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ABSTRACT
The responses of rat medial entorhinal cortical neurons
form characteristic grid patterns as a function of the ani-
mal’s position. A recent model of grid fields proposes a
mechanism based on intrinsic single cell properties. It re-
lies on interference patterns emerging from multiple dis-
tinct and independent oscillations maintained in the den-
dritic tree of the cell. Here we examine the requirements
necessary to implement this idealized mechanism in a bio-
physically realistic model. We find that appropriate grid
field-formation by a single cell is exquisitely sensitive to
intra-dendritic interactions. Mathematical analysis shows
how these effects depend on properties of the dendritic os-
cillators and the (active) membrane segments that connect
them. This work gives explicit requirements for a single
cell implementation of grid-field activity.
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1 Introduction

The responses of rat medial entorhinal cortical neurons
form characteristic grid patterns as a function of the an-
imal’s position [1]. The hexagonal grid patterns remain
stable over long periods and even persist in the dark. A
recent phenomenological model of grid fields proposes a
mechanism based on intrinsic single cell properties [2, 3].
The mechanism relies on interference patterns emerging
from multiple distinct membrane potential oscillations be-
ing maintained in a single dendritic tree. Indeed, stellate
cells from the entorhinal cortex show intrinsic subthreshold
membrane potential oscillations [4, 5] – generally thought
to result from the interaction between a persistent sodium

current INaP and the hyperpolarization activated inward
currentIh [4, 6]. In the interference model, the frequen-
cies of the dendritic oscillators are modulated by inputs that
signal the animal’s head-direction and running speed. The
amplitude of the interference patterns at the soma subse-
quently determines the somatic spiking of the neuron. Be-
sides grid field activity, the model can also successfully ac-
count for the phase precession that these cells show [7].
Also, the model agrees within vitro evidence that shows a
correlation between the intrinsic oscillator frequenciesand
the grid field spacing and sizes which increase along the
dorsal-to-ventral axis of the entorhinal cortex as predicted
by the interference model [8].

However, the current description of the interference
model is highly idealized and holds many assumptions.
First, the oscillators are described by sinusoids and the in-
terference patterns emerge from both summating and mul-
tiplying the different oscillator voltages. Furthermore,the
model needs identical oscillators with oscillation frequen-
cies that are linearly related to the speed in a particular di-
rection. A key requirement for the model is that different
oscillators within one cell are independent, i.e. they do not
affect each other’s phase. However, as the oscillators need
to produce interference patterns at the soma, one expects
that they will also interact with each other. Previous results
hint that interactions between the oscillators will typically
lead to phase-locking which would potentially disrupt the
hexagonal grid field patterns.

Here we examine the requirements necessary to im-
plement the idealized sinusoid-interference mechanism in
a biophysical model that sustains intrinsic dendritic oscil-
lations.



2 Results

2.1 Mathematical Analysis

First we carry out a mathematical analysis to determine
how fast phase-locking of dendritic oscillators occurs as a
function of the oscillator and cable properties. Consider a
system of two identical oscillators that are coupled via a
(quasi-active) cable of lengthl cm, with oscillatori = 1,2
located atx = 0 andx = l, respectively (figure 1A). The
membrane potentialVi(t) (in millivolts) of each oscillator
is described by a sinusoidal function:

Vi(t) = Acos(ω(t + θi)) , (1)

whereA is the amplitude (in millivolts),ω is the angu-
lar frequency, andθi is the phase shift of oscillatori. We
want to determine how the oscillators influence each other’s
phase. Assuming weak coupling between the oscillators
(i.e. the interactions only affect the oscillators’ phases) we
can write the changes in the phase shifts of the oscillators
as

θ̇i = εZ(t) · pi(t) , (2)

where the positive parameterε ≪ 1, andZ(t) is the in-
finitesimal phase response function (iPRC) which is iden-
tical for both oscillators. It describes the change of the os-
cillator’s phase shift in response to an infinitesimally small
and short perturbation at a particular phase [9]. The per-
turbationspi(t) result from the axial currents that flow be-
tween the cable and oscillatori. The passive properties of
the cable are determined by a membrane time constantτ (in
milliseconds), a leak reversal potentialEL (in millivolts),
and a length constantλ (in centimeters), giving the cable
an electrotonic lengthL = l/λ . The cable also expresses a
voltage-dependent conductance with reversal potentialEm.
The dynamics of this conductance are determined by a sin-
gle gating variablem(x,t) with activation functionm∞(V )
and time constantτm. The equations governing the mem-
brane potentialV (x,t) and the gating variablem(x,t) along
the cable are

