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ABSTRACT

This paper concerns Bayesian modeling of a sensorimotor

system. We present a preliminary model of handwriting,

in which the representation of letter is abstract, and is a

pivot between motor and sensor models. We show how our

model allows to solve a variety of tasks, like letter reading,

recognizing the writer, and letter writing.
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1 Introduction

If you were asked to write down your name, you would

probably consider it a mundane task. You could surely per-

form it easily in a variety of circumstances, like thinking

about something else, looking elsewhere, etc. But what

about writing your name with your foot, in the sand or

snow, for instance? It turns out that this, too, is rather

easy. The performed trace would be somewhat distorted

from your handwriting, but, even without any training in

“footwriting”, your name would be readable.

This effect is known as motor equivalence [1]. It has

been used as an evidence that internal representations of

movements might be independent of the effector usually

used to perform them. This idea has been used both in

mathematical models of movement production and recog-

nition.

Indeed, a large class of models of movement produc-

tion defines an objective function, which is a measure of

performance for possible movements. The performance is

measured as the time integral of some cost like jerk (rate of

change of acceleration) [2], energy [3], torque change [4],

variance [5]. This class of works assume that out of all

possible solutions for producing the desired trajectory, the

central nervous system selects the one minimizing the cho-

sen measure of performance. In these approaches, when

they are applied to handwriting modeling, letters are seen

as sequences of points [6] or concatenation of strokes [7].

On the other hand, in handwriting recognition sys-

tems, letters are represented using strokes [8], downstrokes,

points... These purely sensory models are tailored for good
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Figure 1. Global structure of the model: the representation

of letters is the pivot between the motor and sensor models.

recognition rates, independently of effector models. In

other words, the used representations would not necessarily

be adequate for writing production.

However, both these types of models of handwriting

only describe one half of the problem, either the production

side, or the recognition side. If handwriting is a sensorimo-

tor process, it probably is fruitful to consider it as a whole.

Indeed, modeling frameworks have been proposed, to study

the interplay between perception and action in sensorimo-

tor processes, like the motor theories of perception [9] or

the perception for action control theory [10].

These are mostly conceptual models, and lack mathe-

matical implementations. The Bayesian or subjective prob-

abilistic formalism is, in this context, a suitable tool. It is

based on a unique mathematical framework, which is used

to model both the articulation between parts of the model,

and the parts themselves.

We therefore propose, in this paper, a preliminary

Bayesian model of handwriting, that provides both produc-

tion of letters and their recognition.

It is structured around an abstract internal representa-

tion of letters, which acts as a pivot between motor and sen-

sor models (Figure 1). Letters are represented internally by

sequences of via-points, which are distinctive points along

the trajectory. The motor model is made of two parts, re-

lated to the geometry of the considered effector (kinematic

model) and the control of this effector for general move-



Figure 2. Representation of letters with via-points.

ment production (dynamic model). Letter perception is var-

ied, because letters can be seen, but writing also produces

tactile and proprioceptive inputs. In this preliminary work,

we only include a very simplified, high-level vision model,

that extracts geometric properties of the trajectory.

A complete Bayesian model is mathematically de-

fined, that articulates these three components: abstract rep-

resentation of letters, motor model, sensor model (Sec-

tion 2). It allows to solve a variety of cognitive tasks, from

writing (with different effectors) to reading (reading com-

plete letters, reading letters as they are being traced, recog-

nizing the writer, etc). Each of these is defined mathemati-

cally by a probabilistic question to the global model, and is

solved automatically by Bayesian inference (Section 3).

2 Model

We give here the formal definition of the joint probability
distribution of the global model. It just defines the articula-
tion between sub-models. We note π the global model, and
πi each of the sub-models: π1 is the representation of let-
ters, π2 is the kinematic model, π3 is the dynamic model,
and π4 is the vision model (Figure 1).
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= P (Xvp Yvp Ẋvp Ẏvp Ip Letter W | π1)
QT

i=0
P (θi

1 θ
i
2 θ̇

i
1 θ̇

i
2 | Xi

Y
i
Ẋ
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We now describe each of these sub-models in turn,

providing the details about variables and their meanings.

2.1 π1: representation of letters

We assume that a letter is internally represented by a se-

quence of via-points, that are part of the whole X, Y tra-

jectory of the letter. We further assume that these points

are also encoded in the allocentric reference frame, as op-

posed to the articulatory reference frame: we note Xvp and

Yvp the 2D position of these via-points.

We restrict via-points to places in the trajectory where

either the X derivative (Ẋ) or the Y derivative (Ẏ ), or

both, is zero (Figure 2). When this occurs, this creates a

salient point, both from a motor perspective, as this means

Figure 3. A two-joint manipulator, the articulatory and end-

point position variables.

the movement changes direction, and from a sensory per-

spective, as this means the trajectory is at a local extremum.

For each via-point, and each letter, we encode Gaus-

sian probability distributions over its 2D position Xvp, Yvp,

and the velocity of passage at this via-point (Ẋvp, Ẏvp)
(one of which is a sharp distribution centered on 0, by def-

inition of via-points).

