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ON PRACTICAL NEURAL FIELD PARAMETERS ADJUSTMENT

Frédéric Alexandre, Jéremy Fix, Axel Hutt, Nicolas Rougier, Thierry Viéville
INRIA Cortexhttp://cortex.loria.fr

ABSTRACT
Revisiting CNFT calculation maps in both the contin-

uous and discrete temporal cases, we propose a set of re-
sults allowing to choose the right set of parameters in order
to both (i) guaranty the stability of the calculation and (ii)
tune the shape of the outputs map.

With such parameters it appears that large sampling
steps can be used, speeding up overall calculation. Further-
more, we report experimenting the fact that rectification is
the only required non-linearity and formalize the use of this
simplified but efficient mechanism.

The outcome is shared as an open-source plug-in mod-
ule to be used in existing simulation software.
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1 Introduction

Using the CNFT and its extensions. The Continuum
Neural Field Theory is mainly concerned with the func-
tional modeling of neural structures where information is
considered to be encoded at the level of the population
rather than at the level of single neurons. Such models first
appeared in the 50s, but the theory really took off in the 70s
with the works of Wilson and Cowan [1] and Amari [2]. At
the level of a single neuron, the model that is used is a mean
frequency model where the electrical activity of a neuron
is approximated by a single potential. However, there also
exists several spiking neuron models that represent both a
finer and more accurate model of a real biological neuron.
In the framework of the CNFT, these models allow to by-
pass the inherent time discretization implicitly brought by
mean frequency models.

The dynamics of pattern formation in lateral-inhibition
type neural fields with global or local inhibition has been
extensively studied in a number of works where it has been
demonstrated that these kinds of fields are able to maintain
a localized packet of neuronal activity that can, for exam-
ple, represent the current state of an agent in a continuous
space or reflect some sensory input feeding the field. The
characteristic behavior of such fields is this formation of a
very localized packets of neural activity that tend to rep-
resent some consistent information which is present at the
level of the input.

These models most generally use excitatory recurrent
collateral connections between the neurons as a function of
the distance between them and global inhibition is used to
ensure the uniqueness of the bubble of activity within the
field [3]. They exhibit so-called bump patterns, which have

been observed in the prefrontal cortex and are involved in
working memory tasks [4].

However, the exact shape of these output bumps is
quite difficult to predict since it is a generally a non linear
consequence of both the lateral connectivity pattern and the
input pattern. Thus the question remains on how to control
the shape, first in a purely mechanical way (i.e. finding the
proper mathematics behind), second in a more biological
plausible way. This second step, which is beyond the scope
of this paper, requires to complete the first step, which is
going to provide some description of the space of possible
parameters.

The parameter adjustment problem. More precisely,
here, we want to study which set of lateral weights allow
to achieve a specific function, i.e. obtaining one unique
bump in the output. At a very pragmatical level, however,
the parameters of neural field are always adjusted empir-
ically (even if authors are unobtrusive about it), although
constructive results exist and should be used.

In [5], for instance, homogeneous stationary solutions
(i.e independent of the spatial variable) and bump station-
ary solutions (i.e. localized areas of high activity) in two-
dimensional neural field models composed of excitatory
and inhibitory neurons have been studied, in the continuous
case after [6, 7], providing an explicit solution in terms of
Bessel functions and Hankel transform. Basic properties of
bounded neural fields (well-posedness, stability of their so-
lutions in the homogeneous or locally homogeneous case)
have also been studied, accounting for partial or global syn-
chrony among the cortical columns composing the field
[8]. These results are based on the compactness of the re-
lated operators yielding stability results related to contract-
ing mappings.

These results however are not easy to implement in
practical codes. A caveat limits their use. In order to ob-
tain analytical results they consider formulations (usinge.g.
Heaviside non-linearity and/or unlimited precision assump-
tions) which do not correspond to numerical implementa-
tions.

The goal of this work is thus to contribute to the un-
derstanding of the effect of some important parameters on
the global behavior of a neural field and to use this knowl-
edge for its on-line control. It also provides results directly
usable at the implementation level to choose the right set
of parameters to (i) guaranty the stability of the calculation
and (ii) tune the shape of the map’s output.

The former problem is solved here in the linear and
non-linear case, while the latter is solved here only in the
linear case, solving the non-linear case being in progress.



