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ABSTRACT
In this study we consider how probability distributions cal-
culated in probabilistic cognitive models can be represented
and processed in the brain. More exactly we show that a
photoreceptor cell can compute a simple Bayesian inference
in a binary Hidden Markov Model (HMM), based on the
underlying biochemical interactions of this single cell. We
derive, under steady-state conditions, a formal equivalence
between the probablistic model and the molecular mech-
anisms, and show that the equivalence can be extended
to the dynamic case. From the photoreceptor example we
see that biochemical interactions can represent probability
distributions and implement basic probabilistic reasoning.
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1 Introduction

Several Bayesian models have been shown to efficiently
describe perceptive and behavioural tasks [1, 2, 3,
4, 5, 6, 7]. These models account for the ability to
reason with incomplete knowledge about the external
world. However it is still unknown how the subjective
probability distributions that have to be computed in
the models could be represented and processed in the
brain. Different levels of analysis can be considered,
for instance rate coding in groups of cells [8, 9, 10] or
the individual spike event in a single cell [11]. In this
work, we will consider the possibility that molecular
interactions within a single cell can implement some
elementary probabilistic reasoning. The signals pro-
cessed by such a cell are subject to various uncertainty
sources, a process that is reinforced by the stochastic
nature of the interactions within the cell. The aim is
not to build a complete cognitive model of the world,
neither a precise description of biochemical reactions.
We rather want to show that a single cell like a pho-
toreceptor yet has the ability to approximate the cur-
rent state probability distribution of an HMM.

2 Bayesian Filter

Let us consider an agent which has a cognitive descrip-
tion of the world based on a sequence of state variable
St and an observation variable Ot with a constant time
interval ∆t between two observations.

The joint probability distribution P (S0:tO0:t) can
be simplified by the following three assumptions for an
HMM [12]:

1. Markov property of order 1, that is the con-
ditional probability distribution of the present
state depends only upon the preceding state :
P (St|S0:t−∆t)=P (St|St−∆t)

2. The distribution on the present state is indepen-
dent on anything else before, given the preceding
state: P (St|S0:t−∆tO0:t−∆t)=P (St|St−∆t) which is the
world-model.

3. The distribution on the present observation is
independent on anything else before, given the
present state: P (Ot|S0:tO0:t−∆t)=P (Ot|St)

and the final decomposition of the joint probability
distribution is

P (S0:TO0:T )=P (S0)
QT
t P (St|St−∆t)P (Ot|St) (1)

From the estimations over St given all past and
present observations made by the agent, we obtain the
prediction, ie. the probability distribution over St+∆t

by a marginalization process over the present state St

P (St+∆t|o0:t)=
P
St
P (St|o0:t)P (St+∆t|St) (2)

This prediction is the prior knowledge for the next
time step, ie. the knowledge about the future state
of the world given all past and present observations.
This “prior knowledge” is then actualised by a bayesian
inference with the new observation ot+∆t to compute
the posterior probability distribution

P (St+∆t|o0:t+∆t)∝=P (St+∆t|o0:t)P (ot+∆t|St+∆t) (3)



We will now consider the simple case where the
St are binary variables. We further suppose that the
transition matrix is time invariant, ie. the transition
probabilities are independent from the point in time:
P (St+∆t=1|St=0)=T01 and P (St+∆t=0|St=1)=T10, with the
constants T01 and T10. For a binary state, the pos-
terior distribution is completely defined by the ratio
u(t)=

P (St=1|o0:t)
P (St=0|o0:t)

. The updating rule can be reduced to

u(t+∆t)=f(t+∆t)·v(t+∆t) (4)

with the likelihood ratio f(t+∆t):=
P (ot+∆t|St+∆t=1)
P (ot+∆t|St+∆t=0)

and the prediction ratio v(t+∆t):=
T01+(1−T10)u(t)
1−T01+T10 u(t) .

3 Biochemical Mechanisms

We consider the biochemical reactions underlying pho-
totransduction in a rod photoreceptor cell as shown
in Fig.1 . A detailed description of those mecha-
nisms can be found in [13, 14, 15, 16, 17]. Upon
absorption of a photon of light by the retinal pig-
ment, the rhodopsin molecule is transformed into an
enzymatically activated state that catalyzes the ac-
tivation of the G protein transducin. Transducin, in
turn, activates the phosphodiestarase (PDE) which
then catalyses the hydrolysis of the messenger cyclic
guanosine monophosphate (cGMP) with the activity
β(t). The consequent reduction of intracellular [cGMP ]

leads to the closure of cGMP -gated ion channels in the
plasma membrane, thereby blocking the inward flux of
Ca2+. The Na2+/Ca2+,K+ exchanger continues to pump
out Ca2+, so that the intracellular Ca2+ concentration
declines during illumination. Calcium regulates the
whole molecular process through different feedback
mechanisms as for instance guanylate cyclase (GC) ac-
tivity. The complex GC·GCAP (GCAP stands for guany-
late cyclase-activating-proteins) catalyzes the produc-
tion of cGMP out of GTP . But GC·GCAP can also bind
to Ca2+ thereby inducing a conformational change in
the macromolecule GC , decreasing its enzymatical ac-
tivity and therefore the production of cGMP . This
calcium-dependent feedback speeds up the recovery.
Other adaptation mechanisms exist, which will not be
pointed out here, as for our purpose we only need to
consider a subset of all the reactions involved in pho-
totransduction. In our simplified model the concen-
trations are considered as homogeneous across the cell
compartment and the input evoked by light incidence
is the PDE activity β(t).

