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ABSTRACT

Spike train analysis generally focuses on two aims: (1) the

estimate of the neuronal information quantity, and (2) the

quantification of spikes or bursts synchronization. We in-

troduce here a new multivariate index based on Lempel-

Ziv complexity for spike train analysis. This index, called

mutual Lempel-Ziv complexity (MLZC), can both measure

spikes correlations and estimate the information carried in

spike trains (i.e. characterize the dynamic process). Using

simulated spike trains from a Poisson process, we show that

the MLZC is able to quantify spike correlations. In addi-

tion, using bursting activity generated by electrically cou-

pled Hindmarsh-Rose neurons, the MLZC is able to quan-

tify and characterize bursts synchronization, when classical

measures fail.
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1 Introduction

Information theory defines the entropy rate of a stochastic

process as the amount of novel information produced per

unit time. In sensory neuroscience, the entropy rate of a

neural spike train quantifies the maximum rate of new in-

formation produced about an animal’s environment that can

be transmitted to the brain. This quantity makes no particu-

lar assumption about what information is important for the

animal nor on the nature (i.e. determinis tic vs stochastic)

of the underlying dynamics generating spike trains.

In experimental situations, the computation of entropy rates

requires a statistical estimator that is unbiased and converg-

ing enough fast to be accurate on a finite data sample. Un-

fortunately, since the classical definition of entropy rate is

moreover based on an asymptotic limit, it does not easily

lead to an accurate estimator in the case of finite-size time

series.

The concept of complexity, in the sense of Kolmogorov,

can be used to obtain accurate estimates of the entropy

rate. In particular, using the implementation of Lempel-

Ziv complexity (LZC) [1], one gains the advantage on two

finite size issues : an accurate control of the statistical fluc-

tuations (sampling issue) [2] and a better estimation of an

asymptotic quantity (convergence issue) [3]. Several stud-

ies of neural spike trains have already used Lempel-Ziv

complexity [4, 5, 6]. Nevertheless, most of these studies

only used one-dimensional neural signals. In this paper we

focus on a natural extension of LZC to multidimensional

signals [7] to study the estimate of higher order correlations

between pairs of neural spike trains.

We first recall the definitions of entropy rate and LZC for

one-dimensional binary signals. Then, using the relation

between Shannon entropy and mutual information, we give

the extension of LZC for bivariate signals and deduce a new

criterion that we call the Mutual Lempel-Ziv Complexity

(MLZC). In the last part of this study, we use the MLZC

to quantify the correlations in neural responses using sim-

ulated spike trains.

2 Definitions

2.1 Entropy rate and Lempel-Ziv complexity

For a bitstring XN = [x1, ..., xN ] of length N with xi ∈
{0, 1}, a procedure that partitions XN into non-overlapping

substrings is called a parsing. A substring starting at posi-

tion i and ending at position j of XN which is the result

of a parsing procedure is called a phrase XN (i, j). The

set of phrases generated by a parsing of XN is denoted

with PXN and the number of phrases |PXN | is denoted

by c(XN ).

Assume that a bitstring XN has been parsed up to position

i, so that PXN (1, i) is the set of phrases generated so far.

According to the original parsing procedure (LZ76) [1] the

next phrase XN (i + 1, j) will be the first substring which

is not yet an element of PXN (1, i). As an illustration, the

string 0011001010100111 will be parsed as 0 ·01 ·10 ·010 ·
10100 · 111 using LZ76 procedure.

For a bitstring XN , Lempel-Ziv complexity CLZ(XN ) is



defined as:

CLZ(XN ) =
c(XN )[logk c(XN ) + 1]

N
(1)

where k is the alphabet size (k = 2 in the binary case).

