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ABSTRACT
The antennal lobe (AL) is the insect homologue of the 
olfactory  bulb  in  mammals.  As  such,  it  is  the  first 
processing station in the insect olfactory system. It has 
been  shown  previously  that  odorant  representations 
change  during  associative  odor  learning  [1],  but 
contradictory findings have also been published [2]. 
We recorded Ca2+-activity of uniglomerular  projection 
neurons (PNs) in the AL of the honeybee Apis mellifera 
during differential olfactory conditioning. 
Our results indicate that the activity pattern of PNs in 
response  to  odorants  can  change  for  the  conditioned 
odor, for the unconditioned odor and for control odors 
which were not presented during conditioning.
We designed a computational model of the glomerular 
network  that  can  explain  the  apparent  contradiction 
between the  findings  we present  here  and  the  results 
reported in [2].
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1.  Introduction
The  honeybee  exhibits  remarkable  performance  in 
associative odor learning. Like Pavlov's dog learned to 
salivate  in  response  to  a  bell  ringing  before  food 
delivery,  the  honeybee  can  be  trained  to  extend  its 
proboscis when an odor is paired with a sucrose reward. 
Given the accessibility and comparably low complexity 
of its brain, the honeybee is therefore an ideal model for 
studying the neural basis of olfactory coding as well as 
learning and memory formation.
It has been shown in the honeybee that both the AL and 
the  mushroom  body  (MB),  the  first  and  the  second 
stages in the olfactory system, are involved in memory 
formation  after  olfactory  reward  conditioning  [3]. 
Memory acquisition can be affected by local injections 
of octopamine (OA) into either one of the AL or MB 
[4].  OA  is  a  neuromodulator  which  putatively  gets 
released by the VUMmx1 neuron in response to sucrose 
reward [5]. 
Hence, associative learning is expected to have an effect 
on the plasticity of neuronal responses in the MB, but 
also  in  the  AL.  Indeed,  Faber  and  coworkers  have 
shown  that  Ca2+-activity  in  response  to  an  odorant 
increases for the learned odors, and that the correlation 
between response patterns for rewarded and unrewarded 

odors  is  reduced  [1].  However,  when  Peele  et  al. 
analyzed odor responses of PNs (which form the output 
of the AL and project to the MB), they did not observe 
any significant changes in odor responses before, during 
and after conditioning [2]. Apart from the incongruity in 
experimental  findings,  it  is  also  unclear  how 
downstream neuron populations can be able to reliably 
identify  odor stimuli  when their  representation  in  the 
AL changes.
In this contribution, we present data which supports the 
hypothesis  that  the  glomerular  activity  pattern  is 
changing.  In  addition,  we  provide  a  computational 
network  model  that  can  explain  the  apparent 
contradiction  in  experimental  results.  The  model  also 
resolves the problem how activity patterns can change 
in  response  to  conditioning,   while  at  the  same  time 
enabling  downstream  populations  to  reliably  identify 
odor stimuli.

2.  Results

2.1 Differential olfactory conditioning
We recorded Ca2+-activity  from uniglomerular  PNs in 
the  AL  of  harnessed  honeybees  during  differential 
olfactory conditioning. We used four odors during our 
conditioning  experiments:  octanol,  linalool,  limonene 
and hexanal.  In the pre-phase of each experiment,  we 
presented each odor three times. For conditioning, we 
paired  the  presentation  of  one  odor  (the  conditioned 
odor,  CS+)  with  sucrose  reward.  Another  odor  (the 
unconditioned  odor,  CS-)  was  also  presented  in  the 
conditioning  phase,  but  was  not  paired  with  sucrose 
solution. CS+ and CS- were presented five times during 
the conditioning phase. In the post-phase, we presented 
the CS+, the CS- and the two remaining odors (Ctrl1 
and Ctrl2) several times until the signal degraded.

2.2  Response  patterns  before,  during  and  after 
differential conditioning
PN  response  was  assessed  as  the  integral  of Ca2+-
activity  during  odor  presentation.  Depending  on  the 
preparation,  4  to  11  glomeruli  were  analyzed  in  an 
animal.  Hence,  the  activity  pattern  in  response  to  an 
odor  was  an n-dimensional  vector,  with  n ranging 
between 4 and 11. 