The GC raises the cGMP concentration with activ-
ity α(t). Simultaneously the concentration is decreased
by the hydrolysis of cGMP to GMP with activity β(t),
which yields the rate of change:

d[cGMP ]
dt =α(t)−β(t)[cGMP ] (5)

The binding of cGMP to cGMP -gated ion chan-
nels opens them, thus controlling indirectly the inflow

of Ca2+ via ionic channels with a factor η. On the
other side the Ca2+ concentration is reduced by the
Na+/Ca2+−K+-exchanger by a factor κ:

d[Ca2+]
dt =η[cGMP ]−κ[Ca2+] (6)

The Ca2+ reversibly associates with the mem-
brane macromolecule GC·GCAP . This macromolecule
GC·GCAP has a specific receptive site for the ligand
Ca2+ and the bound form GC·GCAP ·Ca2+induces a con-
formational change in the macromolecule. This inter-
action can be formally described by a reversible first-
order stoichiometric reaction:

k1

Ca2++GC·GCAP −→ GC·GCAP ·Ca2+

k2

(7)

with the on-rate k1and the off-rate k2. The rate
of change of the reaction can be described by the as-
sociated differential equation

d[GC·GCAP ·Ca2+]
dt =k1[Ca2+][GC·GCAP ]−k2[GC·GCAP ·Ca2+] (8)

with the total enzymal concentration
k3=[GC·GCAP ]+[GC·GCAP ·Ca2+].

GC·GCAP and GC·GCAP ·Ca2+ are the possible con-
formational states of the guanylate cyclase: the first
state corresponds to a highly active enzymatic activ-
ity, while the second (bounded) state corresponds to
an enzymatically less active state. This leads to differ-
ent activities g1 and g2 in catalyzing the production of
cGMP and the total enzymatical activity of guanylate
cyclase can be summarized as:

α(t)=g1[GC·GCAP ]+g2[GC·GCAP ·Ca2+] (9)

Altogether the equations in [Ca2+], [cGMP ] and
[GC·GCAP ·Ca2+] form a system of nonlinear coupled dif-
ferential equations

d[cGMP ]
dt =g1k3+(g2−g1)[GC·GCAP ·Ca2+]−β(t)[cGMP ]

d[Ca2+]
dt =η[cGMP ]−κ[Ca2+]

d[GC·GCAP ·Ca2+]
dt =k1(k3−[GC·GCAP ·Ca2+])[Ca2+]

−k2[GC·GCAP ·Ca2+]

(10)

4 Steady-state convergence of both
models

The two systems described so far have different in-
trinsic characteristics. Unlike the biochemical sys-
tem, the HMM has a discrete time representation and
can be defined by two time-varying functions (poste-
rior and likelihood ratios), whereas the biochemical
processes are characterised by three time-varying con-
centrations. The bayesian filter has only two tran-
sition probability parameters and two computational



Figure 1. Simplified description of the biochemical mechanisms in a photoreceptor cell: upon absorption of a photon of light hν the rhodopsin

molecule is enzymatically activated and activates the G protein transducin (not shown) which in turn activates the phosphodiestarase (PDE). PDE

catalyses the hydrolysis of cGMP . The consequent reduction of intracellular cGMP leads to the closure of cGMP -gated ion channels in the plasma

membrane, thereby blocking the inward flux of Ca2+. The Na2+/Ca2+,K+ exchanger continues to pump out Ca2+ so that the intracellular Ca2+

concentration declines during illumination. Calcium in turn regulates the guanylate cyclase (GC) activity: the complex GC−GCAP catalyzes the

production of cGMP out of GTP , but the binding to Ca2+ reduces its enzymatical activity and therefore the production of cGMP .

steps (prediction and updating) while the photorecep-
tor mechanisms need seven parameters and three dif-
ferential equations to be fully described. Nevertheless,
the rationale of our approach is to analyse the con-
straints under which the HMM and the biochemical
system converge to the same solution, eg. to a state
that can be set equivalent in the sense that [Ca2+]∝u(t).
We derive, under steady-state conditions, a formal
equivalence between the bayesian filter and the bio-
chemical mechanisms. Hence, we require the input to
both systems to be constant: β(t)=β in the biochemical
system and f(t)=f in the bayesian framework .

