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ABSTRACT

Transparent motion is perceived when multiple motions are
presented in the same part of visual space which moves
in different directions. Several psychophysical as well as
physiological experiments have studied the conditions un-
der which motion transparency occurs. Few model mecha-
nisms have been proposed to segregate multiple motions.
We present a novel neural model which investigates the
necessary mechanisms underlying initial motion detection
the required representations for velocity coding, andihe i
tegration and segregation of motion stimuli. The model ex-
tends a previously developed architecture for dorsal path-
way computations, particularly, in cortical areas V1, MT,
and MST, emphasizing the role of feedforward cascade
processing and feedback from higher to earlier stages for
selective feature enhancement and tuning. Our results
demonstrate that the model reproduces several psychophys-
ical findings using random dot stimuli. Moreover, the
model is able to process transparent motion in real-world
sequences of 3D scenes.

KEY WORDS
transparent motion, neural model, motion integrationaare
MT, area MST, feedback.

1 Introduction

Displays of overlaid movement patterns moving in differ-
ent directions are perceived as transparent motion under
certain conditions. In psychophysical experiments random
dot and plaid stimuli have been utilized to investigate the
ability of humans to segregate such motions. Physiological
experiments help to reveal the underlying neuronal mech-
anisms leading to perceptual representations of transpare
motion in primates. Critical stimulus parameters studied
were the influence of paired versus unpaired moving dots,
the impact of noise, the display conditions of multiple co-
herent motions and coherent vs random motions (in over-
lays or separate sectors), and the difference angle between
different overlaid motions [20, 4, 6]. In [12, 4] the acuity
to discriminate between dots moving in opposite directions
which are located in stripes of varying width have been in-
vestigated. Categorical differences were observed sath th
transparent motion is perceived for small stripes while for
wide stripes coherent motion alternating in opposite direc
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Figure 1. Model overview showing the cascade of different
model areas involved and their interaction.

tions is perceived. Attention deployed to certain motion di
rections can improve human performance in segregating up
to 6-8 simultaneously presented transparent motion direc-
tions in comparison to 2-3 directions in unattended stimuli
[8]. Such an improvement has been attributed to a selective
tuning mechanism that improves selectivity of visual pro-
cessing [19]. The discrimination of motion directions in
regular displays has been investigated demonstrating that
motion directions which differ less than 10 deg are per-
ceived in a compromise direction [21].

Here, we propose a novel neural model of motion de-
tection and integration that builds upon previous work re-
ported in [2]. The recurrent interaction between model ar-
eas, namely V1, MT and MST in the dorsal pathway, and
the feature representations at the different stages ags-nv
tigated. As a main contribution, in order to enable the per-
ception of transparent motion, it is proposed how multi-
ple velocities in a log-polar sampled speed-direction epac
can be represented at individual spatial locations and how
the neural interactions are defined. Other computational
approaches, including computer vision algorithms, attemp
to optimize representations with respect to single veloci-
ties and investigate the necessary conditions in represent
ing multiple motions corresponding with transparent lay-
ers [20, 7, 23]. Here, we suggest local competitive center-
surround interaction between responses in velocity space
that leads to mutual competition or coexistence of multiple
motion representatives depending on their separatiortin ve
locity space. Unlike other modeling attempts such as, e.g.,
[13] or [24] we propose a scheme that allows to process
motion of both opaque surfaces as well as to detect and in-
tegrate transparent motion patterns in a unified architectu
Also, the model successfully deals with artificial as well as
with real image sequences.