In order to visualize changes in the response patterns, 
we performed principal component analysis (PCA) on 
the  n-dimensional  response patterns.  Fig.  1 shows the 



scores of PN response patterns on the first two principal 
components  (PCs)  in  one  animal  before,  during  and 
after conditioning. 

The response pattern of the CS+ clearly shifts along PC 
1. A similar shift can be observed for the CS-, although 
in a slightly different direction. The control odors (Ctrl1 
and Ctrl2) also exhibit some shift, but to a lesser degree 
and in different directions. We observed similar shifts 
for the majority of 32 animals that we recorded from. 

These  observations  indicate  that  response  patterns  of 
PNs are not invariant, but can be affected by olfactory 
conditioning.

Fig. 1: Principal component (PC) scores for the first two 
PCs of PN response patterns before, during, and after 
conditioning. Symbols indicate the role of the odor (+: 
CS+, ▬: CS-, ◄: Ctrl1, ►: Ctrl2), shades of gray show 
the  phase  of  the  experiment  (■:  pre,  ■:  training,  ■: 
post).

2.3 A model of the glomerular network
Based on anatomical  findings from the honeybee AL, 
we  designed  a  model  for  glomerular  network 
architecture that can resolve the apparent contradiction 
of our data with those from [2]. Since there are several 
PNs  innervating  each  glomerulus  [6],  we formed  the 
hypothesis that not all PNs inside a glomerulus respond 
with the  same strength to  upstream activity,  but  their 
responses can differ when a reward is delivered.

In  consequence,  measurements  of  Ca2+-activity  in  a 
glomerulus  could yield different  results  depending on 
the PN subpopulation that  has been stained, probably 
because  of  a  slight  variation  in  the  injection  site  or 
amount  of  injected dye. Sparser  stainings  may reveal 
differential  effects  that  cannot  be  observed  when 
staining  all  PNs  inside  a  glomerulus,  because  the 
differences could average out. 

Figure 2 shows a schematic of our model. An olfactory 
receptor  neuron  (ORN)  drives  two  PNs,  and  two 
inhibitory  local  neurons  (iLN  and  iLN-VUM).  Both 
PNs also drive the iLN and receive recurrent inhibition 
from it.  The PNs project their output to the MB. The 
VUMmx1  neuron  (VUM)  is  active  upon  reward 
delivery and modulates the activity of a subpopulation 
of iLNs (iLN-VUM), which project to a subpopulation 
of PNs in the glomerulus. 

This  setting  allows  for  the  VUMmx1  neuron  to 
modulate in an associative way the activity of PNs via 
the  iLN-VUM. At  the  same time,  the overall  activity 
can be kept constant through action of the iLN – if PN2 
decreases  its  activity,  iLN activity  decreases  as  well. 

PN1  will  receive  less  inhibition  and  its  activity  can 
increase.

Fig. 2: Model of glomerular architecture, schematic.

In  order  to  demonstrate  the  function  of  the  proposed 
network,  we  implemented  it  using  PyNN 
(http://neuralensemble.org/trac/PyNN).  We  used the 
IF_curr_alpha spiking  neuron  model  (integrate-
and-fire  neurons  with  alpha-shaped  postsynaptic 
currents);  ORN  firing  was  modeled  as  a  poisson 
process,  using  PyNN's  SpikeSourcePoisson 
model. Figure 3 shows spike trains from an exemplary 
simulation run. As proof of concept, we focused on the 
behavior of the network in the case that asymmetric PN 
activity  is caused by activity of the VUMmx1 neuron 
when a reward is  delivered, and  did not  yet  consider 
plasticity  in  the  network. Hence,  the  simulation  only 
represented the  action  of  the  network  during  the 
conditioning phase. 

Fig. 3: Spike trains from one simulation run.