τ
∂
∂ t

V (x,t) = λ 2 ∂ 2

∂x2V (x,t)− (V (x,t)−EL)

−γm m(x,t)(V (x,t)−Em) ,

τm
∂
∂ t

m(x,t) = m∞(V (x,t))−m(x,t) ,

(3)

whereγm is the ratio of the maximal conductance of the
active current to the leak conductance. In order to deter-
mine the perturbations to the oscillators we need to solve
equation (3) with the oscillators at the ends of the cable as
the oscillatory boundary conditions, determining the mem-
brane potential atV (0,t) andV (l,t). For this, we first lin-
earize equation (3) about the membrane voltageVR around
which the membrane potential oscillates, leading to the
quasi-active approximation for the cable [10]. We can then

show that the perturbation to oscillatori = 1 reads

p1(t) ∝
∂
∂x

V (0,t) =
Abeiωt

sinh(bL)

(

eiωθ2 −cosh(bL)eiωθ1

)

,

(4)

where

b =

√

γR +
µ

1+(ωτm)2 + iω
(

τ −
µ τm

1+(ωτm)2

)

, (5)

with γR = 1+ γmm∞(VR) andµ = γm(VR −Em) ∂
∂V m∞(VR).

Note that the active properties of the cable can be sum-
marized by a single parameter,µ (see [11]). The sign of
µ indicates whether the active conductance is regenerative
(µ < 0), restorative (µ > 0), or passive (µ = 0), where a
regenerative current will amplify perturbations (e.g. a per-
sistent sodium current), while a restorative current actively
counteracts such perturbations (e.g. the hyperpolarization
activated h-current).

We want to describe the evolution of the phase dif-
ferenceφ(t) = θ2(t)− θ1(t). For this we first need to de-
termine the phase interaction functionHi(φ) that describes
the average effect of perturbationpi(t) on the phase of os-
cillator i over a cycle of periodT = 2π/ω . For oscillator
i = 1 this interaction function reads

H1(φ) =
1
T

∫ T

0
Z(t) p1(t + φ)dt (6)

=
1

2ω
ρ sin(ωφ + ξ )+ ν (7)

where

ρ =

∣

∣

∣

∣

b
sinh(bL)

∣

∣

∣

∣

, (8)

ξ = arg

(

b
sinh(bL)

)

, (9)

and ν is a constant, and where|z| is the absolute value
and arg(z) is the angle of a complex number. Note that
we use Andronov-Hopf oscillators with the iPRC given by
Z(t) = − 1

ωA sin(ωt). The interaction functionH2(φ) can
be determined similarly and we obtain an equation describ-
ing the evolution of the phase difference between the two
oscillators:

φ̇ = −ε
ρ
ω

cos(ξ )sin(ωφ) . (10)

The fixed points of this differential equation, i.e. where
φ̇ = 0, are thusωφ = k ·π wherek is an integer. The stable
fixed points are those points wheredφ̇/dφ < 0. The phase
shift ξ is small for smallL andω , making the synchronous
solutionφ = 0 stable.

Our goal is to determine the influence of the oscillator
and cable parameters on how fast the phase-locking occurs.
With the simplified system we can solve forφ(t) and obtain

φ(t) = 2arctan(cexp(−t/τl)) , (11)



where the phase-locking time constantτl = ω/ερ cos(ξ )
andc depends on the initial conditions. Thus,φ approaches
the stable solution exponentially with a time constantτl ,
whenφ is sufficiently close to its fixed point. The approach
will be slower than exponential whenφ is further from the
stable solution (see figure 1B).

