
HAL Id: hal-00331570
https://hal.science/hal-00331570

Submitted on 17 Oct 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Analyzing cortical network dynamics with respect to
different connectivity assumptions

Nicole Voges, Laurent Perrinet

To cite this version:
Nicole Voges, Laurent Perrinet. Analyzing cortical network dynamics with respect to different con-
nectivity assumptions. Deuxième conférence française de Neurosciences Computationnelles, ”Neuro-
comp08”, Oct 2008, Marseille, France. �hal-00331570�

https://hal.science/hal-00331570
https://hal.archives-ouvertes.fr


ANALYZING CORTICAL NETWORK DYNAMICS WITH RESPECT TO
DIFFERENT CONNECTIVITY ASSUMPTIONS

Nicole Voges
Institut de Neurosciences Cognitives de la Méditerranée, UMR6193 CNRS - Aix-Marseille Université,
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ABSTRACT
Current studies of cortical network dynamics are usually
based on purely random wiring. Generally, these studies
are focused on a local scale, where about 10 percent of all
possible connections are realized. Neuronal connections
in the cortex, however, show a more complex spatial pat-
tern composed of local and long-range patchy connections.
Here, we ask to what extent the assumption of such geo-
metric traits influences the resulting dynamical behavior of
network models. Analyzing the characteristic measures de-
scribing spiking neuronal networks (e.g., firing rate, coeffi-
cient of variation, correlation coefficient), we ascertainand
compare the dynamical state spaces of different types of
networks. To include long-range connections, we enlarge
the spatial scale, resulting in a much sparser connectivity
than what is usually assumed. Similar to previous studies,
we can distinguish between different dynamical states (e.g.,
synchronous regular firing), depending on the external in-
put rate and the numerical relation between excitatory and
inhibitory synaptic weights. Yet, local couplings in such
sparsely connected networks seem to induce specific corre-
lations. Moreover, we find that another regularity measure
than the coefficient of variation is required.
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1 Introduction

The architecture of the complex network constituting the
primary visual cortex is presumably an essential determi-
nant of its function. Currently, most simulations of cortical
network dynamics are either based on randomly connected
networks [1,2] or, if considering a spatial dimension, they
focus on local couplings. However, neuroanatomical publi-
cations [3] demonstrate that the projections of cortical neu-
rons are much more complex than these rather simple as-
sumptions: On the one hand, at least half of all synapses of
a cortical neuron target neighboring cells, within a range of
aboutrloc = 300µm, see Fig. 1 and 2. On the other hand, a
certain number of synapses target cells located at a distance
much larger than the typical local range. In addition, there
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Figure 1. Top view representing a tracer injection in the
gray matter of a flattened cortex. Black dots indicate neu-
ron positions, and blue lines their patchy axonal ramifica-
tions. The gray area in the middle represents the stained
halo surrounding the injection site, all other gray areas rep-
resent patchy projection sites.

is more and more evidence that ’patchy’ projections (i.e.,
with spatially clustered projection targets, see Fig. 1 and2)
are not a rare exception but rather the general case. Here,
we consider a large 2D piece of cortex representing layers
2/3 of cat VI, with spatially embedded neurons and assume
distance dependent coupling rules. To include remote con-
nections, we have to enlarge the usual spatial scale of about
1 mm side length. Thus, compared to [1,2], one neuron of
our cortical network model is connected to a much smaller
fraction of all other neurons: approximately one instead of
ten percent.

The aim of this project is to investigate whether the
results of previous studies on network dynamics hold for
such spatially extended networks. As it is our focus to uti-
lize realistic models and parameters, we consider two dif-
ferent types of conductance based integrate-and-fire (iaf)
neurons, representing inhibitory (inh.) and excitatory (exc.)
cells. The questions we try to answer are, for example:
Do such realistic networks (i.e., smallc, different param-
eters for exc. and inh. neurons) also exhibit different dy-
namical states (regular vs. irregular and synchronous vs.
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Figure 2. Models of different spatial arrangements of
single cell projections: (RD) purely random connections,
(RM) local and random remote couplings, (AL) purely lo-
cal couplings, (OP) local couplings combined with overlap-
ping patches for neighboring neurons, (PB) local couplings
combined with shared patches: all neurons in a box project
into three of six possible patches.

asynchronous firing [1]) depending on the external input
rate and the numerical relation between excitatory and in-
hibitory synaptic weights? Do different connectivity pat-
terns lead to different dynamical behavior, and are there
certain aspects of these connectivities that induce specific
firing patterns?