Two conditions  are  shown,  with and  without  reward. 
We modeled the reward dependent modulatory activity 
of the VUM neuron as a decrease in firing threshold of 
the iLN-VUM unit. In the above example, the threshold 
was at -35 mV in the no reward condition, leading to 11 
spikes  being  fired.  When  a  reward  was  given,  the 
threshold decreased to -55 mV, resulting in 54 spikes. 
In  both conditions,  the  ORN delivered  46 spikes  per 
odorant presentation. In the no-reward condition, PN1 
fired 29 spikes while PN2 fired 26 spikes. But when the 
VUM-neuron was active in response to a reward, PN2 
received  more  inhibition  via  the  iLN-VUM  and 
decreased its response to 21 spikes, while PN1 received 
less inhibition via iLN and increased its response to 33 
spikes.

Hence, when averaging the response of PN1 and PN2, 
the  response  magnitude  when  reward  is  given  (27.5 
spikes)  would  be hardly  distinguishable  from the  no-

http://neuralensemble.org/trac/PyNN


reward condition (27 spikes). Only when analyzing PN1 
and  PN2 separately,  the  effect  of  reward presentation 
can be observed as an increase in asymmetry between 
PN responses.

The  above  scheme  has  also  advantages  when 
considering  downstream  neuron  populations  which 
should  reliably  identify  the  presented  odor.  If  the 
signals of all PNs in one glomerulus  are  averaged, the 
response  pattern  is  invariant  to  reward  presentation. 
Simultaneously,  the  differential  signal  from  PNs  is 
available to indicate if the odor has been rewarded.

2.4 Adding plasticity to the model
So  far,  we  only  considered  the  effect  of 
neuromodulation during the conditioning phase. As we 
have  shown  in  section  2.2,  appetitive  conditioning 
causes  changes  in  odor  coding  which  outlast  the 
conditioning phase. Hence there must be a mechanism 
which  induces  longer-lasting  modifications  of  some 
synaptic weights.

For reward-based learning, both the input signal and the 
reward signal are required. In our model, both signals 
are available at the VUM-iLN: the ORN provides the 
input  signal,  while  the  reward  signal  is  provided  by 
modulatory input from the VUM neuron. If the synaptic 
weight  between  ORN  and  VUM-iLN  is  subject  to 
plasticity, the VUM-iLN's odor response, and therefore 
its impact on odor coding by PN subpopulations, can be 
modified  according  to  the  temporal  overlap  between 
ORN  input  and reward  signal. Hence,  the  synapse 
between ORN and iLN-VUM is the  ideal  location to 
induce synaptic plasticity during the conditioning phase.

Proper  function  of  the  network  depends  on  the 
combination  of  synaptic  weights.  Not  all  weight 
combinations  are equally  well suited.  If  we introduce 
synaptic plasticity at a specific synapse, one weight is 
changing  in  an  activity  dependent  manner.  The 
remaining weights must be chosen such that a weight 
change at that single synapse is tolerated and does not 
jeopardize the function of the entire network.

We addressed this issue by scanning a large number of 
parameter  combinations  by  their  usefulness  for  the 
performance, or fitness, of the model. In a useful model, 
the  average  spike  count  of  both  PNs  should  stay  as 
constant as possible in rewarded and unrewarded trials. 
We assessed this criterion by equation (1):

f mean=∣PN1r  PN2 r

PN1nrPN2nr

−1∣ , (1)

with PN1r and PN2r the PN's spike counts for rewarded 
trials, PN1nr and PN2nr the spike counts for unrewarded 
trials, and fmean the fitness criterion indicating how well 
the mean spike count from both PNs is preserved during 
rewarded and unrewarded trials.   

In  addition,  the  difference  in  spike  counts  should  be 
small in unrewarded trials and large in rewarded trials. 
This was quantified by equation (2):

f diff=
1∣PN1nr−PN2nr∣
1∣PN1r − PN2r ∣

, (2) 

where fdiff is the fitness criterion assessing how much PN 
responses diverge during rewarded trials. 

Fitness  increases  if  both  criteria  approach  zero.  The 
overall  fitness  f of  a  particular  combination  was 
calculated as 

f =
f mean f diff

2
. (3)

Table 1 displays the weights we used for probing the 
multidimensional  “weight  space”.  Negative  weights 
indicate  fitness  assessment.  We  will  use  the 
abbreviations given in the third column for reference in 
the remainder.

