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ABSTRACT

A synchronous activity of neural networks is observed af-

ter introduction of bicuculline, an antagonist of inhibitory

connections, into the nutritive solution of in vitro prepa-

rations containing neural networks of hippocampal neu-

rons. The signals measured by microelectrode arrays show

trains of bursts of activity. This study aims to reproduce

this behavior in a mathematical model. The approach is

twofold: firstly, we develop a simple biophysical model

coupled with a measurement model to validate the sens-

ing of the real net, and secondly, we use both models to

understand the mechanism of the real net. Since the net-

work is not connected to other areas, we use synaptic noise

on an excitatory neural network to reproduce the bursting

activity. Furthermore, delays are introduced that allow the

emergence of different patterns of bursting.
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1 Introduction

When studying the activity of neurons using microelec-

trode arrays (MEA), it is important to understand the mea-

surement process to obtain a correct explanation of the

measured signals [1, 2]. We are currently developing an

experiment to monitor ordered living neural networks us-

ing MEA [3]. To evaluate our experimental setup and un-

derstand all the steps of the measurement process, we are

also developing a mathematical modeling approach that al-

lows us to describe the neural networks, the electrical cou-

pling between the network and the electrodes as well as the

electronic devices in terms of adequate physical and bio-

physical models.

In this study, we measure the neural activity of an

organotypic slice of rat hippocampus (Synapcell, Greno-

ble, France) in the CA3 region. Bicuculline is added to the

preparation to block the inhibitory connections. The mea-

sured signals then display a periodic bursting activity (see

Figure 2(a) and 2(d)). To reproduce this behavior, we create

a neural network governed by an Izhikevitch model [4, 5],

in which all the connections are excitatory. In this model,

random inputs representing the influence of other areas are

usually taken into account to generate an activity. However,

with in vitro preparations, this model is inappropriate since

there are no inputs from other areas. To induce a sponta-

neous activity as observed in vitro, we introduce a random

activity on the synapses [6]. Furthermore, we add delays

to take into account of the durations of propagation as well

as transmission. The measurement process is simulated via

a linear model, as proposed by Martinoia [7]. Some of the

results have been initiated in previous studies in [8, 9].

Before reproducing the real behavior, we study the

influence of different parameters (noise, delays, transmis-

sion duration) on the behavior of the model. This study

allows us to reproduce partially the measurements made in

the CA3 region under bicuculline. The paper is structured

as follows. Firstly we describe the biophysical model of the

neural network along with an analysis of the effect of noise

on a single neuron and on two coupled neurons. Then, we

present the physical model that takes into account the cou-

pling between the neurons and the electrodes. Finally, we

examine the effects of delays and transmission durations.

2 Presentation of the neural network

2.1 Description of the model

For numerical simulations, nneurons neurons are computed
using an Izhikevich model [4, 5]. In this model, each neu-
ron is characterized by its membrane potential v, and a vari-
able u which is necessary in the spiking mechanism of the
neuron. The neuron is modeled as a quadratic integrate-
and-fire neuron, while a threshold rule is used to simplify
the fast reset dynamics. Each neuron i is thus governed by:

dvi(t)

dt
= 0.04 · v2

i
(t) + e · vi(t) + f − ui(t) + Ii(t) (1)

dui(t)

dt
= a · (b · vi(t)− ui(t)) (2)

if vi(t) ≥ vthresh, then

{

vi(t)← c

ui(t)← ui(t) + d
(3)

The initial parameter values of the neurons in the CA3

region of the hippocampus acting as integrator neurons

are taken from [10] and set to a = 0.02, b = −0.1,

c = −55, d = 6, e = 4.1, f = 108, vthresh = 30.

For numerical integration and stability, we use two suc-

cessive Euler approximations by dividing the time step

by two and blocking vi(t) to vthresh when spikes occur.

An input current is considered at each neuron soma using



Ii(t) = Ii,syn(t)+Ii,noise(t). Ii,syn(t) is the synaptic cur-

rent source given in our model by Ii,syn(t) = g · Si. · σ(t).
Si. is the ith row of the connectivity matrix S represent-

ing all the afference of neuron i, where element Si,j is

1 if neurons i and j are connected and zero otherwise.

Note that we set Si,i = 0 to avoid self connection (au-

tapse). σ(t) is a vector of {0, 1}nneurons indicating firing

neurons. g is the synaptic conductance, which is assumed

to be the same for all neurons. Ii,noise(t) is an additive

noise corresponding to fluctuations on the synaptic ionic

channels: Ii,noise(t) = gnoise · Ui.(t) · σ̄(t). This noise

models the fluctuations of the ionic channels and synap-

tic bombardments from neurons outside the network. A

random uniform noise Uij(t) between 0 and 1 is intro-

duced on each connection to simulate stochastic behavior

of synapses. gnoise controls the level of noise. σ̄(t) is the

logical not of σ indicating that noise is active only when no

spikes occur.