If the bitstring is generated by a source, assumed to

be stationary, the n-block entropy of the source is Hn

the Shannon entropy of the n-words wn: Hn :=
−

∑
wn

pn(wn) log pn(wn) (with natural logarithm ac-

cording to the dynamical system convention but at odds

with Shannon definition). Then the entropy rate of a sta-

tionary and ergodic source is defined as

h = lim
n→∞

Hn

n
= lim

n→∞

Hn+1 − Hn (2)

For a random sequence XN from an ergodic source, it can

be shown that h = limN→∞ CLZ(XN ) [8, 9]. This result

shows that LZC also quantifies average information quan-

tity in Shannon’s sense. Since the LZC is based on the

study of recurrence of patterns in a symbolic sequence, this

approach provides a tool for the analysis of complex se-

quences e.g. chaotic sequences [10].

2.2 Lempel-Ziv complexity for multidimen-

sional sequences

A natural extension of LZC for multidimensional data has

been proposed [7]. In the case of a set of l symbolic se-

quences {Xi
N} (i = 1, ..., l) , Lempel and Ziv’s definitions

remain valid if one extends the alphabet from scalar values

xk to l-tuples elements (x1
k, ..., xl

k).
In the case l = 2, one can thus define the joint LZC

CLZ(XN , YN ) for two sequences XN and YN is thus de-

fined as

CLZ(XN , YN ) =
c(XN , YN )[logk2 c(XN , YN ) + 1]

N
(3)

The joint LZC has similar properties as Shannon joint en-

tropy H(XN , YN ).
Pushing forward the analogy with the Shannon information

theory [11] we define the mutual Lempel-Ziv complexity

MCLZ(XN ;YN ) between sequences XN and YN as:

MCLZ(XN ;YN ) = CLZ(XN )+CLZ(YN )−CLZ(XN , YN )
(4)

The mutual Lempel-Ziv complexity (MLZC) can be un-

derstood as a divergence measure between two sequences,

by contrast to the mutual information the MLZC can be

negative transiently for finite N , for N → ∞ the ”true”

asymptotic quantity MCLZ(XN ;YN ) is positive. In fact

the MLZC converges asymptotically to a dynamic exten-

sion of the mutual information : the mutual information

rate [12, 13].

I(X, Y ) = lim
n→∞

In(X,Y )

n
= lim

n→∞

In+1(X, Y )−In(X, Y )

(5)

As the rate of mutual information, quantifies all the corre-

lations between the temporal organization of the observed

sequences X and Y and reflects up to what point they give

independent (or related) information on the underlying dy-

namics of the system. Exactly as the entropy rate h(X)
takes a better account of the whole temporal structure of

the sequence X (compared to linear statistical indices like

the correlation function), the production of mutual infor-

mation per unit time provides a more complete quantifi-

cation of the interrelations between the two sequences X
and Y , more thorough than the covariance (like mutual in-

formation, MLZC accounts for all correlations, not only

the linear ones) and better taking into account the tempo-

ral structure of the sequences; indeed, these sequences are

more than joint random realizations of two random vari-

ables, but rather the joint realization of a random process

and MLZC is an integrated index far more meaningful in

this respect than a collection of pointwise quantities com-

puted at a given time.

3 Numerical simulations

For each simulation we compare the behavior of the linear

correlation coefficient (COR), the mutual information (MI)

and the mutual Lempel-Ziv complexity (MLZC).

3.1 Poisson spike trains

We simulated two correlated binary sequences XN and YN

representing the discharge of two correlated Poisson neu-

rons according to the following procedure:

1. Two independent Poisson processes are used to gen-

erate time series of spike occurrences t = t1, ..., tn
which were translated into bitstrings according to a

partition of the time interval [0, T ] into N bins of

equal width ∆t (N = T/∆t). The natural binary en-

coding (i.e. bi = 1 when one spike occurs in time

interval i) was then used leading to two independent

binary sequences B1
N and B2

N .

2. We then obtained XN and YN from B1
N and B2

N with:

XN = B1
N ⊕ αB2

N

YN = B2
N ⊕ αB1

N (6)

where Bj
N ⊕αBi

N means that bj
k take the values of bi

k

with probability α.