Using the above results we can now illustrate the
phase-locking time scales for this simplest possible oscil-
lator configuration: two oscillators that are coupled via a
passive or quasi-active cable. The two panels in figure 1C
show howτl varies with the electrotonic distanceL (with
oscillator frequencyω/2π = 8 Hz). ForL = 0, the two
oscillators are directly coupled and the locking is instanta-
neous. The time constant increases linearly withL for small
L. Note that the active cable properties do not have a strong
influence for distances up toL = 1. For largerL the regen-
erative current (i.e.µ < 0) makes the locking faster than
the passive or restorative currents. The panel on the right
shows the same variables but withτl plotted on a log scale
and for a larger range ofL. Interestingly, there are values
of L for which τl is infinite. This occurs at the moment
that cos(ξ ) = 0, which is when the stable phase-locked so-
lution changes from in-phase to anti-phase. For that exact
value ofL (which is atL ∼ 3 for the cable with a regen-
erative current) there is not a single phase-locked solution.
In general we can state that regenerative cable properties
make the phase-locking dynamics faster. However, such a
current also amplifies the dependence ofξ on L. As a con-
sequence the phase-locked solution changes for smallerL
and it is at these points that the phase-locking dynamics be-
come very slow. Restorative conductances have precisely
the opposite effect, typically making the phase-locking dy-
namics slower and decreasing the dependence ofξ on L.

Using our analysis, we can also see how synaptic con-
ductance load onto the dendrites affects the locking dynam-
ics of dendritic oscillators. We analyze such effects by
adding a constant shunt to the cable. This is achieved in
the model by varyingRm, which in turn affects the den-
dritic membrane time constantτ = RmCm and the elec-
trotonic distance between the oscillators sinceL = l/λ =
l/

√

Rm d/4Ra (wherel is the length of the cable,d is the
diameter of the cable,Ra is the intracellular resistivity and
Cm is the membrane capacitance). Increasing the shunt
leads to decreases ofRm. As Rm approaches zero,L will
go to infinity andτ will go to zero. As a consequence the
time constant of locking goes to infinity. Conversely, an
increase ofRm leads to a decrease ofτl . We determinedτl

for typical dendritic cable parameters (figure 1D). We see
a steep increase ofτl asRm decreases below 20 kΩ cm2.
Conversely, increasingRm leads to a slow decrease ofτl .

The above results show that in order for dendritic os-
cillators to phase-lock as slowly as possible, the oscillators
typically should be located as distally from each other as
possible. A consequence of such distal sources of the oscil-
lations is that the amplitude of the oscillations at the soma
will be attenuated. We can use our framework to infer the
necessary amplitude of the dendritic oscillations in order
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Figure 1. Phase-locking of two cable coupled oscillators.
A: The two oscillatorsV1 andV2 with phase differenceφ
are coupled via a cable of electrotonic lengthL. B: Evolu-
tion of φ depends on the type of currents in the connecting
cable. The oscillators have frequencyω/2π = 8 Hz and
are separated by a cable ofL = 1. Cable properties are ei-
ther passive, or active with a regenerative (dashed curve)
or restorative current (dash dotted curve). The parameters
of the regenerative and restorative currents are based on
a h-type current and a persistent sodium current and are,
respectively,µ = −1.5, γR = 1.2 andτm = 1.1 ms, and
µ = 1.5, γR = 1.2 andτm = 52 ms. C: Time constant of
phase-lockingτl depends on cable properties. The two pan-
els plotτl as a function ofL for passive or active cables (see
panel B). D: Dependence ofτl on dendritic membrane re-
sistanceRm for three different cable diametersd (in µm).
The oscillator frequency isω/2π = 8 Hz. The cable is
passive with lengthl = 1000µm, membrane capacitance
Cm = 1µF/cm2, intracellular resistivityRa = 200Ωcm. E:
Ratio of the dendritic and somatic oscillator amplitude as a
function of the electrotonic distanceL between the oscilla-
tors. Active cable parameters are as in panel B.

to match the experimentally determined amplitude of the
oscillations at the soma of entorhinal stellate cells, which
are in the order of 1–2 mV [4]. We can obtain explicit ex-
pressions of the amplitude of the dendritic oscillations as
a function of the electrotonic distance between the oscilla-
tors. We assume that the soma is in the middle of the cable
(at x = l/2), that it shows oscillations with amplitudeAs,



and that the two dendritic oscillators at the ends of the ca-
ble are synchronized (i.e.φ = 0). The relation between the
amplitude of the dendritic and the somatic oscillations is
thenA = As |cosh(bL/2)|. In figure 1E we plotA as a func-
tion of the distanceL between the oscillators. Typically,
the dendritic oscillation amplitude needs to increase asL
increases. However, when the connecting cable expresses
a regenerative current, the amplitude of the dendritic os-
cillations can also be smaller than the somatic oscillation
amplitude.