2 Neural Computational M echanisms

The model architecture for motion processing is composed
of three hierarchically organized areas allocated aloeg th
dorsal pathway, namely V1, MT, and MST. The areas are
linked bidirectionally to build a recurrent scheme of feed-
forward (FF) / feedback (FB) interaction (see Fig.1). hditi
motion detection is achieved by extended Reichardt detec-
tors [17] whereas Gabor filter responses are used for spatio-
temporal correlation. Each model area is described by a
hierarchical three-level cascade of processing stages. Th
first stage(eq. 2) consists of an initial (linear or non-linear)
filtering stage and subsequent velocity blurring which gead
to an activity integration and suppression of small activa-
tions. At thesecond stag@a modulatory coupling of FB
signals enhances driving input activations (eq. 3). This
mechanism ensures that FB signals from stages at higher
processing levels cannot generate any activation in lower
levels without coexisting non-zero bottom-up activation.
The spatial spread of FB connections is formally described
by a Gaussian kernél”Z. In the present model simula-
tions we set\/'B = § for computational reasons. Tktgrd
stagerealizes an activity normalization achieved by a stage
of center-surround shunting inhibition (eq. 4). Model MT
integration cells were proposed to generate local velocity
space representations which are subsequently processed by
large-field integration cells (at MSTd) and contrast cedlls (
MSTI) which, in turn, may enhance compatible input ac-
tivities via FB. Model MST cells were used only in one
experiment in order to investigate the global segregation o
transparent motion configuratioh# top-down signal has
been incorporated that enters into model stage MT. This is
intended to investigate the influence of attention when it is
deployed to a pre-selected motion feature (compare Fig.1).

In this model architecture the stage of shunting center-
surround competition is organized to allow multiple acti-
vations in velocity space at individual spatial locations i
model MT. The topography of the velocity space represen-
tation samples speed and direction features in a log-polar
fashion [15]. Activities in velocity space are further pro-
cessed by center-surround mechanisms using filter kernels
AT andA~. Here, we utilize Gaussian kernels for the in-
teraction of activities which vote for velocities. Through
this competition the activation corresponding to the cente
filter kernel is enhanced, while others are suppressed.

Neural activation is denoted in formal terms by utiliz-
ing single compartment cell models with gradual activation
dynamics [10]. The cell activity is described by the mem-
brane potential subject to changes given external excjtato
and inhibitory synaptic input. This leads to the dynamics
denoted by the following membrane equation (assuming
zero resting level)

Ci = —-Azx—[x—E{]- Iy —[z—E_]-1_,(1)

IModel area MST is supplied to investigate global integrati® mul-
tiple velocities present at individual spatial locatioriBhe computation
has been simplified such that MT only feeds MST pattern mat@iis via
FF signal integration.

wherex denotes the activation as a functiontpf _ de-

note time dependent conductances corresponding to the ex-
itatory and inhibitory input, respectively;, _ denote re-
versal potentials, and' is the capacity of the membrane
[11]. The three-level cascade which describes the compu-
tations in each model area, namely V1, MT, and MST, is
formally described by variants of the membrane equation
ineq. 1. We get

—g®) 4 [gFFin]B 4 AP, 2
@ = 2@ 42 14T Bm « ATB)) (3)

i® —Az® + (B — Dz (2@ « AT)  (4)
—(C + Ez®)(2® « A7),
with 3 = 2,7 =103, AFB,A=10"2,B=1,C =0,
D =0, E = 1. For the velocity blur, denoted by the kernel

A’, separable Gaussian filters were used with= 0.5 px
(speed) andr; = 1.0 px (direction). The center-surround
interaction mechanism again uses separable kernels with
ol =0.25px ando} = 0.5 px (center) and; = 0.75 px
andr; = 4.0px (surround). Velocities for 6 speeds and
32directions are representéa = andz’"Pi» denote ac-
tivations of the driving forward stream and the modulatory
feedback stream, respectively, andenotes the convolu-
tion operation. In our simulations all equations were stlve
at steady-state.

For the driving feedforward processing a spatial inte-
gration with a ratio of 1:5 between areas V1 and MT is as-
sumed. This relates to eq. 2 in the processing cascade. The
feedback mechanism is predictive such that an offset of the
spatial location of the modulatory interaction is incorpo-
rated that depends on the particular velocity ([2]). Preces
ing of a full FF/FB cycle is assumed to take approximately
20 ms as indicated by measurements of V1-MT interactions
in monkey [22] (compare with [2]).

3 Resaults

The model has been probed with different test stimuli
which consist of different motion patterns with transpar-
ent surface arrangements. Here, grating acuity has been
investigated [12, 5]. In addition, the influence of atten-
tion is investigated to demonstrate increased performance
for selected movements [8]. To comply with the psy-
chophysical experiments random dot kinematograms of
size 256<256 px, 10% dot density, and dots with a diam-
eter of approximately 7 px (interlaced) were used. In or-
der to demonstrate the generic computational competency,
the model was also probed with test sequences from three-
dimensional scenes and test scenes with opaque surface ar-
rangements.

