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ABSTRACT
Lateral inhibition has been found in many brain areas re-
lated to processing of sensory information. We examine the
functional properties of a specific type of such inhibitory
connectivity. Our analysis is grounded on a generative
model (GM) describing the statistical relation between ob-
jects in the world (also called hidden states) and the neu-
ral response they evoke. For a set of assumptions regard-
ing how information is processed in single cells and the
assumptions contained in the generative model, we show
that divisive inhibition enables a network to approximate
optimal inference. We test the goodness of this approxima-
tion via numerical simulations. In these, we compare how
well a sequence of hidden states can be reconstructed from
the network activity. We show how this inference about
the states can be formulated in the terminology of Hidden
Markov Models (HMMs). This allows us to compare the
networks performance to solutions obtained from standard
HMM inference algorithms. We find divisive inhibition to
clearly improve network performance and the resulting es-
timates being close to optimal. We discuss the results and
mention further properties and extensions of our approach.
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1 Introduction

Perceptual systems enable an organism to respond quickly
and reliably in a changing environment. To this end, the
underlying neural hardware processes signals in a way that
can be interpreted as a kind of inference: it is trying to find
out from noisy data what is going on in the outer world.
Information from multiple channels (e.g. inputs from mul-
tiple afferents) has to be combined and signaled in an effi-
cient way. For example, neurons early in the visual stream
receive spike trains coming from other neurons and this
type of input data is noisy and only stochastically related
to what caused them (e.g. visual patterns presented to the
eyes). To get a systematic understanding of how this infor-
mation is processed an passed on, it is helpful to specify the
statistical relationships between causes and resulting input
patterns. This is concisely done in termini ofgenerative
models(GM) [1, 2]. Having specified the relationships in

the incoming data, one can ask how neural structures make
use of them to perform the inference task. Because most
signals reaching a cell could stem from multiple different
configurations of causes, it is a central part of this infer-
ence task to separate different sources and to infer the most
probable configuration.

The motivation for our work is that many studies char-
acterizing the response of cells in the visual cortex found
lateral connectivity resembling divisive inhibition (fora re-
view see [3]). Together with modeling studies [4, 5, 6, 7, 8],
this has provided insights into the functional role of the
type of normalization induced by divisive inhibition. To
our knowledge, however, a model for including inhibition
in the case of online inference is lacking up to now. We
therefore introduce a GM and a network performing online
inference on the inputs from this model. We show that for
the connections between the units in the network, this dic-
tates a specific type of divisive inhibition. We then illustrate
how one can compare this model to optimal inference with
a HMM for the same setting. We present results from nu-
merical simulations to assess the goodness of the approx-
imation. We find that inhibition clearly improves perfor-
mance close to optimal and we discuss the implications of
our findings.

2 The generative model

We describe the statistical relationships between stimulus
information in the environment (e.g. light impinging on the
retina, acoustic stimulation of the ear, concentrations of
molecules effecting the olfactory system) and their causes
in a GM. Especially in the visual domain, objects may over-
lap in space and occlude each other. We model the conse-
quences of this fact with a “noisy OR” relation as specified
below in equation (1).

In this scenario, a set{Hj(t)}j , j ∈ 1, ..., N of time
dependent variables codes for the absence or presence of
the corresponding hidden causes over time. If causej is
present at timet, we writehj(t) = 1 andhj(t) = 0 else.

As an organism does not have direct access to these
causes, we model them via their influence on a set of
M sensory channels{Si(t)}i, i ∈ 1, ...,M with si(t) ∈
{0, 1}.

The task of a sensory system can be thought to infer
the probabilitiesp(ht

j |S
0→t) := p(Hj(t) = hj(t)|S1(0 →

t) = s1, S2(0 → t) = s2, ..., SM (0 → t) = sm) of the



causes being present at timet given the history of inputs
from all sensory channelssi := si(0 → t).