At steady-state the updating ratio rule is:

u
2
ss+uss

“
1−T01−f+fT10

T10

”
−f T01

T10
=0 (11)

On the other side, the (chemical) steady-state
condition implies that the biochemical variables [Ca2+],
[cGMP ] and [GC·GCAP ·Ca2+] are constant. Those as-
sumptions also yields a quadratic equation

[Ca2+]
2
ss+[Ca2+]ss

“
k2
k1
− η
κβ k3g2

”
− ηk3g1k2

κβk1
=0 (12)

Both variables [Ca2+] and u satisfy a quadratic
equation, we consequently make the link between the
bayesian filter and the biochemical description by set-
ting the proportionality:

[Ca2+]ss=λ·uss (13)

with the constant λ (µM), and by substituting
in eq.(12) and comparing with eq. (11) we get the
relations between the parameters of the probabilistic
model and the biochemical model

T01=
g1(λk1−k2)
λk1(g1−g2)

T10=
g1k2−λg2k1
k2(g1−g2)

f=
ηk3
βκ

(g1k2−λg2k1)
λ(λk1−k2)

(14)

Note that several combinations of biochemical pa-
rameters lead to the same value of HMM parameters at
steady-state, that is the different biochemical systems
need not to have the same evolution during transient
regimes but will converge to the same stable steady-
state solution as the HMM. In fact, the stability of
both biochemical and HMM steady-state solutions can
be demonstrated.
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Figure 2. Example of the calcium concentration and the posterior ratio computed for different inputs β(t), respectively for three
amplitudes I0. The calcium concentrations are the continuous curve, the posterior ratios are the dashed ones. (a) I(t) tends to a steady
value I0 (b) Periodically varying I(t) (c) Flash input, eg. gaussian function of duration 1 s, for various peak amplitudes I0. In all cases
[Ca2+] and u(t) have almost overlapping temporal evolutions. Parameters used were λ=1µM, k1=50·103 µM·s−1, k2=72 s−1, k3=30µM,
g1=70 s−1, g2=1.7×10−3 s−1, η=1 s−1, κ=4 s−1, ∆t=10ms.

5 Results for the dynamical systems

With the parameter equivalence (14) one can conclude
that in case of a constant input both systems converge
to the same solution (with a proportionality factor λ).
We will now consider the case of a varying input and
use biologically realistic values for the biochemical pa-
rameters. The input is defined as

β(t)=βdark+5.33×10−3I(t) (15)

with I(t) the light intensity arriving on the photore-
ceptor cell. All parameters were found in literature
or derived by fitting the data described in [13]. We
simulated the dynamical biochemical system, ie. we
calculated the solutions of the general system of dif-
ferential equations (eq.10) and compared it with the
solutions of the bayesian filter, that is we test if

[Ca2+]=λu(t) (16)

We also verified if the dynamical system approx-
imates well the steady-state solutions. The results for
three types of time-varying inputs (ie. β(t) depends on
different light intensity functions (converging input,
periodically changing input and flash input, respec-
tively for three distinct peak amplitudes) are shown in
Fig. 2 for λ=1 : (a) depicts the response for a steady
illumination, the posterior ratio u(t) and the calcium
concentration both converge to the same steady state,
with a time constant similar to the time constant of the
input, ie. the time the illumination needs to reach its
steady value. The steady-state values of the posterior
ratio u(t) and the calcium concentration are equal. (b)
The temporal response for a periodically varing func-
tion is also very similar for the posterior ratio and the
calcium concentration. (c) For a flash, ie. a gaussian
function of 1s duration and three different peak am-
plitudes. For the parameter space used the temporal
evolution are very closed and almost overlapping for a



temporal evolution of the input not being too abrupt,
that is the time constant of the input should be ap-
proximately of an order 100 greater or more than the
sampling step ∆t for light intensities ranging from 0 to
100000 photoisiomerizations s

−1
. Outside this range

of values, the transient regimes of both system can
differ. The solutions of both systems do not overlap
perfectly since the bayesian filter has a slightly faster
response than the biochemical system (cannot be ob-
served on the time scale of the graphs shown here).

Thus, the error introduced by the steady-state
approximation is negligible for the parameter space
described above and the implemention of a bayesian
filter by the calcium concentration is still valid for the
dynamic case and for time-varying inputs.

6 Discussion

We have shown, from the photoreceptor example,
how relatively simple biochemical interactions can rep-
resent probability distributions and implement sim-
ple probabilistic reasoning. We have not considered
the inactivation cascade of phototransduction (which
leads to rhodopsin inactivation) and other calcium-
dependent adaptation mechanisms, therefore we have
no feedback on the input β(t). To describe adaptation
to the external input some of the biochemical param-
eters could also be treated as variable. Moreover we
have supposed the concentrations to be homogenous
across the intracellular space. A more realistic ap-
proach would be to consider concentration gradients,
diffusion mechanisms and the cell geometry. On the
other hand, the bayesian model should be extended to
more states and conditional dependencies, or the tran-
sition matrix could be time-variant, as an adaptational
mechanism .
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