Motion segregation. The segregation of transparent
motion patterns has been investigated psychophysically by

2For random dot kinematograms used as input only 3 speedsvalue
were employed, and parameters of the center-surround misonavere
adapted to this new configurations{” = 0’ px ando; = 0.5 px).
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Figure 2. Varying grating acuity results in a transparent or
coherent motion percept depending on the stripe widths.
a) Input stimuli. b) Velocity distribution for activations
summed over 'odd’ stripes in model area MT (5th itera-
tion).
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Figure 3. Attentional priming selectively amplifies inltia
detected motion directions) Input stimuli with three mo-
tions overlaid b) Activities plotted in direction histograms.
In the unattended case, different motion directions are rep
resented by a population of velocity sensitive model MT
cells. Selective deployment of attention to leftward mo-
tion enhances the corresponding activities, while aienti
to upward motion does not influence the activity distribu-
tion. All activations shown are for the 6th iteration when
the attention signal is deployed during the 5th iteration.

using stimuli consisting of stripes of a given width which
contain coherent movements where direction alternates be-
tween pairs of stripes [12, 5, 7]. Stripe widths in the em-
ployed random dot kinematograms varied from 8 to 64 px.
Figure 2 shows cell activations in MT velocity spaces as a
function of the specified stripe widths. In case of a stripe
width of 8 px fully transparent motion is represented in area
MT as signaled by the bimodal distribution of activity. In-
creasing the stripe width the distribution of activities/ex
locity space gradually change into a more unimodal direc-
tion distribution for model MT cells.

Attentional priming. It has been demonstrated in
[14] that the number of transparent motion directions is
limited to two or three different directions displayed simu
taneously. To overcome this limitation, selective atmti
may help to focus processing on the relevant stimulus com-
ponents in a specific task [19]. In a more recent study, [8]
have shown that the number of distinguishable transparent
motion directions can indeed be significantly increased by
attending to pre-selected directions. Here, we demomestrat

computationally how the influence of a signal generating an
attentional prime for a selected motion direction can help t
improve direction selectivity. In the proposed model an at-
tention signal is assumed to be deployed after stabilimatio
of the motion percept which is assembled by a proper ac-
tivation in working memory and delivered via a top-down
excitatory feedback signal. It should be emphasized that
such an attention signal utilizes the same circuits as the
inter-areal sensory FF/FB interactions at earlier stadges o
cortical processing (compare [3]).

In computational terms the feature attention signal is
introduced at the fifth iteration of simulating the network
dynamics with a strength/Crp and spreads with a spa-
tial uncertainty (for directions and speeds) using a Ganssi
with o, = 0.25. Again the previously described random
dot kinematograms served as input. Figure 3 shows that the
attentional priming signal can enhance activation at area
MT to enforce a decision with respect to a given motion di-
rection. In a control experiment, we show that this is only
the case, when the motion direction was initially present
in the input to generate an activation in the corresponding
velocity space representation.

Three-dimensional surface arrangements and re-
alistic scenes. In order to demonstrate that the model is
also capable to process sequences from realistic scenes,
slanted transparent surfaces were rendered by using the
POV-Ray ray-tracer. In Fig. 4 the processing results show
that the overlaid motion generated by the transparent re-
gion can be properly segregated. In addition, we probed
the model by using image sequences which have been used
to benchmark computer vision algorithms. Consider, for
example, the configuration shown in Fig. 5. Here the back-
ground (facial image) is translating to the left while the
earth globe (clouds) rotates clockwise. Again, iterative
computation is done at the stages of V1 and MT. In the
central circular patch covered by the cloud image the pro-
posed neural mechanisms robustly generate multi-peaked
velocity representations at same spatial locations. Model
MT cells (defined in velocity space) feed their activities
to pattern cells in model MSTd. Such cells are selective
to canonical flow patterns such as expansion, contraction
as well as clockwise and anti-clockwise rotation, while a
different population is selective to planar translatiomal
tion [9]. The results show that the two transparent motion
patterns generate dominant activations in those cells with
respective pattern selectivity. We therefore suggest that
MT-MST interaction stabilizes velocity estimates and con-
tributes to the segmentation of transparent motion padtern
Finally, we investigated the processing of test sequences
(e.g. Yosemite flight through with clouds) which contain
opaque object surfaces only (results not shown). The suc-
cessful processing thus demonstrates that the scope of the
model is broad enough to reliably deal with various surface
configurations.