To simplify the analysis, we assume that the system
has learnt all the relevant statistics needed for this task (see
[9] for how this can be done). These are the temporal dy-
namics of the hidden causes specified via the probabilities
p(ht

j |h
t−∆t
j ) for causej to switch from one state to the

other (i.e.0 → 1 or 1 → 0) and theemission probabilities
p(st

i = 1|ht
j) to receive an input in channeli corresponding

to objectj being present.
The “Noisy-OR” generative model now specifies the

probability of observing no event in channeli as the prob-
ability of none of the present causeshj (nor a background
causeh0) having caused it:

p(st
i = 0|ht) = (1 − p0)

∏

j

(1 − ht
j pij) (1)

wherepij are the probabilities that objectj causes an ob-
servation in pixeli. Furthermore,h0 models the effect of
background noise and other constant factors (i.e. we as-
sumeh0(t) = 1 for all t).

This scenario translates nicely to the setting with con-
tinuous time in which the different input sourcesSi can
be described as switching Poisson processes with emis-
sion ratesλi(t) which are determined by the configuration
h := h(t) := [h1(t), h2(t), ..., hN (t)] of the hidden vari-
ables at timet. We now use the fact that for a Poisson
process with rateλ the probability of observing one event
in a short time interval∆t is approximately∆tλ. There-
fore p0 ≈ ∆tλ0(t) andp(st

i = 1|ht) ≈ ∆tλi(t). Because
we assume that the observations in channeli due to the
presence of hidden causej are given aspij ≈ ∆tqij and
p0 ≈ ∆tq0, this yields

p(st
i = 1|ht) ≈ 1 − (1 − ∆tq0)

∏

j

(1 − ht
j ∆tqij) (2)

which can be written as

p(st
i = 1|ht) ≈ ∆t



q0 +
∑

j

ht
jqij



 + O(∆t2). (3)

This specifies the relation between the variablesst
i which

are observable by the system and the parametersqij de-
scribing the hidden causes.

2.1 Online inference for a single cause

Thanks to the probabilistic description in equation (3), it
is possible to describe what the system can infer about the
hidden state configurationsht given the noisy observations
S

0→t. We use the log posterior probability ratioLt
j to de-

scribe the process of inference for hidden causej:

Lt
j := log

p(ht
j = 1|S0→t)

p(ht
j = 0|S0→t)

. (4)

The temporal dynamicṡLj := dLt
j/dt for this variable de-

scribing optimal online inference were derived in [10]. Let
us assume a single causeHj with switching ratesron and
roff whereron is defined as the limit ofp(ht

j = 1|ht−∆t
j =

0)/∆t for ∆t → 0 and analogously forroff . Furthermore,
assume that the presence or absence of the cause deter-
mines the emission ratesλon

i andλoff
i of a set of Poisson

channelsSi that are conditionally independent given the
state of the hidden cause. This means that the probability
of observing an event in the different channels is fully de-
scribed by the hidden state at a given point in time. Under
these assumptions, the dynamics ofL read:

L̇j = Φ(Lt
j) +

∑

i

wiδ(s
t
i − 1) − Θ (5)

with wi := log(λon
i /λoff

i ) andΘ :=
∑

i(λ
on
i − λoff

i ). δ(·)
is Dirac’s delta function and the functionΦ

Φ(Lt
j) := ron(1 + e−Lt

j ) − roff(1 + eLt
j ) (6)

describes the underlying birth-death process of the hidden
cause, i.e. how quickly it changes its state.

2.2 Divisive inhibition for multiple causes

In a more realistic setting, observable events in a channel
Si could stem from different hidden causesHj . This situ-
ation in which thecausal fieldsof different hidden causes
overlap is illustrated in figure 1. In this case, approximate

...

...

Hj

SM

HN

Si

Figure 1. Generative Model for the scenario of multiple ob-
jectsHj being capable of causing sensory data in different
channelsSi

inference can be implemented in a kind of mean field ap-
proach using the fact thatpt

j := 1/(1+e−Lj ) and replacing
the binaryhj by these probabilities. Using equation (3) one
arrives at an approximate version of inference that accounts
for the influence of neighboring hidden causes. The proba-
bilities p(st

i = 1|ht) for observing an event in the absence
vs. presence of causej (and possibly other causes) are now
approximately given as

∆t(q0 +
∑

k 6=j

pkqik) and ∆t(q0 + qij +
∑

k 6=j

pkqik) (7)

With the abbreviationAij := q0 +
∑

k 6=j pkqik referring to
the influence of causes other thanHj , the probabilities of



observing NO event in absence vs. presence of causej are
respectively

1 − ∆tAij and 1 − ∆t(qij + Aij). (8)