2.2 Influence of g and gnoise

Simulations with a duration of 10 s and a sampling rate

of 10 kHz are carried out to study the influence of the

model parameters. An external current step Iext is incorpo-

rated into the model to stimulate the neuron in the interval

[0.5 s, 9.5 s]. An estimation of the firing rate fi for neuron

i is obtained by counting the number of spikes and then di-

viding this number by the duration of the current step (9 s).

By varying Iext, we can study the deterministic behavior of

one neuron. The resulting f-I curve [11] is plotted in Fig-

ure 1(a), where we see that the rheobase (minimum Iext for

spiking) is given by 2.25.

We use a neural network of two neurons with a sin-

gle connection from neuron one to neuron two to study the

deterministic coupling between two neurons. Iext = 10 is

applied to neuron one to obtain a firing rate f1 = 28.33 Hz.

The effect of variations of g on the f2/f1 ratio is shown in

Figure 1(b). Below the threshold g = 165, the coupling

is too weak, and the neurons act as if they were uncou-

pled. Above g = 165, the coupling is effective, as shown

by the variation of f2/f1 which follows a Devil’s staircase

function, a well known effect in the coupling of nonlinear

dynamical systems [12].

The stochastic behavior of one neuron can be stud-

ied by varying the amount of noise with gnoise. Results

are illustrated in Figure 1(c) and 1(d). For gnoise > 4.4,

the rheobase vanishes and the neurons are spontaneously

spiking. This behavior is similar to the noisy f-I curves de-

scribed in [11] for the Hodgkin and Huxley model. The

effect of noise on the transmission between two neurons is

obtained with a neural network of two neurons with only

one connection between them. As described previously,

a current step of Iext = 10 is introduced on neuron one

to generate a spiking rate of 28.33 Hz. g and gnoise are

assumed to be equal and are varied to generate the f2/f1

ratio given in Figure 1(c). The noise destroys the Devil’s

staircase. The value of g necessary to initiate a coupling

between the neurons is lower than previously observed un-

der the same conditions but without noise (4.4 against 145).

For the present model, this means that noise facilitates the

transmission between neurons by reducing the value of g
required to induce spikes on efferent neurons.

3 Signal with neuron-electrode coupling

3.1 Description of the model

A linear filter made up of resistances and capacitances is

used to generate signals such as those recorded by a MEA

using Martinoia’s model [7]. The filtering can be written:

xi(t) = h(t) ∗ vi(t) (4)

where xi is the measurement of neuron i according to an

electrode. As an electrode j on a MEA senses the extra-

cellular behavior of several neurons, we use a mixture of

nrec,j signals with random weights. Thus, the potential

measured by electrode j can be written as:

Vrec,j(t) =

nrec,j
∑

i=1

wixi(t) + Vrec,noise(t) (5)

where wi is a random weight simulating the attenuation

due to distance. The wi values are independent and uni-

formly distributed over [0, 1]. Vrec,noise represents addi-

tional noise due to current fluctuations on the electrode.

It is obtained by convolution of the transfer function of

the electrode helec and a Gaussian white noise Ielec,noise

(whose power is tuned to match the recorded noise power):

Vrec,noise(t) = helec(t) ∗ Ielec,noise(t) (6)

The simulations of the recorded signals on the electrodes

can now be compared to the experimental recordings.

3.2 Experimental settings and simulation re-

sults

A rat hippocampus slice is placed onto a MEA. We then

add bicuculline to the solution, and after 10 minutes, record

the activity of neurons in the CA3 region. A typical mea-

surement is illustrated in Figure 2(a). In this signal, we

observe periodic bursts of activity. In the example given

here, there are 11 bursts in 5 s leading to a bursting rate of

fburst = 2.2 Hz.

Random networks with nneurons = 500 are simu-

lated to match the in vitro conditions. In the simulation, we

assume that each neuron has 10 % of excitatory connec-

tions (the connectivity matrix S contains 10 % of 1, each

neuron being connected to approximately 50 neurons) ac-

cording to [10]. We generate simulations lasting 5 s at a

sampling rate of 10 kHz to study the influence of g and

gnoise. When noise is introduced into the model, we ob-

serve a spontaneous bursting activity, as shown in Fig-

ure 2(b). Table 1 reports the time-evolution of the bursting
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Figure 1. Estimations of: a) firing rate f as function of the input current Iext (f-I curve); b) f2/f1 ratio between two neurons as

function of the synaptic coefficient g with Iext = 10; c) f-I curve for different value of gnoise given in legend; d) influence of

varying g = gnoise on the f2/f1 coupling. The introduction of noise enhances transmission between neurons.

effect (measured by the frequency of bursting) for different

values of g and gnoise. When g is constant, an increase

Table 1. Bursting frequency fburst

fburst (Hz) g 1 5 10 50

gnoise

1 0 0 0 0

5 3.6 3 2 sat.

