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ABSTRACT

In this paper, we investigate how Spike-Timing De-

pendent Plasticity, when applied to a random recurrent net-

work of leaky integrate-and-fire neurons, can affect its dy-

namical regime. We show that in an autonomous network

with self-sustained activity, STDP has a regularization ef-

fect and simplifies the dynamics.

We then look at two different ways to present stimuli

to the network: potential-based input and current-based in-

put. We show that in the first case STDP can lead to either

synchronous or asynchronous periodical activity, depend-

ing on the network’s internal parameters. However, in the

latter case, synchronization can only appear when the in-

put is presented to a fraction of the neurons instead of the

whole.
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1 Introduction

The Spike-Timing Dependent Plasticity (STDP) rule comes

from biological observations showing that the conductance

of a synapse is modified according to the precise timing be-

tween the presynaptic and postsynaptic spikes [1, 2, 3]. In

most observed cases, on excitatory synapses, the synapse

is potentiated if the EPSP (Excitatory Post-Synaptic Poten-

tial) is shortly followed by the emission of an action poten-

tial at the soma, and depressed in the opposite case (when

the AP is followed by the EPSP).

The role of this plasticity rule is still conjectural. De-

pending on the network structure and activity, the effects

on the global response varies. In feedforward networks,

STDP is found to reduce the latency of a neuron’s response

to a given input [4, 5]. In the brain, however, most of the

neuron inputs come from recurrent connections. This is

why we mostly insist here on the properties of recurrent

neural networks, since they can display various dynamical

regimes, and as such various qualitative responses. Accord-

ing to [6, 7], the dynamical regimes of random recurrent

networks of spiking neurons can be classified in four cat-

egories (synchronous/asynchronous, regular/irregular), de-

pending on the initial network parameters (balance between

excitation and inhibition, gain of the cells responses...).

The degree of synchrony a neural network can display is

supposed to play a prominent role both in the local trans-

mission of sensory information [8] and in the formation of

large-scale patterns of activity [9]. The question remains

how recurrent neural networks may regulate their degree of

synchrony in order to adapt their response to various sen-

sory situations.

We suggest here that STDP may participate to such a

regulation and we address the question of STDP-induced

regime transitions. It has been shown for instance that

STDP could have a decoupling effect in a synchronized

neural network, whereas anti-STDP made the activity

switch to a synchronized regime [10]. It has also been

shown, both in simulation [11] and in biology [8] that

STDP could enhance and stabilize the synchronous trans-

mission of an already synchronized input in feed-forward

neural networks. Those contradictory results suggest to

investigate further the putative effect of STDP on the dy-

namical regimes, despite few rigorous results exist on that

matter. In order to decipher this question, we propose here

a simple simulation setup in order to test various condi-

tions in which synchronous and/or periodical regimes can

emerge in a network where the initial activity is aperiodical

and asynchronous. We then address the question of STDP-

related perception and sensory coding in recurrent neural

networks.

2 Random recurrent neural networks

framework

We simulate random and recurrent neural networks, imple-

mented with discrete leaky integrate-and-fire neurons.

Consider a set of neurons labelled by indexes i ∈
{1, ..., N}. The neuron activity {Si(s)}s<t is defined as a

sum of Diracs corresponding to the series of spikes emitted

up to the time t (see [12]). Taking into account the abso-

lute refractory period τr, the firing threshold θ, the current



Figure 1. Activity of a recurrent neural network with self-

sustained activity. σJ = 3.0 ; τr = 2 ms. Raster plot with

time on x-axis and neuron index on y-axis. A vertical black bar

appears when a neuron fires.

activity Si(t) is defined the following way:

Si(t) =

{

δ(0) if maxs∈[t−τr,t[(Si(s)) = 0 and Vi(t) ≥ θ;
0 elsewhere

(1)

where δ(0) is a Dirac impulse and Vi(t) is the neu-

ron’s membrane potential, defined according to the Leaky

Integrate-and-Fire (LIF) differential scheme:
{

Vi(t) = V in
i

(t) + V ext
i

(t)
dV in

i

dt
= −

V in

i
(t)

τm
− Si(t)V

in
i

(t) +
∑N

j=1
JijSj(t − τij) + Iext

i
(t)

(2)

where V ext
i is a superimposed potential. The transmission

delay is τij , Jij is the synaptic weight from neuron j to

neuron i, τm is the membrane time constant and Iext
i is an

external current.

Since Si is a sum of Dirac distributions, its presence

in the derivative leads to sudden steps in the membrane po-

tential. Thus, when the neuron fires, the potential is reset to

zero because of the −Si(t)V
in
i (t) term, whereas presynap-

tic spikes cause sudden increases or decreases correspond-

ing to the synaptic weight.

We set τr ∈ {1, 2, 3} ms, τm = 10 ms and θ = 1. In

the simulations, we use a simple first order integration with

resolution δt = 1 ms.

