  outperformed  an  MLP  in 
experiments. For these reasons, we chose to classify our 
data  with  a  Gaussian  SVM.  We  used  a  soft  margin 
SVM [9] and had to optimize the margin constraint in 
order to prevent overfitting.

Table 1 Rate of  correct classification for S1, S2 and S3 (section 2.3)

Table 2 Error rate for S1, S2 and S3 (section 2.3)

CB C HM FM

CB

S1 0.92 1 0,.81
S2 0.51 0.49 0.05
S3 0.7 0.86 0.21

C

S1 0.97 0.89 1
S2 1 0.84 0.91
S3 0.59 0.65 0.51

HM

S1 0.03 0.49 0.38
S2 0.76 0.54 0.46
S3 0.46 0.78 0.3

FM

S1 0.51 0.89 0.92
S2 1 0.54 0.84
S3 0.89 0.59 0.81

 

 

 

 

CB C HM FM

CB

S1 0.03 0.49 0.38
S2 0 0.33 0
S3 0.37 0.38 0.33

C

S1 0.08 0.37 0.1
S2 0.32 0.35 0.33
S3 0.33 0.25 0.41

HM

S1 0 0.18 0.18
S2 0.4 0.23 0.26
S3 0.23 0.31 0.39

FM

S1 0.27 0 0.4
S2 0.49 0.13 0.39
S3 0.47 0.45 0.46

 

 

 

 



Table 3 Comparison of classification results for S1, S2 and S3, with the performance measure defined in 2.3

2.3 Statistical analysis 

In task X vs  task Y classification,  the  test  data  were 
composed of 2n feature vectors, from which n belonged 
to label X and n belonged to label Y. Consider that the 
SVM was able to correctly label p X tasks out of the set 
of n X tasks and q Y tasks out of n Y tasks in the testing 
part.  p/n  is  the  rate  of  correct  classification  (or 
recognition rate) in the set of X tasks and q/n is the rate 
of  correct  classification  in  the  set  of  Y  tasks.  The 
corresponding numbers are reported in Table 1 : p/n is 
given at (line X, column Y) and q/n is given at (line Y, 
column X). For example, 0.92 (line 1, column 2) is the 
proportion of correctly classified CB task in the CB vs 
C testing set,  meaning  that  the algorithm was able  to 
correctly  classify  92%  of  the  CB  tasks  in  the  set, 
whereas  97% of the C tasks  (line  2,  column 1) were 
correctly classified in the same set.
The error rate is the probability of misclassification of a 
task, assuming it was predicted by the SVM. Consider 
that the SVM classifies r tasks with label X and s tasks 
with label Y (r+s=2n). Out of the r (resp. s) tasks, only p 
(resp q) truly belong to class X (resp. Y). In Table 2, the 
rate (1-p/r) is reported at (line X, column Y) and (1-q/s) 
is given at (line Y, column X).  For example, 0.03 (line 
1,  column 2)  is  the  error  rate  the  algorithm obtained 
when predicting label CB in C vs CB classification. The 
lower  the  rate,  the  more  accurate  the  prediction  of  a 
given mental task is.
The  best  classification  results  were  obtained  for  high 
recognition rates and low error rates. To assess global 
performances,  we  can  weigh  the  rates  of  correct 
classification and the error rate as below: 

Performance=0.5*λ*(p/n+q/n)+0.5*μ*(p/r+q/s)

where  λ+μ=1

We  calculated  for  each  set  of  two  tasks  the 
performances of the SVM using λ=μ=0.5, meaning that 
error  rates  and  rates  of  correct  classification  had  the 
same weight. The maximum performance is 1 whereas 
chance level is 0.5. We report in Table 3 the results for 
all three subjects. 