2 Methods

The ideal linear continuous map. Let us consider a
vectorial map (see [9] for a discussion)u : Rn → Rm

(e.g., for a 2D scalar mapn = 2, m = 1) defined from:
{

τ u̇(p, t) = −u(p, t) +
∫

q
Wθ(p − q)u(q, t) + i(p)

u(p, 0) = i(p),

where u(p, t) is the positive output activity at loca-
tion p and timet and i(p) the positivestationary input.
The map is supposed large enough to neglect boundary
conditions at this stage.

This corresponds to what is usually considered for an-
alytical studies, up to some additional non-linearity.

The weightsWθ may correspond, for instance (but
not only), to a “Mexican hat” (i.e. with exponential
excitatory/inhibitory connections) profile:

Wθ(q) = A+ e
− |q2|

σ2
+ − A− e

− |q2|

σ2
− ,

thus parametrized byθ = (A+,A−, σ+, σ−).
Here, the goal is to tune the parametersθ in order to

control the map’s output.

The real synchronous non-linear discrete map. Let us
also consider the more realistic non-linear discrete scheme
in time and space, thus, now forp ∈ {0..N{n:

u(p, t + 1) = ρ (u(p, t) +

δ
(

−u(p, t) +
∑

q Wθ(p − q)u(q, t) + i(p)
))

,

providing0 < δ < 1, while a non-linearityρ(.) has been
introduced. This writes in compact matrix form:

ū(t + 1) = F (ū(t)) = ρ
(

K̄ ū(t) + δ ī
)

,
whereū is aNn vector, with theNn×Nn Toeplitz matrix:

K̄ = 1 − δ
(

1 − W̄θ

)

.
This corresponds to what is implemented in usual sim-

ulation codes.
Hereρi(uj) = 0 ∨ uj = uj ≥ 0 ? uj : 0 is a simple

“rectification”. This somehow strange and minimal choice
results from the following experimental fact.It has been
observed that (e.g. Fig.1) with “suitable” parameters(here
obtained by “chance”)all interesting properties of neural
fields (filtering, selection, dynamic input following, etc..)
[10, 3] can be obtained using rectification(instead of the
usual piece-wise linear or regular sigmoid, while not Heav-
iside profiles).

Bump as required output In this context, the desired
output profile is a bump, i.e. apositive, decreasing, radial
symmetric profile,as observed for bubble of activities in the
cortex [2, 4]. A Gaussian profile is one example of bump.
In order to capture the notion of bump at a more general
level, we propose to consider Gaussian enumerable linear
combinations, i.e.Gaussian series:

b(p) =
∑

s∈{s1,··· },s>0 b∗(s) e−s |p|2 ,

writing s = 1
2 σ2 for an enumerable set of “width”s, which

is of common use (e.g. [11]). Smalls for flat Gaussian
(s = 0 is the “constant part”), Larges for tight Gaussian.

The goal is thus to find the parameters allowing to gen-
erate bumps, controlling their width, amplitude and shape.

3 Results about the convergence

Figure 1. An example of input (left-view) output (right-view)
transformation via a synchronous non-linear discrete map with
rectification. The input is noisy (more than 20% of the sig-
nal) with three bumps. The output “filters” the noise, and
select the highest bump even if the lower bumps have more
energy (being wider). This result is obtained withθ =
(0.0015, 0.0015, 0.45 N, N), N = 100 and δ = 0.99. Fur-
thermore, with the same parameters, if the bump is moving, the
mechanism tracks the highest bump.

Let us first discuss how to control the discrete imple-
mentation convergence, in both linear and non-linear cases.

Implementation as a contracting mapping. In order to
obtain the convergence of the iterative equation toward a
fix point we simply require the related mapping to be con-
tracting, i.e.

∣

∣

∂F
∂u

∣

∣ =
∣

∣Σ′ K̄
∣

∣ < 1
whereΣ′ = diag(· · · , ρ′i, · · · ) is the diagonal matrix with
ρ′i = ρ′

(

K̄ ū(t) + δ ī
)

∈ {0, 1} whether the value is nega-
tive or positive, respectively.

This allows to write pragmatic conditions of conver-
gence, as discussed now.

This also restrains our study to convergence to a fixed
point, without taking other asymptotic dynamics into ac-
count [6].

Convergence in the linear case. Assume that all output
values are positive, i.e.ρi = 1, thus no rectification. This
occurs typically with excitatory weights only. This corre-
sponds to a pure linear transformation.

The convergence condition writes in this case:
|K̄| < 1 ⇔ |W̄θ| < 1 as soon as0 < δ < 1,

i.e. in words: the system is contracting if the magnitude of
the global weight matrix is lower than one. If higher than
one, the system diverges.