The individual weights and delays are independent

and strongly heterogeneous.

The synaptic weights are set according to a Gaussian

draw N
(

µJ

N
,

σ2

J

N

)

. We take µJ = 0 so that the excitatory

influences compensate the inhibitory ones (balanced net-

works configuration). The weights sum standard deviation

σJ represents the internal coupling. The axonal transmis-

sion delays are set according to a Poisson draw of expected

value λτ = 10 ms. The simulations take place on rather

small neural networks composed of N = 100 neurons, but

can be extended to larger sizes with the same global param-

eters.

With the range of parameters we choose, the activ-

ity of such networks is irregular (aperiodical and asyn-

chronous), as can be seen on figure 1. First, the asynchrony

of the activity directly results from the balance between the

excitatory and inhibitory influences [6]. Second, the irreg-

ularity of the activity is a well-known feature of recurrent

heterogeneous networks [13, 14].

3 Effects of STDP on the activity

Model The STDP rule is classically implemented as an

anti-symmetrical function of the pre-synaptic/post-synaptic

spike times. It can be applied either to all pairs of spikes

emitted by pre-synaptic and post-synaptic neurons (“all-

to-all” implementation) [4], or only to the “nearest neigh-

bours” (first pre-synaptic spike after the firing of post-

synaptic neuron and first post-synaptic spike after the firing

of pre-synaptic neuron) [15, 16].

Here, in order to have an “all-to-all” implementation

with a low memory cost (see also [17]), we use a local trace

of the most recent spikes εi, whose decay corresponds to

the membrane time constant : τm
dεi

dt
= −εi + Si(t). This

trace is consistent with the modelling of the PSP Jijεj(t −
τij) taking place at the j → i synapse at time t, and allows

to define a simple additive “all to all” STDP rule:

dJij(t)

dt
= α [Si(t)εj(t − τij) − εi(t)Sj(t − τij)] (3)

Here again the presence of sums of Dirac distributions

in the derivative leads the weight to change suddenly when

there is a pre-synaptic or post-synaptic spike. The left term

corresponds to the potentiation effect of the PSP preced-

ing the post-synaptic spike, and the right term corresponds

to the depression effect of the post-synaptic spike mem-

ory εi(t) when a pre-synaptic spike hits the synapse. The

synapse is thus potentiated when the PSP arrives shortly

before the neuron spike (εj is high when the neuron fires at

t) and depressed in the opposite case. The rule is globally

balanced as the expectation of the two terms is the same if

the mean levels of activities do not vary in time. The rule

only amplifies the transitions (or fluctuations) taking place

in the activity, when a burst of activity takes place either at

the pre-synaptic or at the post-synaptic levels. In a recur-

rent neural network, the global effect of the rule is not easy

to anticipate.

Some trends can however be drawn. For instance,

starting from an irregular regime, the STDP rule tends to

produce more regularity and homogeneity, as measured

thereafter.

Regularization In order to characterize the regularity of

the self-sustained activity, we use an estimation of the ef-

fective number of Degrees of Freedom (#DOF) based on a

Principal Components Analysis [18, 19], see figure 2.

Our data set is composed of the membrane poten-

tials of all the neurons over sliding windows of 100 ms.

A Principal Components Analysis is first applied to the

data set, followed by a calculation of the entropy of the
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Figure 2. -A- Estimated number of degrees of freedom during

the first 5 seconds of simulation (σJ = 3.0 , τr = 2 ms). -B-

Evolution of #DOF when STDP is applied after 5 s of simulation

with a learning coefficient α = 0.1.

Figure 3. Evolution of the average firing rate when STDP is

applied for different values of internal coupling. τr = 2 ms.

normalised principal values pi of the transformation ma-

trix: S = −ΣN
i=1piln(pi). This value is considered as an

approximate log count of significant principal components

weighted by their respective size, so that #DOF = eS

is an approximation of the effective number of degrees of

freedom.

When Spike-Timing Dependent Plasticity is applied

to a balanced random recurrent neural network with spon-

taneous, self-sustained activity, the number of degrees of

freedom rapidly decreases (see figure 2B). This corre-

sponds to a strong simplification of the activity, meaning

that every neuron displays a closely similar response.

Homeostatic effect We now test the effect of STDP on

several networks with spontaneous activity and various in-

ternal connection strengths (σJ ).

The effect of STDP on the average firing rate of the

network depends on the internal weights (figure 3). Indeed,

it seems that STDP has an homeostatic effect: networks

with strong connections start with a high activity which is

reduced by STDP, whereas networks with weak connec-

tions and low activity undergo an increase in their mean

firing rate.

4 Networks under external stimulation

The most prominent effect of STDP on recurrent neural

networks is the raise of periodicity in the activity. This

periodicity can take several forms, from a purely synchro-

nized regime to asynchronous periodic regime. The final

outcome of the STDP application depends on the initial pa-

rameters, on the level activity, but also on the way external

stimulations are sent to the network.

