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ABSTRACT

We propose a biological cortical column model, at a meso-

scopic scale, in order to better understand and interpret

biological sources of voltage-sensitive dye imaging signal

(VSD signal). This scale corresponds to one pixel of op-

tical imaging: about 50 µm. Simulations are done with

the NEURON software and visualization with the NEURO-

CONSTRUCT software. This model confirms and quanti-

fies the fact that the VSD signal is the result of an average

from multiple components but shows surprisingly that in-

hibitory cells, spiking activity and deep layers likely partic-

ipate more to the signal than initially though.
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1 Introduction

Optical imaging entails new imaging techniques that allow

us to visualize the functioning brain at high spatial and tem-

poral resolutions. Specifically, there are two techniques;

the first is based on intrinsic signals, and the second is

based on VSDs. We consider only the latter. This tech-

nique allows to optically image electrical activity. The dye

molecules, applied at the surface of the cortex, bind to the

external surface of cell membranes and act as molecular

transducers that transform changes in membrane potential

into optical fluorescence. This optical signal is recorded

by a fast camera and displayed as dynamical maps. The

amplitudes of the VSD signals are linearly correlated with

changes in membrane potential per unit of membrane area

of the stained neuronal elements[1]. Indeed, whole cell

voltage recordings [2], show a close correlation between

individual neurons and the VSD signal. Is this linearity still

true for a population of neurons? Which factors can influ-

ence this global linearity? Since the VSD signal reflects

the summed intracellular membrane potential changes of

all the neuronal elements at a given cortical site, this signal

is then multi-component: a detailed biophysical model of

cortical column is necessary to determine the different con-

tribution of the signal. More precisely, we wish to answer

the following questions: what is the participation of the

various neuronal components to this population signal? In

particular, are excitatory and inhibitory cells participating

equally for different levels of activity? Is the ratio between

spiking and synaptic activity the same when the network is

at low, versus high levels of activity? What are the respec-

tive participation of cells from lower versus upper layers?

In this article, we first describe the proposed model of

cortical column chosen to analyze biological sources of the

optical signal, then we discuss its behavior and its applica-

tion for VSD signal computation.

2 Methods

2.1 Cortical column controversy

Since the 1950s, thanks to the work of Vernon B. Mount-

castle [3], we know that the cerebral cortex has a colum-

nar organization. In 1960s and 1970s, David H. Hubel

and Torsten Wiesel ([4], [5], [6]) followed Mountcastle’s

discoveries by showing that ocular dominance and orienta-

tions are organized in a columnar manner in cat and mon-

key visual cortex. Today, the notion of cortical column be-

comes a large controversy since the original concept (dis-

crete structure spanning the layers of the somato-sensory

cortex, which contains cells responsive to only a single

modality) is expanding, year after year, discovery after dis-

covery, to embrace a variety of different structures, prin-

ciples and names. A ’column’ now refers to cells in any

vertical cluster that share the same tuning for any given re-

ceptive field attribute (see [7] for a detailed review on the

cortical column concept). An useful concept is to propose

that each definition of cortical column depends on its type

(anatomical, functional, physico-functional) and its spatial

scale.

Thus, we introduced a new distinction of a cortical

column whose the spatial scale is about 50 µm, correspond-

ing to one pixel of optical imaging. Given this spatial scale,

the number of neurons, that has been evaluated from [8], is

about 180.



2.2 Single neurons

For each neuron, we used a compartmental description with

conductance-based Hodgkin-Huxley neuron model. Thus,

the dynamics of single cells are described by:

C
dV

dt
= Iext −

∑

i

Gi(V) (V − Vi) (1)

where i represents three types of current: leak, potassium

and sodium concuctances or respectively GL, GK and

GNa. GL is independent of V and determines the passive

properties of the cells near resting potential. The sodium

and potassium conductances are responsible of the spike

generation.

Furthermore, a slow potassium conductance (called M-

conductance ) was included in the dynamics of the exci-

tatory population to reproduce the observed adaptation of

the spike trains emitted by these neurons [9]. This feature

seems to be absent in inhibitory neurons.

At the moment, only passive dendrites are considered and

each neuron has 7-9 comparments.

2.3 Network Architecture and Synaptic In-

teractions

We chose a family of models based on a cortical microcir-

cuit, whose synaptic connections are made only between

six specific populations of neurons: two populations (ex-

citatory and inhibitory) for three main layers (2/3, 4, 5/6).