Coherent motion and decision making. Finally, we
tested the sensitivity of the proposed mechanism against
noise influences and evaluated the ability to decide on the
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Figure 4. Motion signals generated by slanted transpatgfaces moving frontoparallel to the camera positianGeometry

of the scene layout and the surface motions in the sensimggerahthe camera. The front plane has a transparency of 50%.
b) Display of the fifth frame of the image sequence where thega®ed region of the scene is highlighted and the sectors for
activity pooling were superimposed) Summed activities for the front plane and peripheral lett ght sectors of the back
plane, each presented in a direction histogram of neuriaitgdh velocity space.
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Figure 5. Processing different (global) motions in two
transparent overlays.a) The background layer (facial
image as texture) is moving to the left while the fore-
ground layer (globe texture) rotates clockwise (available
at http://www-sop.inria.fr/odyssee/data/sequencedd)-
rectional histograms for selected locations depict singte
herent motion (1), multiple motions due to the transparent
composition (2), and a region with foreground motion only
but missing background texture (3)) Responses of MSTd
pattern cells pooling over the central spatial region @hbtt
circle as indicated ira)) which contains both global mo-
tions. Pattern cells were modeled by separate pools with
expansion/contraction/rotation (left) and laminar ttans
tional motion selectivity (right). Leftward translatioma
clockwise rotation generate the dominant pattern respgonse
(responses are scaled[fo1]).

presence of coherent motion directions. We studird
ternal noise, caused by the input signal or false detec-
tions (spatio-temporal correspondences), as weihts-

nal noise, i.e. stochastic signal variations at the level of
firing rates. We use &0 x 40 input display with 100 white
dots moving randomly placed on a dark background. Ex-
ternal noise is varied by the amount of dots moving co-
herently in one direction. Internal noise is generated by
adding Rayleigh noises( = 0.1) to the neural activa-
tions. In order to simplify the investigation, we consider
the center-surround mechanism in velocity-space represen
tation only and directly supply input activations in velyci
space for different levels of motion coherence (Fig))6
Center-surround competition in velocity is calculated by
the steady-state solution of eq. 4 which tends to normalize
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Figure 6. Center-surround mechanism in velocity spage.
Schematic drawing of a log-speed/polar direction encoded
velocity space (5 speeds, 8 distances). The input is sup-
plied directly as activity distribution in velocity spaagafk
ellipse). b) Results of decision making process to detect
motion directions for different coherence levels (see)text

activations in velocity space.

Using these input stimuli, we devised a two-
alternative forced choice (2AFC) decision task. Here, stim
uli with motion coherence levels 0%, 3.2%, 6.4%, 12.8%,
25.6% and 51.2% were employed (compare with [18]) and
a decision is generated for two opponent motion directions
(e.g., left vs right) when a threshold criterion is exceeded
Activation within the foveal region is pooled to generate a
single average velocity space representation. Two pools of
neural activations were evaluated which are described by

ZmES ZveN d)i,s)w( ) - a(&, V)
1] - [N (¢, s)]| ’

where S denotes the set of spatial locations within the
foveal region (here we used the complete imag&)y- , s)

is a neighborhood of velocities(¢+ , s), the weighing
functionw has a Gaussian shape in speed/direction domain,
a(Z,¥) denotes an activation at each spatial locatfand

for each velocitys. The threshold criterion that forces a
decision based on the two pooled activatiansis defined

by
i~

a4 =

(®)

1, if

n>a-/ay
U({0,1}), ©

otherwise ’



such that; expresses a significance ratio for the difference
betweena, anda_. U({0,1}) denotes a binary random
variable with probability0.5. Fig. 6b) shows results of
the decision making process for different threshold sg#tin
given extrinsic as well as intrinsic noise (500 trials). The
data was fitted by a cumulative Weibull distribution with
two parametersy (threshold) ands (steepness). By in-
creasing the threshold parametgin eq. 6 the decision
function is shifted to the left. For comparison, we have
included results from monkey experiments by [18] (their
Fig.3A).