The inputs we send to the network are distributed

among every neuron. We define a static stimulus P as a

random vector of size N and whose values are randomly

set according to a gaussian draw N (0, σ2
I ).

We actually define two different ways to send a stim-

ulus to a network: the inputs are either directly added to the

neuron potential (potential-based presentation):

V ext
i (t) = Pi and Iext

i (t) = 0 (4)

or to the current (current-based presentation):

V ext
i (t) = 0 and Iext

i (t) = Pi (5)

We use σI = 1 for potential-based input and σI = 0.2
for current-based input (the current input needs to be lower

since it is integrated at each step).

Potential-based inputs First, we examine the case of

potential-based inputs. We find that, in this case, while the

initial activity is still irregular (upper part of the figure 4),

the application of STDP with a strong enough learning co-

efficient always leads to a regularisation of the network’s

activity toward a periodical regime. Two final outcomes

can however be observed: either a synchronization of the

neurons, where they all fire in a short window of time and

remain silent afterward until the next burst of activity (see

figure 4A), or a quasi-periodical “synfire” asynchronous

firing (see figure 4B).

The refractory period and the internal coupling

strength seem to play an important role into the triggering

of a synchronous regime or not, as can be observed in the

figure 5.

High internal coupling leads to asynchrony, while in-

creasing the refractory period enhances synchronization

(synchronization could not be obtained with a refractory

period of τr = 1 ms).

Current-based inputs With a gaussian current-based in-

put presentation, we never observe the apparition of syn-

chrony; the activity is “only” periodical (figure 6A).

However, if we use binary inputs, exciting only 20%

of the neurons so they fire at their maximal frequency, some

form of synchrony can be observed (figure 6B) between the

excited neurons. The neurons which are not excited also

fire in synchrony but in antiphase with the excited neurons,

even if there are a few exceptions of neurons firing in phase

with the “wrong” group.
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Figure 4. Examples of activity, before and after STDP. A black

bar is plotted when a neuron fires at a given time. Neurons are

ordered by their input levels: the first neurons have the highest

input and the last ones have the lowest ones. Upper figures rep-

resent activities before STDP, and the lower figures after STDP.

-A- Asynchronous aperiodical activity before applying STDP and

synchronous periodical answer after STDP. σJ = 2.0 ; τr = 3

ms. -B- Irregular activity before STDP and asynchronous period-

ical activity after. σJ = 5.0 ; τr = 3 ms.

Figure 5. Synchronous outcome depends on the parameters.

Here, the resulting regime is a function of the internal connec-

tion strength and of the refractory period. This figure is based on

observation for 20 different networks.

↓ ↓
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Figure 6. -A- Activity before and after applying STDP to a net-

work with current-based input. σJ = 2.0 ; τr = 3 ms. -B-

Activity before and after applying STDP to a network where the

current-based input only stimulates 20% of the neurons (the bot-

tom ones). σJ = 2.0 ; τr = 3 ms.

Whereas there is synchronisation, we must empha-

size that the emergence of two distinct groups in antiphase

is very different from the synchrony resulting from STDP

with potential-based inputs. Moreover, the initial period is

very different: around 20 ms for current-based input, ver-

sus around 60 ms for potential-based.

5 Discussion

We showed that our implementation of Spike-Timing De-

pendent Plasticity makes possible the transition from a dy-

namical regime to another one, which is more ordered and

periodical. Moreover, whether the resulting answer is syn-

chronized or not seems to depend both on the network’s

parameters (refractory period and weights standard devia-

tion) and on the input presentation type.

The results obtained on the current-based inputs in-

dicate that a form of synchronization appears more easily

if the neurons are explicitely divided in several categories

(excited neurons / non-excited neurons). The potential-

based input presentation naturally creates such categories,

even with gaussian distribution of the input strength, since

neurons receiving enough stimulation on their potential

(i.e., more than the firing threshold) tonically fire at their

maximum rate as long as they do not receive inhibition;

however this distinction between tonic and phasic neurons

could be less effective when the internal coupling is strong

(see 4B versus 4A).

This aim of this study is to give an insight in the com-



plex interactions between the self-sustained activity and the

synaptic adaptation. Despite the strong heterogeneity in

synaptic weights and delays, a regular response is rapidly

obtained in various conditions, but not every response is

interesting in terms of sensory encoding. To our mind,

the most interesting outcome is a selective synchronous

regime, i. e. a fine tuning of the synchrony as a function

of the “relevance” of the input (see also [20]). The con-

ditions under which a selective synchronous response can

be obtained in a balanced neural network (not too strong

internal coupling, contrasted inputs, strong cell refractori-

ness) need more investigation. We need to estimate more

precisely which of those conditions really matter, and then

propose more realistic schemes of sensory encoding in re-

current neural networks, in order to compare with biologi-

cal sensory systems.
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