Thanks to the NEURON software (see the next paragraph)

and the ModelDB resource, we have been able to recon-

struct four types of neurons [10]: small pyramidal cells in

layer 2, spiny stellate cells in layer 4, large pyramidal cells

in layer 5 and smooth stellate cells in all layers.

More precisely, the chosen model is a model of 180 neu-

rons, 143 excitatory neurons: 50 small pyramidal (SP) in

layer 2, 45 spiny stellate (SS) in layer 4, 48 large pyramidal

(LP) in layer 5/6, and 37 inhibitory neurons of one unique

type: respectively 14, 13, 10 smooth stellate in layers 2,

4, 5/6 (SmS2, SmS4, SmS5). The number of synapses in-

volved in the projections between these different neuronal

types, including the afferent from the LGN (X/Y), were re-

calculated based on [11] for the considered layers and la-

tencies have been introduced for each connection, follow-

ing [12].

Synaptic inputs are modeled as conductance changes.

AMPA and GABA synapses are respectively converging on

dendrites and soma of our neurons.

2.4 Input and Background activity

We simulated input signals from the thalamus into the neo-

cortex layer IV by applying random spike trains to each

neuron in layer IV. We then increased the frequency of the

spike trains in order to represent stimulus contrast and see

how the model transforms an increasing input.

At this point, the column is isolated. We wanted how-

ever to reproduce conditions relative to a larger network

in order to be realistic. One approach is to simply intro-

duce ”background noise” in each neuron of the column.

Typically, noise can be introduced in the form of stochas-

tic fluctutation of a current or an ionic conductance. The

stochastic model of Destexhe and his collaborators [13],

containing two fluctuating conductances, allows us to sim-

ulate synaptic backgroung activity similar to in vivo mea-

surements.

2.5 About NEURON and NEUROCON-

STRUCT simulation environments

The NEURON software (http://neuron.duke.edu) provides

tools for constructing, exercising and managing simplified

up to realistic models of electrical and chemical signaling

in neurons and networks of neurons. It allows to create and

use models of neurons and networks of neurons by spec-

ifying anatomical and biophysical properties and by con-

trolling, displaying and analyzing models and simulation

results. The main idea of this software is that a physical

system which is often very complex can be simplified into a

conceptual model which then becomes an abstraction. This

conceptual model can then be accurately represented by a

computational model. The other main idea is the principle

of compartmentalization [14].

We also use the NEUROCONSTRUCT software

(www.neuroConstruct.org), that has been designed to sim-

plify development of complex networks of biologically re-

alistic neurons, i.e. models incorporating dendritic mor-

phologies and realistic cell membrane conductances. It is

also very useful for the visualization and results analysis.

3 Results

3.1 Model behavior

3.1.1 Single Neurons

We adjusted the intrinsic behavior of our isolated neurons

to reproduce those shown in [9] by in vivo intracellular

recordings. For each neuron, the parameters to optimize

were the channel conductances, the specific axial resis-

tance and the specific capacitance. The optimization

algorithm used was the PRAXIS (principal axis) method

described by Brent [15]. Fitting a model to a set of data

points involves minimizing the deviation of the model’s

predictions from the data points, thereby allowing us to

choose the best parameters and to validate our neurons

intrinsic behavior. Figure 1 shows examples of action

potential responses to depolarizing current injection in the

two main populations of cortical neurons of our model.

Regular spiking and fast spiking cells are known to be

respectively the great majority of excitatory and inhibitory



cells in the neocortex [16].

Figure 1. Examples of action potential responses to depolarizing

current injection in the two main classes of cortical neuron of our

model, fitted with intracellular recording from [9]. Left: regular

spiking (RS) cell. Right: fast spiking (FS) cell.

From these action potential reponses, we calculated

the relationship between injected current intensity (in nA)

and the total firing rate (in spikes per second). The slope (in

Hz/nA) of the linear regression characterizes the current-

frequency relationship of the neuron (see Figure 2), which

is one of the useful charateristics in distinguishing be-

tween different types of neurons [9], especially RS and FS

cells. This slope is considerably steeper in the FS cell (300

Hz/nA) compared with that for the RS cell (83.3 Hz/nA),

similar to those shown in [9].

Figure 2. Firing rate vs. current intensity (f-I curves) for the cells

shown in Fig. 1. Each point is the average of the mean firing rate

for 5 repetitions of a given current intensity.