3. Results

Out  of  the  original  set  of  four  mental  tasks,  we 
performed  an  SVM classification  on  each  set  of  two 
mental  tasks  (a  total  of  6  classifications)  for  each 
subject.  We  calculated  two  statistics  for  each  mental 
task,  as  explained  in  section  2.3  :  the  rate  of  correct 
classification and the  error rate. We also calculated the 
performance  of  the  algorithm on  each  pair  of  mental 
tasks as explained in section 2.3.
For  S1,  the  best  recognition  results  (Table  1)  were 
observed for task C vs task FM (97% - 92%), and task 
FM vs task C (100% - 89%). Generally speaking, C was 
the  best  recognized  task  (97% 89% 100%).  However 
both task CB in CB vs HM (100%) and task FM in FM 
vs  HM  (92%)  achieved  better  recognition  rates  than 
task  C  in  C  vs  HM  (89%).  Some  tasks  were  not 
recognized better than chance level (HM in HM vs C: 
49%). For S2, the best recognition rates were obtained 
for C in C vs CB and FM in FM vs CB classification, 
where  100% was achieved.  However,  CB was poorly 
recognized in both cases (51% in C vs CB and 5% in 
CB vs  FM),  For  S3,  the  best  recognition  rates  were 
obtained for FM in FM vs CB (89%) and CB in CB vs 
HM (86%).
For S1, the lowest error rate (Table 2) was achieved on 
FM in FM vs C and HM in HM vs CB classification. 
Since  the  corresponding  rate  of  correct  classification 
was very high (89%) for FM in FM vs C, the algorithm 
was able to classify FM vs C in a very accurate way. 
However,  for  HM  in  HM  vs  CB,  the  corresponding 
percentage of correctly labelled HM task (Table 1) was 
very low (3 %). For S2, the error rate was also 0% for 
CB in CB vs C and CB vs FM classification. Generally 
speaking,  the  error  rates  achieved  by  S3 were  higher 
than those achieved by S1 and S2. For S3, the lowest 
error rate was 23% for HM in HM vs CB classification.
When assessing the global performances for each set of 
two mental tasks (Table 3), the best result was achieved 
on CB vs C and C vs F for S1 (0.95).  In general,  the 
algorithmic  performances  were  lower  for  S2 than  for 
S1, the highest score achieved by S2 being also for CB 
vs C. The global results were also poorer for S3 than for 
S1 and S2, although S3 outperformed S1 and S2 in two 
classifications (CB vs HM and C vs HM)

CB/C CB/HM C/HM CB/FM C/FM HM/FM
S1 0.95 0.63 0.71 0.67 0.95 0.68
S2 0.8 0.63 0.7 0.64 0.75 0.66
S3 0.65 0.68 0.72 0.58 0.56 0.56



3.  Discussion

Although raw data are known to be noisy and variable, 
the algorithm achieved very good results on some tasks, 
depending  on  the  subjects,  for  example  a  global 
performance  of  0.95  on  CB vs  C and  C vs  FM was 
achieved by S1 and 0.8 on CB vs C, by S2. S3 obtained 
his best result on C vs HM (0.72).
− The global performances of BCI depended both on 

the  subjects  and  tasks.  Generally  speaking,  S1 
achieved better results than S2 and S3, although S3 
slightly outperformed S1 and S2 in two cases (CB 
vs  HM  and  C  vs  HM).  No  better  results  were 
achieved than 0.95 on CB vs C and C vs FM for S1. 
In all  other  cases,  S2 achieved  better  results  than 
S3, which implies that the ability to use BCI, ie: to 
produce  stable  patterns  of  brain  activity, 
specifically to mental tasks, depends on subjects.

− The performances of the algorithm on each pair of 
tasks also depended on the subject. CB vs C led to 
very good classification performances for S1 (0.95) 
and  S2  (0.80),  poorer  for  S3  (0.65).  C  vs  HM 
ranked first for S3, third for S1 and S2. This result 
encourages to perform this kind of study for each 
subject to choose the pairs of mental tasks that lead 
to the best classification performances.