The π1 model is defined by the joint probability dis-
tribution:

P (Xvp Yvp Ẋvp Ẏvp I Ip Letter W | π1) (2)

= P (Xvp | I Letter W π1) P (Yvp | I Letter W π1)

P (Ẋvp | I Letter W π1) P (Ẏvp | I Letter W π1)

P (Letter | π1) P (I | Ip π1) P (Ip | π1) P (W | π1)

The I and Ip variables are used as indexes in via-point se-

quences. The term P (I | Ip π1) is used to model insertions

or deletions between the indexes perceived in a given tra-

jectory Ip and the indexes in the prototypical model I . The

variable W represents the person who writes the letter.

2.2 π2: kinematic model

The kinematic model π2 describes the geometry of the ef-

fector, and provides direct and inverse transforms between

endpoint and articulatory coordinates.

In our simulation, the human arm is represented by a

two-joint manipulator (Figure 3): θ1 represents the shoul-

der angle and θ2 represents the elbow angle. The endpoint

position is described by the cartesian coordinates X and Y .

We define the joint probability distribution π2:

P (θ1 θ2 θ̇1 θ̇2 X Y Ẋ Ẏ | π2) (3)

= P (θ1 | π2) P (θ2 | π2) P (θ̇1 | π2) P (θ̇2 | π2)

P (X | θ1 θ2 π2) P (Ẋ | θ̇1 θ̇2 θ1 θ2 π2)

P (Y | θ1 θ2 π2) P (Ẏ | θ̇1 θ̇2 θ1 θ2 π2)

The terms of the decomposition (3) describe the direct kine-

matic transform, which translates articulatory coordinates

to endpoint cartesian coordinates. We define these terms

by Dirac probability distributions. We obtain the inverse

kinematic transform, which translates the endpoint carte-

sian coordinates to articulatory angles by inverting the di-

rect kinematic model, using Bayesian inference.



2.3 π3: dynamic model

The dynamic model π3 concerns general trajectory forma-
tion for the simulated effector. It is expressed in the articu-
latory reference frame, and is defined by the following joint
probability distribution:
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Inside the product over time, the first four terms model the

computation of successive derivatives using finite differ-

ences, e.g. what are the probability distributions over ve-

locities given the positions at time t and t−1, etc. The final

term inside the product describes the generation of interme-

diary points, in the computation of trajectories between an

initial position θ0
1 θ0

2 θ̇0
1 θ̇0

2 and a given position to attain

θT
1 θT

2 θ̇T
1 θ̇T

2 . A common robotic algorithm helps define

this term. An acceleration profile is chosen, that constrains

the interpolation. In our case, we used a “bang-bang” pro-

file [11], where the arm first applies a maximum force, fol-

lowed by a maximum negative force.

Outside the product, two terms remain, which are pri-

ors over the initial and final articulatory positions, veloci-

ties and accelerations.

2.4 π4: vision model

We assume a simple vision model π4, that concerns the
extraction of via-points from trajectories, using their geo-
metric properties. It is defined by the following joint prob-
ability distribution:
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Ẋ

0:T
Ẏ
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The four first terms describe how the via-points are ex-

tracted from a trajectory. This follows from our via-point

definition: when Ẋ or Ẏ is null, then a new via-point is

found and the position and velocity profiles are encoded.

The Ip variable is the index of this newfound via-point.

3 Using the probabilistic model

We have shown how π1, π2, π3 and π4, the four com-

ponents of our global model π, are defined. Therefore

the joint probability distribution of (1) is specified and the

model is fully defined. Thanks to Bayesian inference, it can

therefore be used to automatically solve cognitive tasks.

We define a cognitive task by a probabilistic term to be

computed, which we call a question.

3.1 Reading letters

Given a trajectory (X0:T , Y 0:T , Ẋ0:T , Ẏ 0:T ), what is the
letter? We can recognize isolated handwritten characters if
we solve the following question using Bayesian inference:
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This question only involves terms from the represen-

tation of letters model π1 and the vision model π4. It can be

approximated using a two-step algorithm: the vision model

π4 is first used to draw intermediary values for the positions

and velocities of via-points, which are then used by π1 to

infer the probability distribution over letters.

This assumes a fully defined π1 model: some of

its terms have to be learned beforehand. More precisely,

P (Xvp | Letter I W π1) and P (Yvp | Letter I W π1) are

Gaussian distributions, one for each triplet 〈Letter, I,W 〉,
and which are defined by their means µ and variances σ

which are experimentally identified. They were learned in

a supervised manner: for each triplet 〈Letter, I,W 〉, the

mean and the variance of the position of via-points is com-

puted, on a learning data set of 15 examples for each letter.

The model was then tested on a 5*26 test data set:

we obtained a high correct recognition rate (89.52%). Mis-

classifications arise due to the similitude of some letters:

l’s and e’s are similar for the model, probably because the

letter size is normalized in the acquisition of data.