3.1.2 Network

The next step in the validation of the model is to anal-

yse the behavior of an entire connected network of neu-

rons. To calibrate the network, we chose to compare con-

trast reponse function (CRF) predicted by the model with

those of V1 neurons classically obtained electrophysiolog-

ically [16]. Cortical cells adjust non-linearly their response

to an input with increasing strength, described by the con-

trast response function [17]. Nonlinearities in the CRF

(compression and saturation) allow cortical cells to adjust

the useful dynamic response to an operating range of con-

trast that can be modulated. This control is supposed to

be adjusted by a dynamic balance between excitation and

inhibition. The new parameters to adjust were the weight

values of synaptic connections. At this point, it was done

by hand, however, the next step is to adjust them by fit-

ting experimental measurements from [16], with the same

optimization algorithm previously described [15].

Figure 3 shows contrast response function of excita-

tory and inhibitory population of neurons, predicted by the

model. The two CRF curves are very similar to those ob-

tained electrophysiologically in [16].

Figure 3. Contrast response function of excitatory (RS) and in-

hibitory (FS) population of neurons. The spontaneous activity has

been plotted (black curve). Each point is the average of the mean

firing rate for 13 repetitions of a given contrast.

3.2 Computation of the VSD signal

The VSD signal is simulated using a linear integration on

the membrane surface of neuronal components. Here, the

use of compartmental model has a real interest. Indeed, the

computation of the VSD signal, for a given layer L, is given

by:

OI
L = λL

NL∑

i=0

Vi(0.5)Si (2)

where

• NL is the number of compartments in layer L

• Si is the surface of the ith compartment,

• Vi(0.5) is the membrane potential taken in the middle

of the ith compartment,



• λL represents the fluorescence’s gradient or the illu-

mination intensity of the dye in layer L.

And then, the total optical imaging signal is given by

the following formula:

OI =
∑

L∈{Layers}

OI
L (3)

Following this framework, we can simulate the

VSD signal in response to known stimuli and compare

it to experimental results [18]. We plotted the temporal

evolution of the total VSD signal in response to an input of

600 ms and for different contrasts (see Figure 4).

Figure 4. Temporal evolution of the VSD signal in response to

an input of 600 ms and for several input contrasts. Left: Model,

each curve is the average of the response for 50 repetitions of a

given contrast. Right: VSDI experiment on monkey.

We also plotted the total VSD signal (in term of rel-

ative fluorescence: ∆F

F
) in function of input contrast (see

Figure 5).
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Figure 5. Total VSD signal in function of input contrast. Left:

Model, each point is the average of the total response for 20 rep-

etitions of a given contrast. Right: VSDI experiment on monkey.

The significance of the model is then demonstrated

by comparing our results with the same curves obtained

experimentally on monkey with VSDI (see right panels in

figures 4 and 5).

However, Figure 4 shows a difference in time course be-

tween the model (left panel) and the experimental result

(right panel). Indeed, the time course observed by the

model is faster than the real one, showing that the model

needs other adjustements to be completely realistic.

3.3 Contributions of the VSD signal

Our model can predict the different contributions of the

VSD signal (see Figure 6):

• Excitation versus Inhibition: globally, excitatory cells

are responsible of 80 percent of the total OI response,

and inhibitory cells participation represents 20 percent

of the OI signal. The ratio between excitation and in-

hibition shown in Figure 7 (Left panel) is weakly de-

creasing with contrast.

• Post-Synaptic activity versus Spiking activity: glob-

ally, only 75 percent of the optical signal comes from

dendritic post-synaptic activity. The ratio between

dendritic and axonic activity shown in Figure 7 (Mid-

dle panel) is weakly decreasing with contrast.

• Upper layers versus Lower layers: the optical signal is

mostly originate from layers 2/3, but about 20 percent

of the signal in layer 2/3 is from dendrites in deep lay-

ers. The ratio between upper and lower layers shown

in Figure 7 (Right panel) is relatively constant with

contrast.
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Figure 6. VSD responses in function of contrast showing the

different contributions of the VSD signal. Up Left: Total OI re-

sponse. Up Right: Excitation and inhibition contribution. Down

Left: Somas, axons and dendrites contribution. Down Right: Lay-

ers contribution.

4 Conclusion

This model confirms and quantifies the fact that the VSD

signal mainly reflects dendritic activity of excitatory neu-

rons in superficial layers. However, the model also shows

that inhibitory cells, spiking activity and deep layers are

non-negligible and should be taken into account in the com-

putation of the optical signal.



Figure 7. Rationale of the model. Left: Ratio between excitatory

and inhibitory cells. Middle: Ratio between synaptic (dendritic)

and spiking (axonic) activity. Right: Ratio between upper and

lower layers.
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