Figure 1 shows the behaviour of the linear correlation

coefficient, the mutual information and the MLZC as

functions of the mixing parameter α. We generated here

100 pairs of spike trains with similar firing rate (r = 20
spikes/s, time window T = 10s and the time resolution

∆t = 1ms). For comparison purpose, we consider

here a simple normalization of the mutual Lempel-Ziv

complexity (MLZC) which takes value in the unit interval

[0, 1] (MC ′ = (MC − MCmin)/(MCmax − MCmin)).
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Figure 1. Dependence between two Poisson spike trains

: measure of the dependence as a function of the mixing

parameter. Blue curve: COR; green curve: MI; red curve:

MLZC

3.2 Bursting activity

Second we simulated on a more realistic case two coupled

neurons, using two Hindmarsh-Rose (HR) models with an

electrical coupling [14]. The HR model can reproduce

most of the different activity regimes of biological neurons.

For different external input currents, the HR neuron may

spike and burst regular or chaotically. We consider here

the electrical coupling between two HR neurons. Electri-

cal synapses are binary couplings between neurons where

the current exchange is simply due to difference between

their membrane potential. The time evolution of two elec-

trically coupled HR neurons is described by a set of three

differential equations [15].

ẋi = yi + xi(3xi − x2
i ) − zi + I + ǫ(xj − xi)

ẏi = 1 − 5x2
i − yi

żi = −rzi + rS(xi + 1.6) (7)

where xi denotes the membrane potential of neuron i, yi

and zi are ”fast” and ”slow” ionic currents. We set the value

of the conductances parameters to r = 0.0021 and S = 4
and set the value of the external current to I = 3.38. The

electric coupling between neurons ǫ is a variable parameter

who plays the role of a conductivity.

Figure 2 shows the behavior of the linear correlation coef-

ficient, the mutual information and the MLZC as functions

of the electrical coupling ǫ. HR coupled neurons present a

rich and complex dynamical behaviour, so we detail here

only the dynamical states of interest in term of dependence

between neurons activity.

In the interval 0 ≤ ǫ ≤ 0.03 the system is uncoupled with

neurons following a chaotic uncorrelated evolution, every

dependence measures (COR, MI and MLZC) are near 0.

Reaching the interval 0.04 ≤ ǫ ≤ 0.22 chaotic evolution
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Figure 2. Relation beetween MLZC, correlation and mu-

tual information of coupled HR neurons
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Figure 3. Chaotic time evolution of two HR neurons for

ǫ = 0.21. Coexisting in phase and anti-phase burst syn-

chronization.

is again dominating, there is no spikes synchronization but

some bursts are alternatively synchronized as shown in fig-

ure 3. In this case the MLZC value increases faster than the

COR and MI values.

In the interval 0.23 ≤ ǫ ≤ 0.44 several periodic windows

of perfect bursts synchronization appear with few spikes

synchronization (see figure 4). The MLZC value is high

detecting efficiently bursts synchronization, but reaches a

plateau due to the periodic regime. The COR and MI values

are still weak, but increase slowly.

For ǫ ≥ 0.45 a periodic evolution dominates and the spikes

becomes perfectly synchronized for ǫ ≥ 0.51, behaving as

single neuron. Each dependence measure reaches a maxi-

mum.
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Figure 4. Time evolution of two HR neurons for ǫ = 0.38.

In-phase burst synchronization with periodic evolution.

4 Conclusion

We have introduced a novel spike train analysis method,

the MLZC based on a popular data compression algorithm,

for the characterization of neuronal correlations.

Considering Poisson spike trains, we find that this measure

is able to detect spike synchronization in a better way than

using the linear correlation coefficient or the Shannon mu-

tual information. In a more realistic case, considering cou-

pled Hindmarsh-Rose neurons, the MLZC is able to detect

bursts synchronization under chaotic and periodic dynam-

ical regimes when the other measures fail. From a theo-

retical point of view, the MLZC is able to quantify all the

correlations between the temporal organization of the ob-

served symbolic sequences and reflecting up to what point

they give independent (or related) information on the un-

derlying dynamics of the system.

Further theoretical work should concentrate to establish

and exploit mathematical properties of the MLZC measure,

in addition further applied work should concentrate on the

performance of the MLZC measure to detect spike and

burst synchronization, considering in vivo neuronal data.
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