Table 1: Weights used for fitness assessment. 

source target abbr. weights

ORN PN1, PN2 OP 20 25 30 35 40

ORN iLN Oi 2 4 6 8 10

PN1, PN2 iLN Pi 6 8 10 12 14

iLN PN1, PN2 iP -20 -17.5 -15 -12.5 -10

iLN-VUM PN2 iVP -10 -8.5 -7 -5.5 -4

ORN iLN-VUM OiV 5 7.5 10 12.5 15

Our  goal  was  to  identify,  out  of  all  possible  15625 
weight combinations,  those  in  which  OiV could  vary 
the most with the least impact on model fitness. To this 
end,  we  assessed model fitness with each combination 
of  weights  from  Table  1  for  all  values  of  OiV  and 
calculated  the  mean  and  the  variance  of  f.  The  ideal 
weight combination should exhibit small mean fitness, 
and low variance for different values of OiV.  Figure 4 
shows the distribution of mean fitness and its variance.

Fig 4: Mean vs. variance of fitness over different values 
of  OiV. The gray circle marks the weight combination 
that we chose for the remaining simulations.

Most  weight  combinations  yield  good  mean  fitness 
around  0.15,  with  low variance  around  0.02.  For  the 
remaining  simulations,  we  chose  the  combination 
closest to the origin. The corresponding weight values 
were OP: 35, Oi: 6, Pi: 12, iP: -15, iVP: -4.

We enabled spike-timing  dependent  plasticity  (STDP, 
[7]) at the synapse between ORN and iLN-VUM (OiV). 
Weights  were  modified  in  an  additive  manner  using 
PyNN's  AdditiveWeightDependence STDP rule 
with  minimum  and  maximum  weights  wmin = 5  and 
wmax = 15. The maximum amount of weight change was 
bounded by  A+ = 0.005 for increasing and  A- = 0.0025 
for decreasing weights. The temporal window for STDP 
was  defined  by  τplus = 5  ms  and  τminus = 7  ms  for 
potentiation and depression, respectively.



In order to mimic the data shown in 2.2, we organized 
our simulation runs into three phases: pre-, training- and 
post-phase, with 3, 5 and 3 trials respectively. The only 
difference between the phases is that during the training 
phase we lower the threshold of the iLN-VUM neuron 
to mimic a rewarded odor, in accordance to the model 
description in 2.3. Each trial was 500ms long, and trials 
were  separated  by intervals  of  100  ms  length  during 
which no input activity was delivered. Figure 5 depicts 
spike trains from one simulation run.

Fig.  5:  Spike  trains  from  one  simulation  run  with 
plasticity. The gray rectangle marks the training phase, 
where the threshold of the iLN-VUM neuron is reduced.

In the pre-phase, the iLN-VUM neuron fired only few 
spikes,  while  in  the  training-phase  its  firing  rate 
increased  due  to  the  decreased  firing  threshold, 
mimicking  neuromodulatory  input  by  the  VUMmx1 
neuron. In the post phase, the iLN-VUM exhibited an 
increased  response  to  the  stimulus  as  a  result  of  the 
weight increase that has been brought about by STDP. 
In  consequence  of  the  increased  iLN-VUM response, 
PN2 decreased its  firing  rate  during the training- and 
post-phase  of  the  experiment,  while  the  response  of 
PN1 increased.

This  behavior  can  be  observed  more  specifically  in 
Figure 6, which shows the relative spike counts of PN1 
and PN2 during the experiment. 

Fig. 6:  Spike counts of  PN1 and PN2, relative to the 
mean of  both in  each trial.  Light  gray crosses  depict 
how the mean spike count varies, relative to the mean 
in trial 1. The gray rectangle marks the training phase.

In each trial, spike counts are scaled such that the mean 
spike count of both PNs equals one. In the pre-phase, 
there was only a small difference between spike counts 

from  PN1  and  PN2.  During  the  training-phase,  this 
difference increased and it was still  large in the post-
phase, demonstrating that synaptic plasticity at the OiV-
synapse can effectively influence PN responses, making 
them inhomogeneous  for  rewarded  odors.  It  must  be 
noted  that  in  the  post-phase,  the  difference  was 
somewhat  smaller  than  during  training,  in  slight 
incongruence  with  the  original  data.  However,  this 
incongruity could be addressed by using a different set 
of  weights,  which yield smaller,  i.e.  better  values for 
fdiff, and thus a larger difference in the post-phase.