Adding the size information in the representation of

letters could surely increase the recognition rate, but there

is another perspective which we would like to discuss in-

stead. Indeed, with this question, we would like to repro-

duce some experimental findings, like the use of velocity

cues in handwriting recognition [12]. In this experiment,

subjects were shown to be able to predict the identity of the

forthcoming letter: they were shown l’s, and were asked

to predict whether they would be followed by an e or by

another l. It was shown that subjects, using the velocity

information during the downstroke of the “l”, had a high

prediction rate. Our model could be simulated in this task,

and we could quantify the role of velocity information on

the recognition process.

3.2 Recognizing the writer

Who is the writer of this trajectory? Given a trajectory, our
model recognizes the writer if we compute:
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˛

˛

˛

˛

π

«



Figure 4. An example of handwriting production.

The inference is similar to (6): the question only in-

volves terms from the model π1 and the model π4. How-

ever, in (6), the summation is over the variable W because

we don’t know the writer and we don’t want to know it. In

this case and for the same reasons, the summation is over

the variable Letter. The aim of this question is to recog-

nize the writer but not the letter.

The learning phase is done with 3 writers: the data set

is composed of 3*5*26 letters. The model was then tested

with 3*5*26 new letters: the rate of writer’s recognition is

equal to 70,9%. Misclassification arise due to the simili-

tude of some letters for two writers.

3.3 Writing letters

Our model allows to solve the writing task, by computing:

P (θ̈0:T
1 θ̈0:T

2 | Letter π). What are the accelerations to
apply to the arm to write a letter? We apply Bayesian in-
ference to answer the question:
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This question involves a large summation over the set

of all unknown variables, A. However, it can be approx-

imated using a three-step algorithm: the representation of

letters model π1 is first used to draw the positions and ve-

locities of via-points. Then, model π2 translates these end-

point cartesian coordinates of via-points to articulatory co-

ordinates, which are then used by π3 to determine the tra-

jectory between via-points. Obviously, the model π4 is not

involved in this question. Figure 4 shows a letter obtained

in response to the question P (θ̈0:T
1 θ̈0:T

2 | [Letter = d] π).

4 Conclusion

We have presented a preliminary Bayesian model of hand-

writing. This model describes the articulation between

each sub-models: the representation of letter is the pivot

between the motor and sensor models. We have shown pre-

liminary experimental results that highlight the production

of letters, their recognition, and the writer recognition.

Each of the sub-models leads to perspectives. For in-

stance, the vision model might be complemented by a hap-

tic input, which was shown to facilitate kids’ learning of

letters. Would our model reproduce this effect?

We could also add hierarchical layers above our letter

representation, which would encode knowledge about se-

quences of letters, in order to obtain word recognition. This

would allow to study the top-down and bottom-up mathe-

matical propagation of information implied by our model.

In our model, we have not explicitly included con-

straints to force the produced trajectories to minimize some

given smoothness measure. However, our “bang-bang” in-

terpolation algorithm minimizes distances in the joint space

of positions and velocities, under a constraint on the accel-

eration profile. How distinct are the trajectories generated

by our model and by minimization procedures (jerk, torque,

variance)? If they are not distinct, this raises interesting

theoretical discussions.

A final perspective concerns the motor equivalence

effect. In our model, “writing with the foot” can be done

by replacing the motor models π2 and π3, by those of an-

other effector, without changing π1. How does this impact

trajectory formation, and its quality? In other words, what

part of the model would encode left-handedness?

References

[1] A. Wing. Motor control: Mechanisms of motor equivalence in hand-

writing. Current Biology, 10:245–248, 2000.

[2] T. Flash and N. Hogan. The coordination of arm movements: An

experimentally confirmed mathematical model. J. of Neuroscience,

5(7):1688–1703, 1985.

[3] W.L. Nelson. Physical principles for economies of skilled move-

ments. Biological Cybernetics, 46:135 – 147, 1983.

[4] Y. Uno, M. Kawato, and R. Suzuki. Formation and control of

optimal trajectory in human multijoint arm movement - minimum

torque-change model. Biological Cybernetics, 61:89–101, 1989.

[5] C. Harris and D. Wolpert. Signal-dependent noise determines motor

planning. Nature, 394:780 – 784, 1998.

[6] P. Viviani and T. Flash. Minimum-jerk, two-thirds power law, and

isochrony: Converging approaches to movement planning. J. of Exp.

Psych.: Human Perception and Performance, 21(1):32–53, 1995.

[7] S. Edelman and T. Flash. A model of handwriting. Biological Cy-

bernetics, 57:25–36, 1987.

[8] H.-L. Teulings. Invariant handwriting features useful in cursive-

script recognition. Fundamentals in Handwriting Recognition,

pages 179–199, 1994.

[9] A. Liberman and I. Mattingly. The motor theory of speech percep-

tion revised. Cognition, 21:1–36, 1985.

[10] J.-L. Schwartz, C. Abry, L. Boë, and M. Cathiard. Phonology in
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