2 Methods

We considerN = 49.163 conductance-based iaf neurons
randomly distributed in a 2D quadratic domain of extent
R = 5 mm wrapped around to a torus. The global connec-
tivity of all network models isc = k̄/N ≈ 0.015, with k̄ =
average number of outgoing synapses per neuron. Accord-
ing to [4] 78% of all neurons are excitatory (e) and 22%
are inhibitory (i) (representing layers 2/3 of cat VI), with
71.1% ee, 9.96% ei, 16.14% ie and 2.8% ii connections.
For the exc. and inh. populations we assume 60% and 73%
local synapses, respectively. The neurons’ local connectiv-
ity ranges are defined by half-Gaussians and are enlarged
if all synapses are locally established. In case of patchy
projections, each exc. or inh. neuron establishes on aver-
age three or two patches, with a radius and a mean distance
from neuron to patch defined according to [3]. Fig. 2 shows
the different network models that we plan to analyze in this
project.

Differing from [1] we use conductance-based iaf neu-
rons as in [2]. In contrast to [2] we utilize two differ-
ent types of neurons: regular spiking exc. cells and fast
spiking inh. cells, defined by the corresponding neuron
parameters, see [5]. Each exc. neuron receives exter-
nal poissonian input at a rateνext while inh. neurons re-
ceive reduced ratesνext · 0.66. The exc. synaptic weights

Figure 3. Dynamical state space analysis: Shown are the
meanFR, the meanVm (exc. population), the meanCC
(upper row), and theCV (bottom right) of RD networks
for varying g (x-axis) andνext (y-axis). In addition, the
meanFR of AL and OP networks (bottom row: left and
middle) are presented.

we are set to produce EPSPs of 0.1mV peak amplitude
while inh. synaptic weights are determined by the factor
g: wi = g · we. To describe and analyze the network dy-
namics, we calculate the mean firing rateFR, the mean
membrane potentialVm, the mean total conductance, the
correlation coefficientCC, and the coefficient of variation
CV = var(ISI)/mean(ISI)2, whereISI stands for the
Inter-Spike-Interval distribution. In case of a regular spik-
ing neuron, we expectCV = 0, andCV ≈ 1 for irregular
poissonian spiking. Varyingνext andg, we explore the dy-
namical state space of our network models.

3 Preliminary Results

To adjust and to compare our results to previous studies,
we started with the random network model. In general, our
results for the RD network agree with [1,2]: As indicated
by the simulation results in Fig. 3, large external input rates
and low inhibition lead to a highFR, a highCC, a highVm

and high conductances (not shown). We also find different
dynamical states depending onνext andg: For smallg (low
inhibition), synchronous firing dominates, while increasing
g andνext leads to more asynchronous irregular firing, see
Fig. 3 and 4.

The resulting values of the coefficient of variation,
however, do not match the spike patterns in the correspond-
ing raster plots: For example,CV = 0.53 in Fig. 4, top-
left is not appropriate because of the irregular spike times
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Figure 4. Exemplary raster plots of two network simu-
lations with RD connectivity: Green dots represent inh.
spikes, blue dots represent exc. spike timings. Bottom: The
corresponding firing rates (1 ms bins) and ISI distributions.

(CV ≈ 1 is expected). Contrary,CV = 1.66 sug-
gests irregular spiking for the rather regular spike times
in Fig. 4, top-right. The bottom row of Fig. 4 shows the
corresponding ISI distributions: on the left a typical ex-
ponential ISI distribution for an irregularly firing network
(poissonian spike times). On the right, two main ISI lengths
occur with high frequency, indicating a rather regular spik-
ing. Thus, for a bimodal ISI distribution the normalCV is
an inappropriate measure.

Concerning the network correlations, we find that lo-
cal connections enhance the occurrence of synchronously
occurring spikes, see Fig. 5. For identicalνext andg the
RM, AL and OP networks exhibit stripy raster plots, while
there are no such patterns in the RD network. Comparing
the FR values of RD, AL and OP networks in Fig. 3, it
is noticeable that the networks including local connections
exhibit a sharp transition from low to very high firing rates
while the RD networks smoothly change to a maximum of
FR = 100 Hz.

4 Conclusion & outlook

Up to now, we show only preliminary results. The dynam-
ical state space analysis (Fig. 3) has to be performed for
a broader parameter range, and for all network types pre-
sented in Fig. 2. Likewise, it is necessary to employ an-
otherCV measure to correctly describe the (ir)regularity
in our data. We are working on a so-called local version of
theCV which is based on the Kullback-Leibler divergence
of the ISI distribution. In addition, a distance dependend
version of the correlation coefficient could provide more
information about the network oscillations. Given all these
improvements, we will be able to provide a detailed com-
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Figure 5. Exemplary raster plots of four network simula-
tions with different connectivities, but for the same param-
etersg = 3.5 andνext=10 000 Hz.

parison of the dynamics of our five network models and
to define a biologically realistic, stable background state.
On top of this, a stimulus may be applied in order to ana-
lyze how the different connectivities influence the spatio-
temporal spread of activity.
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