In order to demonstrate that average PN output actually 
stays  the  same,  Figure  6  also  depicts  how the  mean 
spike  count  evolved  throughout  the  experiment.  We 
normalized the mean values such that the value from the 
first trial equals one. Since the ORN input spike train is 
generated  by  a  poisson  process,  it  is  subject  to 
stochastic  fluctuations,  which  are  reflected  by  the 
variance in mean spike count over trials. In total, mean 
spike count was on the same level in the pre- and post-
phase,  with  an  apparent  increase  during  the  training 
phase. 

In the above settings, the ORN always fired with with a 
spike  rate  of  approximately  100  Hz.  Because 
glomerular  activity  patterns  are  not  all-or-nothing 
signals, but rather use the entire range of activities, we 
tested  how the  model  performs  for  a  range  of  input 
spike rates.  Figure 7 depicts how the synaptic weight 
between ORN and iLN-VUM evolved for  ORN rates 
between 10 and 130 Hz.

Fig. 7: Evolution of the weight between ORN and iLN-
VUM for input rates between 10 and 130 Hz.

The  higher  the  input  rate,  the  more  drastic  was  the 
change in synaptic weight. Hence, in multi-glomerular 
activity patterns, the glomerulus exhibiting the strongest 
response will change its response the most. 

Another observation that can be made in Figure 7 is that 
the weight change is strongest during the training phase, 
and  that  there is  relatively small  or  no change in the 
post-phase. This behavior indicates that  the parameter 
setting  we chose  for  the  STDP rule  is  well  suited  to 
elicit synaptic potentiation mostly during training trials, 
and prevents that the weight changes erroneously during 
non-rewarded trials. However, it must be noted that for 
the  largest  input  rate,  the  synaptic  weight  is  “maxed 
out”, so no further potentiation can take place. Possibly, 
this behavior could be avoided by tuning the parameters 



of the STDP mechanism, or simply avoiding the use of 
input rates higher than 100Hz in the model.

3.  Conclusion
We  presented  data  showing  changes  in  the 
representation  of  odorants  in  the  AL  induced  by 
olfactory associative learning. These data conflict with 
previously  published  findings,  and  also  raise  the 
question  how  downstream  neurons  can  identify  odor 
stimuli when their representation in the AL is changing. 
Proposing a connectivity scheme for glomeruli that can 
resolve  that  conflict,  we  constructed  a  computational 
model of the glomerular network, in which the response 
of  PNs  in  one  glomerulus  is  not  homogeneous,  but 
diverges when an odor is rewarded or associated with a 
reward. In a computational conditioning experiment, we 
employed  STDP  at  one  synapse  in  the  network  to 
acquire  this  assymetry  in  PN  response  during  the 
training-phase  when  odor  presentation  is  paired  with 
activity in the VUMmx1 neuron (i.e., when the odor is 
rewarded),  and  showed that  it  was preserved in  later 
trials without VUM activity. 

We  showed  that  the  network  model  is  capable  of 
generating asymmetric PN responses, while at the same 
time keeping the average response relatively constant. 
Hence,  downstream  neurons  could  obtain  reliable 
information about the stimulus by integrating the signal 
of all PNs from one glomerulus, or obtain information 
about  which  odor  was  rewarded  by  analyzing  the 
differential signal.

The model makes the prediction that responses of PNs 
in  the  same  glomerulus  are  not  homogeneous  when 
odors  are  rewarded.  This  prediction  can  be  tested 
experimentally,  e.g.  by  recording  the  activity  of  PNs 
belonging  to  the  same  glomerulus  during  olfactory 
conditioning. 

The experimental  data provides us not only with data 
from one glomerulus, but from several glomeruli giving 
the  entire  activity  pattern  in  the  frontal  aspect  of  the 
antennal lobe in response to odorants. Our goal is to use 
several  model  glomeruli  in  order  to  reproduce  our 
experimental  findings  and  analyze  the  effect  of 
plasticity  in  the  antennal  lobe  on  odorant  response 
patterns.
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