This condition is obvious to check1, using for instance
the power method, which very efficiently calculates the
highest matrix eigen-value, i.e., the magnitude of the ma-
trix in our case.

Tuning the parameters for convergence. As a rule of
thumb, we have observed that this magnitude is always
higher than the weight’s average value, and close to it for
high magnitude.

1Numerical implementations used in this paper are availableat
http://enas.gforge.inria.fr.



Furthermore, we have observed for Mexican-hat pro-
files, that convergence decreases with|A−|/A+| and in-
creases withσ−/σ+.

More than that, the calculation not only tells if the sys-
tem is contracting or not, but since the equation is linear,
allows to calculate the maximal weight magnitude which
guarantees the convergence. In other words, given a set of
parametersθ the previous algorithm tells how torescalethe
parameters in order to guaranty the convergence.

For Mexican-hat profiles, in this linear case, it simply
means dividing|A−| and |A+| by a quantity higher than
|W̄θ|.

Another key fact at this point, is thatit does not depend
on δ (as soon as lower than 1). It means that we can use
highδ and speed up the convergence. However, it does not
mean that allδ lead to the same result. It does, in the linear
case, since the closed-form solution writes:

ū = [1 − W̄θ]
−1 ī

thus withoutδ dependence. But it does not in the non-linear
case, since the fixed point is now a function ofδ as easily
readable on the master equation.

Anyway, it shows that it is not always a good idea to
make all the analysis in the continuous case and then “dis-
cretize with a smallǫ”.

Using bounded excitation in the non-linear case. The
previous result is quite informative, but rather weak, since
rectification is not taken into account.

A few algebra allows to improve this result and de-
rive the following sufficient boundary condition, in the non-
linear case:

|W̄θ ∨ 0| < 1
i.e. in words: the solution remains bounded if the magni-
tude of the positive (excitatory) weights is lower than one.
This captures the intuitive fact that the negative (inhibitory)
weights action is always bounded by the rectification, thus
only positive weights matter. An example of practical ad-
justment curve is given in Fig. 2.

Without this condition, as corroborated by numerical
experiments, the system is in usual conditions divergent.
However, it does not mean that, given arestrainedset of in-
puts, higher parameter’s values are not going to yield con-
vergence.

4 Results about the bumps

Let us now discuss how to obtain, at the implementation
level, bumps with controlled shapes. Here, only the linear
case is considered.

Gaussian series approximate bumps. Radial symmet-
ric profile means thatb(p) = β(|p|2), normalized iff
∫

p
bi(p) = 1. They are positive iffβi(r) ≥ 0 and decreas-

ing iff β′
i(r) ≤ 0. This puts our specifications in equation.

For Gaussian series:
β(r) =

∑

s b∗(s) e−s r = L(b∗)(r)
whereL stands for the Laplace transform, whileb∗ has
been extended to the continuum using a Dirac comb, while

the Post-Bryan inversion formula2 [12] allows to consider
the Laplace transform of such positive functions.

This observation means thatbumps can be approxi-
mated using Gaussian seriesfor the simple reason that
Gaussian series coefficients are nothing but the discrete
approximation of the bumpβ profile’s Laplace transform.
This representation thus benefits from all the Laplace trans-
form properties:

Bump are normalized iff
∫

s>0
b∗i (s)(π/s)n/2 = 1.

Several additional properties characterize such bumps: they
are flat at0 unless singular (i.e. |b(0)| < +∞ ⇒
|∇b(0)| = 0), vanish at infinity (limr→+∞ β(r) = 0) thus
without constant component (lims→0 b∗(s) = 0), etc..

Figure 2. An example of maximal gain curve in the non-linear
case. Givenσ+ in abscissa (in pixel unit for a100 × 100 2D
map), the normalized maximal value oflog10(|A+|) is drawn.
Here, not a Mexican hat but a step-wise constant profile has been
used, since the derivation can be performed with anyW profile.

Gaussian series yield “nice” bumps. The previous re-
sult is useful because it is very easy to shape the bump us-
ing suitable coefficients, for instance using rational profiles
of the formβ1(r) = 1/(1 + |r|n/2), n even since:
b1(s)

∗ = 1
n

∑n
i=1 e−s sin(αi

n) sin
(

s sin
(

βi
n

)

+ αi
n

)

αi
n = π

n

(

2 i + n
2 − 1

)

βi
n = π

n (1 − 2 i)
or of the formβ2(r) = 1/rn, n > 0 since:

b2(s)
∗ = sn−1/n − 1!

as illustrated in Fig. 3. Such profiles correspond to desired
bumps in neural field applications, among many other suit-
able alternatives. They come with closed-form formula and
show how malleable are such shapes.