This provides all the information necessary for the infer-
ence algorithm and in analogy to eq. (5) yields the time-
discrete version

Lt+∆t
j ≈ Lt

j +∆tΦ(Lt
j)+

∑

i

wijs
t
i +

∑

i

bij(1−st
i) (9)

with bij := log
(

1−∆t(qij+Aij)
1−∆tAij

)

and the weights

wij := log

(

qij + Aij

Aij

)

. (10)

Analogous to the single cell case, taking the limit of∆t →
0 gives the continuous equation

L̇t
j = Φ(Lj) +

∑

i

wijδ(s
t
i − 1) −

∑

i

qij . (11)

This realizes a specific type ofdivisive inhibition. For illus-
tration assumeqij << q0. If we define the input weights
Wij as

Wij = log

(

q0 + qij

q0

)

≈
qij

q0
(12)

equation 11 becomes

L̇t
j ≈ Φ(Lj) +

∑

i

Wij

1 +
∑

k 6=j Wikpt
k

δ(st
i − 1) −

∑

i

qij .

(13)
In this type of divisive inhibition, the impact of an input
depends on both its relation to the cause (via the weight
Wij) and how well other competing hypotheses can ex-
plain the incoming evidence (described by

∑

k 6=j Wikpt
k).

Although equation (13) provides an intuitive understanding
of the type of inhibition, it involves the additional approx-
imation in equation (12). For the simulation we therefore
use equation (9) with the weights defined in (10).

3 Numerical Evaluation

This model is easy to implement and can perform online
inference in the scenario described earlier: input from mul-
tiple sensory channels is fed into a network of laterally cou-
pled units. These inputs are spike trains and the network
processes them according to equation (9). To assess the
goodness of the approximations involved, we need to de-
termine how well this task can be performed in principle.
As both the dynamics of the hidden variables and the emis-
sion probabilities are known, this question can be answered
using standard inference algorithms for HMMs.

3.1 Relation to optimal inference in Hidden
Markov Models

We describe the relation between our scenario and HMMs
for discrete time. A HMM is characterized via the set of
statesC of its hidden process and their prior distributionπi,
the transition probabilitiesTij := p(ct = j|ct−1 = i) with
i, j ∈ C, the set of possible observationsS, and the proba-
bilities p(st = k|ct = i) with i ∈ C andk ∈ S. They give
the probabilities of switching from one state to another and
how probable it is to make an observation, given the hidden
process is in a specific state at that time. As described in
[11], there exist methods to estimate the hidden states given
a sequence of observations and to learn the underlying pa-
rameters from such data. In particular, given an observed
sequence of datas up to timet, one can compute thefor-
ward probabilitiesp(ct = i|s) that the hidden process is in
statei at time t. Furthermore, the so-called Viterbi algo-
rithm allows to efficiently determine themost likely path,
i.e. the state sequence for which the joint probability of the
observed data and estimated path is maximal.

The scenario described in section 2, i.e. several sen-
sory channelsSi(t) influenced by multiple possible causes
Hi(t) evolving over time, can be transformed into this set-
ting: we assign a configurationci to each of the2N pos-
sible hidden states~Hi := [h1(t), h2(t), ..., hN (t)] and, in
the same way, each of the possible2M observable patterns
~Si := [s1(t), s2(t), ..., sM (t)] is referenced by an index
si. The corresponding transition and emission probabili-
ties specifying the corresponding HMM are therefore fully
determined by the generative model given in section 2.

3.2 Performance of divisive Inhibition

We can now assess, how well the network with divisive in-
hibition performs compared to a “naive” network without
such competitive interaction and evaluate both networks
with respect to what would be the optimal solution. To
this end, we specify a generative model and sample se-
quences of hidden states and corresponding observations.
We then compare, how well the divisive inhibition network
reconstructs the hidden sequences and compare its perfor-
mance with the results from the Viterbi algorithm and the
forward probabilities. These latter two correspond to “op-
timal guesses”. But whereas the Viterbi solution takes into
account all information, the forward algorithm uses only
information up to timet.