− A mental task is not well classified in general but 
rather vs another mental task. For example, task CB 
was well classified vs C (0.95) but poorly vs HM 
(0.63) and FM (0.67) for S1. However, some tasks 
seem to  lead  to  poorer  classification  results  than 
others, such as HM for S1 and FM for S3.

− Although Table 3 synthesizes  the results  for each 
set  of  two  mental  tasks,  both  rate  of  correct 
classification  and  error  rate  should  be  taken  into 
account,  when assessing  the performance  of  BCI, 
depending on the needs for communication.  Thus, 
high  λ and low  μ tend to reduce the rate of false 
negatives whereas high μ and low λ tend to reduce 
the rate of false positives. For example, in CB vs C 
classification  for  S2,  the  percentage  of  correctly 
labelled  CB tasks  was low (51%),  slightly  higher 
than  chance.  However,  the  algorithm  was  never 
mistaken when predicting C. Such a low error rate 
could  be  successfully  used  for  mental  tasks  that 
should absolutely be labelled correctly even if the 
recognition rate is low. Other tasks achieved both 
low error rate and low recognition rate (3%), such 
as HM in HM vs CB classification for S1. Their use 
in BCI should not prove as efficient.

− Although  HM  vs  FM  classification  has  already 
been extensively performed in BCI research [4], it 
ranked fourth for S1 and S2 and fifth for S3 in our 
study.  Both  tasks,  which  are  body  movements, 
encompass close areas in the brain, typically in the 
motor  and  somatosensory  cortices  with  similar 
frequency  bands,  such  as  mu  and  beta.  The 
modulation  of  power  spectra  in  those  bands  and 
areas in the brain for movement tasks did not seem 
to be the most efficient patterns of brain activity to 
classify mental tasks for all three subjects.

− When  asked  to  make  predictions  about  the 
performances  of  the  algorithm  (data  not  shown), 
most  subject  considered  that  a  pair  of  movement 
tasks (HM vs FM) or a pair of cognitive tasks (CB 
vs  C)  would  lead  to  poorer  algorithmic 
performances than a pair of cognitive vs movement 
tasks.  Consequently,  the  relatively  poor 
performances of HM vs FM did not surprised them 
much.  However,  the  subjects'  prediction  were 
negated  for  the  results  obtained  in  HM  vs  FM 
classification were better than those obtained in CB 
vs HM and CB vs FM for both S1 and S2, although 
CB is a cognitive  task and both FM and HM are 
movement  tasks.  In  the  same  vein,  the  huge 
difference in classification results between FM vs C 
and HM vs C for S1 and S3 seemed quite surprising 
for both HM and FM are body movements. Those 
results suggest that the subjective distance between 
mental  tasks  is  not  sufficient  to  predict  the 
performance  of  BCI.  The  subject's  emotional  or 
arousal  state,  together with the type of movement 
performed may also affect the performances of the 
algorithm, hence the need for such a method as to 
select  the  most  classifiable  mental  tasks 
objectively.

4.  Conclusion

We  observed  that  the  classification  performances  of 
SVM strongly  depended  on  the  type  of  mental  tasks 
performed  by  the  subject.  The  reasons  why  such 
differences are observed still  need to be explored. Do 
some  mental  tasks  imply  steadier  brain  states  than 
others?  Do  some  subjects  have  a  stronger  power  of 
concentration  on  some  tasks  than  on  others?  For 
example,  two  subjects  (S1  and  S2)  chose  a 
Mathematics  or  applied  Mathematics  major  at 
University and obtained very good classification results 
on task C classification (especially on C vs CB which 
are both abstract cognitive tasks,  one involving visuo-
spatial  abilities  and  the  other  involving  calculus).  A 
further  classification  with  a  multiclass  SVM  showed 
that task C was the best classified task for S1 (data not 
shown).  To generalize  our  assumptions,  we intend  to 
apply  our  method  to  asynchronous  BCI  and  assess 
whether the best labelled mental tasks are the same in 
both  cases  to  ensure  the  learning  process  we  applied 
here is effective in more realistic applications.
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