Note that a simple change of scale allows to adjust the
width and the amplitude of the bump, the challenge here
being to adjust theshape.

Gaussian series are linear map fix points. Linear map
fixed pointsu• are defined by−u•+W∗u•+i = 0, where
∗ stands for the convolution operator. Since convolution
and linear combination of Gaussian are Gaussian,provid-
ing that the inputi and the weights profileW are Gaussian
series, the outputu• is a Gaussian series.This result is
made explicit by the following formula for the Gaussian
series coefficients:
−u•(ν) + π

∑

r>ν,s>ν, r s
r+s

=ν
W (r) u•(s)

r+s + i(ν) = 0,

2Post-Bryan result:A continuous function onR+ which is of expo-
nential order for somec (i.e. ||b(r)|/ec r |∞ < ∞) with Laplace trans-
form b∗(s) is non-negative iff∀k ≥ 0,∀s ≥ c, (−1)k b∗(k)(s) ≥ 0.



This is true for rather general weight profiles, not nec-
essarily “Mexican-hat” profile only.

In this specific case, it is possible to derive a closed-
form expansion, convergent as soon as|A±| < 1, which
is the case in practice. We obtain up to a given orderr:
u•(ν) =

P

s
i(s)

P

p,q,p+q<r
ηr(p, q)

(−1)q πp+q A
p
+

A
q
−

σ
2 p
+

σ
2 q
+

1+s (p σ2
+

+q σ2
−

)
δ

„

ν − s

1+s (p σ2
+

+q σ2
−

)

«

,

with ηr(p, q) = (p+q)!
p! q! easily derived by symbolic calcula-

tion.
Note that the previous two formulas are written in the

scalar case for the sake of simplicity, whereas it is straight-
forward to derive them in the vectorial case. It is also
straightforward to derive (using symbolic calculation) for
more general kernels.

Figure 3.Three examples of rational profiles for n = 2 (Gaussian
like, in blue) and n = 10 (square like, in green), and a singular
profile (pointed like, in red). See text for details.

Practical implementation. From the previous results it
becomes possible to design numerical routines in order to
adjust at will the bump’s shape. The previous result devel-
opment means that we do not have to adjust the profile in
the 2D space but simply in the1D radial profile, thanks
to the Gaussian series representation. This fact very likely
generalizes to non-linear profiles.

For instance, given an inputi(ν) and a desired output
b•1(ν) the following program:

minθ

∫

ν

∣

∣

∣
b•1(ν) − u•

θ,i(ν)(ν)
∣

∣

∣

Λ
allows to find the optimal weight parametric valueθ, using
e.g. the explicit formulas given previously. The choice of
the measure

∫

ν
and of the metric|.|Λ is application depen-

dent.
Another application is the input control of such calcu-

lation maps: Given parametersθ, find the inputi(ν) yield-
ing a given outputb(ν). The solution is straightforward in
the present framework, as illustrated in Fig. 4.

5 Discussion

The previous results do not “prove” the existence of such
stable bump solutions, this being already known [1, 2].
Here the goal is to allow to calculate numerically the re-
lated parameters. This modest objective is attained since
we are able to tell if a parameter set yields convergence
and what is going to be the shape of the bump.

A slight modification of the previous derivation, allows
to not only consider synchronous but asynchronous sam-
pling (see [3] for details) since the map is still contracting
when using asynchronous sampling. This has been numer-
ically experimented.

In a recent work [10] a model has been designed
that performs global competition, only using local connec-
tions, with diffusion of the inhibition throughout the net-
work. This is far quicker to have a few local interactions
when computing activity within the network and makes the
model a real candidate for distributed computations. The
next step is to adapt the present results to this paradigm.
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Figure 4. Four examples of input profiles yielding a Gaussian

outputu(p) = e−|p|2 . A: θ = (1, 1, 0.2, 1) shown in a[−5..5]2

window. B: θ = (0, 1, ., 1) shown in a[−5..5]2 window. C:
θ = (0, 0.1, ., 0.1) shown in a[−20..20]2 window. D: θ =
(1, 1, 0.02, 0.05) shown in a[−20..20]2 window. It also shows
the versatility of Gaussian series shapes.
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