10 8.8 5.4 3 sat.

50 31 10 5.4 sat.

nneurons = 500, t1 = 0 ms, ∆t = 0.1 ms.

sat. is an abbreviation for the saturation of neurons.

of gnoise increases the frequency of synchronous bursts

(fburst). As shown previously, synchronous bursting is ini-

tiated above a threshold value of gnoise (gnoise,0 = 4.4,

see also Figure 1(d)). As described in section 2.2, neurons

exhibit a spontaneous spike rate when gnoise ≥ 4.4, we

observe a synchronization of the activity of neurons due to

excitatory connections. When noise is increased, the burst-

ing frequency is increased. On the contrary, when the value

of g is increased, the bursting frequency is reduced. This

can be explained by the fact that more current is supplied

to each neuron, pushing the state variables u and v more

rapidly to a recovery state at which no spikes occur. When

g is too strong, the neurons saturate.

4 Influence of delays

In the model, we consider two different delays to take into

account the time taken for the presynaptic potential of an

afferent neuron to initiate a postsynaptic potential on the

efferent neuron. The first delay is used to model the prop-

agation of spikes in the axon of the afferent neuron as well

as the neurotransmitter release (0.1 ms to 44 ms [13] or

2–3 ms [7]). The second delay models the duration of

the synaptic transmission (0.5 ms to 4 ms in [11]). For

the sake of simplicity, these two delays are taken into ac-

count in the conductance profile via the function G(t) =
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Figure 2. a) Recording of a hippocampus slice under bicuculline. Periodic bursts of activity are observed. b) Simulation with

g = 1, gnoise = 4.5. c) Simulation with g = 1, gnoise = 4.5, transmission of synaptic current lasting 3 ms with a 0.5 ms delay.

d) Detailed view of a). e) Detailed view of b). f) Detailed view of c), with burst duration of the order of d).

gΠ∆t(t − t1) where Π∆t(t) =

{

1 if t ∈ [0,∆t]
0 otherwise

.

The influence of t1 is given in Table 2 with ∆t =
0.1 ms, g = 1, gnoise = 4.5. While there is only a small

effect on the observed patterns, we note an increase in the

duration of the burst Dtburst.

Table 2. Influence of t1

Mode Frequency Duration of burst

t1 (ms) fburst (Hz) Dtburst (ms)

0.1 sync. 2 10

0.5 sync. 2 20

1 sync. 2.2 25

5 sync. 2.2 40

g = 1, gnoise = 4.5, ∆t = 0.1 ms.

sync. stands for synchronized and refers to synchronization of neurons

The influence of ∆t is given in Table 3 with t1 =
0.5 ms, g = 1, gnoise = 4.5. An increase in ∆t dramati-

Table 3. Influence of ∆t

Mode Frequency Duration of burst

∆t (ms) fburst (Hz) Dtburst (ms)

0.5 sync. 1.8 8

1 sync. 1.8 20

5 sync. + chaos. 1.6 30 to 200

10 sync. + chaos. - -

t1 = 0.5 ms, g = 1, gnoise = 4.5.

sync. stands for synchronized and refers to synchronization of neurons.

chaos. refers to chaotic behavior of the bursting duration and frequency.

cally increases the burst duration while producing a small

decrease in the bursting frequency. This effect is presented

in Figure 2(c) and 2(f). A chaotic behavior of bursting dy-

namics is observed with increasing duration of the synaptic

delay. Figure 3(a) presents an example of such a signal

obtained for Dt = 8ms. Further studies are required to

explain this phenomenon in more detail.

5 Discussion and conclusion

In this study, we analyze the influence of different param-

eters on the generation of signals such as those observed

with a microelectrode array. Bursting activity occurs in the

simulated neural network, when driven by synaptic noise,

thus mimicking the activity measured in a slice of rat hip-

pocampus. We can simulate burst durations similar to those

observed with experimental in vitro preparations adding a

delay and a duration in the modeling of the synaptic trans-

mission. The bursting pattern produced by the model is

problematic, since we obtain signals with higher frequen-

cies than those observed in vitro. We consider that the

neuron-coupling model is not optimal so we will need to

change the values in the model to match the experimental

settings. Variations of parameters a, b and d could also lead

to variations of pattern as described in [8] and thus require

further investigation. We believe that the simple model pre-

sented here is of interest for studying the influence of noise

on neural dynamics and computation.
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Figure 3. a) Simulation with g = 1, gnoise = 4.5, transmis-

sion of synaptic current lasting 8 ms with a 0.5 ms delay,

note presence of chaotic bursting. b) Intracellular poten-

tials of 10 neurons of the network.
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