In summary, our mathematical analysis provides key
requirements for a biophysical implementation of the inter-
ference model for grid fields. The biophysical model needs
dendritic oscillators with a maximal electrotonic separation
which can be achieved by distal locations of the dendritic
oscillators and the presence of a shunt in the dendrites that
connect the oscillators. The analysis also suggests that the
interaction between the oscillators can be minimized by
making use of the parameter regime in which the stable
phase-locked state changes from in-phase to anti-phase, at
which pointτl is very large.

2.2 Biophysical Model

In the above weak coupling analysis, the phase-locking
time constantτl was dependent on the small parameterε.
Since this was left as a free parameter we did not obtain ab-
solute values forτl . We next use a biophysical implemen-
tation of the model to establish how fast phase-locking oc-
curs for realistic parameter settings. Here we do not assume
weak coupling between the oscillators, but add oscillations-
generating conductances to the distal 150µm ends of a pas-
sive cable with electrotonic lengthL (figure 2A). The sub-
threshold oscillations emerge from interactions between a
persistent sodium current and a hyperpolarization activated
h-current [6].

When we make the frequencies of the oscillating seg-
ments different – by providing input to one of the oscil-
lators – we can observe interference patterns in the mem-
brane potential halfway the cable (figure 2B). After remov-
ing the external input, however, the two oscillators return
to their phase-locked configuration within∼ 2 seconds,
which is reflected by the gradual increase of the amplitude
of the interference pattern. Note again, that the interference
mechanism for grid fields requires that the phase difference
is maintained and should only change as a function of the
external input.

As in the above analysis (see figure 1C), we deter-
mine how the phase-locking time constantτl scales with
the electrotonic distanceL between the oscillators (figure
2C). Simulations show that it is impossible to produce dif-
ferent oscillation frequencies forL < 2 since the oscillators
are strongly locked. Hence, no interference patterns can be
obtained for smallL. For larger values ofL it is possible
to obtain different oscillation frequencies and we can see
an approximately exponential increase ofτl , reaching up to
∼ 5 seconds whenL = 5. Note that there is a range of val-
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Figure 2. Phase-locking in a conductance based cable
model. A: The ends of the cable (grey) contain the active
conductances that generate the oscillations. The passive
cable with electrotonic lengthL has membrane resistance
Rm = 10 kΩ cm2, intracellular resistivityRa = 200Ωcm
and membrane capacitanceCm = 1µF/cm2. B: Interfer-
ence pattern of the membrane potential in the middle of the
cable when providing input to one of the two oscillators
for 6 seconds. The active segments of the cable are sepa-
rated byL = 3. C: Phase-locking time constant of the cable
model for differentL. The grey area denotes a parameter
range whereτl is undefined.

ues ofL whereτl is not defined (grey area in figure 2C).
This corresponds to the parameter regimes in the above
analysis whereτl is infinite. However, in the conductance-
based model we find varying values forτl , depending on
the amplitude and timing of the external input to the oscil-
lator. This means that the dynamics cannot be generically
controlled for such parameters and suggests that minimal
interactions between dendritic oscillators can only be ob-
tained by maximal electrotonic separation.

3 Conclusion

Our analysis suggests a number of requirements for the in-
terference framework to be implemented biophysically. We
find that in order for grid fields to be formed by a single cell
mechanism, the dendritic oscillators need to be electroton-
ically maximally removed from each other. At the same
time we can determine the necessary dendritic oscillation
amplitudes. Our analysis and simulations therefore pro-
vide key requirements that should be fulfilled by entorhinal
stellate cells in order to show grid field activity via the sin-
gle cell interference mechanism. Future work will explore
whether the oscillator interactions can be sufficiently weak
to maintain stable grid fields over extended periods of time.
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