We evaluated the reconstruction goodness for differ-
ent parameters of the generative model. We sampledron

and roff uniformly from the interval(0.01, 0.05). The
qij were either specified to be strongly overlapping circu-
lar Gaussians evenly covering(0, 2π) under the constraint
qmin < qij < qmax with qmin sampled from(0.1, 0.3) and
qmax from (1.5, 2.0). We also tested the system with “ran-
dom” causal fields, i.e. theqij being sampled uniformly.
The results for these two cases are very similar and we de-
scribe the results from 50 simulations withM = 7, N = 5
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Figure 2. Goodness of reconstruction based on the for-
ward probabilities (“forward”) vs. other models. The dif-
ferent models are “marginal” – marginal probabilities of the
corresponding hidden cause being present computed from
the forward probabilities, “approx”– the divisive inhibition
network, “naive” – network based on equation (5) without
divisive inhibition.

for T = 1500, dt = 0.05 with circular Gaussianqij .

To quantify our results, we use the Hamming distance
between estimated state sequencesĥ and the true sequence
h, that is:D(ĥ) :=

∑

j,t |hj(t) − ĥj(t)|/NT where a se-
quenceh := {hj(t)}j=1,...N ;t=1,...,T corresponds to the
(estimated) states of all causes for all times. This dis-
tance measures the reconstruction goodness as it gives the
mean probability that the system gets stateHi(t) wrong.
As our model (9) provides an estimate of the current pos-
terior probabilities, it also allows for a comparison with
measures accounting for the certainty of the state estimate
(e.g. Kullback-Leibler divergence). This, however, does
not hold for the Viterbi algorithm which focuses on the
whole sequence rather than the posterior probabilities at in-
dividual times. As a first principled comparison we there-
fore stick with the Hamming distance as a simple measure
of reconstruction goodness.

Figure 2 showsD(hmodel) for the different models
plotted againstD(hforward), the reconstruction based on
the forward probabilities.D(hforward) provides a measure
of how difficult the current sequence was: it represents how
much information can be read off from data up to this point.
If a model makes fewer errors, the corresponding points lie
below the main diagonal.

Overall, the Viterbi algorithm performs best. This is
expected as it uses information from the whole sequence to
estimate the state at timet. The model named “marginal”
results from projecting the forward probabilities from the
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Figure 3. (a) Comparison of divisive inhibition (approx)
with the naive network. (b) Difference between forward
model and the other estimates.

2N states to theN marginals and deciding for each state
whether it is present or absent. Its predictions are very sim-
ilar to the the most probable configurations (hforward). In
comparison with the other algorithms, the divisive inhibi-
tion network (happrox) performs significantly better than
the naive network (hnaive) which does not account for over-
lapping causal fields. Although not optimal, its perfor-
mance is comparable to the predictions derived from the
forward probabilities. Figure 3(a) accentuates the compari-
son between the two network models by plottingD(hnaive)
againstD(happrox). One can see that the naive network
performs worse most of the time. Figure 3 further illus-
trates the performance of the different models. The box-
plots show the distributions for the difference between the
forward and the other models, i.e. how much worse the
models are than the forward model.

4 Conclusion

We introduced a generative model accounting for the char-
acteristic statistics found in natural environments. It rep-
resents the “noisy OR” relation describing ambiguous sit-
uations in which observations could stem from different
causes. Based on this relation, we derived a specific type
of divisive inhibition for neural networks to approximate
optimal inference. We tested its performance in numeri-
cal simulations and our results make 2 points: (a) the pro-
posed connectivity enables a good approximation of op-
timal online inference from spike trains. In this respect,
the model provides a functional interpretation of lateral in-
hibition. Furthermore, it provides (b) an efficient way to
perform online inference in the described setting.

Our study extends previous work on inference with
single units [10] and the principle of output decorrelation
[4] to the case of online processing with multiple units.
This is necessary to deal with signal ensembles capturing
the central statistical characteristics of realistic perceptual
environments. In comparison to other approaches based on



generative models like ICA [6] or Maximal Causes Analy-
sis [12], it differs in its focus on inference in dynamic en-
vironments.

While the current contribution deals only with infer-
ence, the model naturally incorporates an efficient mech-
anism to signal the online estimate with output spikes
[10, 13]. In this way, the model accounts for further central
properties of receptive field measurements like contrast de-
pendent sharpening. Similar to [8], our approach anchors
the model in the stimulus statistics but furthermore explains
aspects of spike generation and temporal processing.
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sion with spiking Bayesian neurons.New Journal of
Physics, 10:article id: 055019, 2008.