4 Discussion and Conclusion

The processing of motion in a situation where two or more
transparent surfaces move transparently over each other is
still a big challenge for modelers of biological as well as
computational motion perception [20]. In this paper, we
propose a neural model for the perception of transparent
motion. The proposal makes several new main contri-
butions, namely (i) the reliable processing of transparent
motion stimuli by suggesting an on-center/off-surround in
teraction mechanism in a velocity space representation of
model MT, (ii) the incorporation of a log-speed/direction
representation incorporating the above center-surround i
teractions, (iii) the augmentation of an attentional prigni
signal utilizing the circuitry of bottom-up and top-down
signal flow for stabilizing motion feature detection and in-
tegration, and (iv) the incorporation of pattern motiorsel

in model MSTd to segregate global transparent motions
into separate surfaces.

Several investigators analyzed whether the represen-
tation of two motions at the same location is sufficient for
the perception of transparent motion and whether such in-
put configurations are processed in parallel [6]. Previous
models have been suggested to account for processing of
transparent motion. For example, [16] proposed a two-
stage FF model of V1 and MT processing. In this model
motion energy is detected and rectified at the level of V1
[1] and subsequently integrated at the stage of MT assum-
ing opponent direction inhibition within subfields. We also
utilize inhibition between subunits and also emphasize the
role of shunting inhibition. Unlike their model, however,
we propose that opponent inhibition operates on the full
velocity space and the activation represented thereirs Thi
enables the selective tuning to multiple motions and allows
the fusion of motion directions along similar directionp+e
resented by a compromise direction. Furthermore, the iter-
ative interaction of FF and FB activities demonstrates how
initially ambiguous and unreliable estimates can be disam-
biguated, and how attentional priming can bias and selec-
tively enhance activations. The model of [24] proposed a
network of orthogonally oriented extended Reichardt de-
tectors [17]. For different input displays with two and mul-
tiple transparent motions (global) motion vector histogsa
have been generated using the detector network. The num-
ber of individual maxima in the distributions is taken as

indicator of perceptual separability of transparent mugio
These findings reveal important parameters of tuning prop-
erties of the basic mechanisms for motion detection. Re-
cent work by [7] have shown, however, that multimodal
velocity distributions (histograms) are not sufficientie i
dicate transparency percepts (compare also our first com-
putational study depicted in Fig.2). We have emphasized
how different motion directions can be segregated com-
putationally based on generic neural interactions usiag th
neural representation of velocities in area MT. When these
velocities are integrated and further processed at the stag
of MSTd, coherent motions can be segregated and repre-
sented at the same spatial location. Another model by [13]
proposes a generalized structure tensor which is defined
as the tensor product of the N-th order partial space-time
derivatives of the input stimulus. The rank of these gener-
alized tensors determines the number of motion directions.
In their model, to identify those motions, the input pattern
is transformed into Fourier domain, where motion is rep-
resented as plane/line which is then mapped by a projec-
tive transform. Using the duality of the projective plane
gives the velocity or set of possible velocities. We empha-
size the neural mechanisms involved in this processing. At
the moment, it remains how the gradual changes in per-
ceiving transparent and non-transparent motion in paralle
stripes of opposite motions can be generated using global
Fourier transform or how attention can be incorporated in
such a model. We have proposed a testable mechanism that
demonstrates successfully motion detection and integrati
for transparent as well as opaque surfaces. Feedback signal
enhancement and feedback that is deliberately supplied to
focus attention on a particular motion direction is handled
using the same model neural circuits.

Psychophysical studies report that the ability to per-
ceive transparent motions (i) depends on the angle between
the discriminating motion directions, and (ii) increaséthw
higher speeds of motions [12, 8]. Both findings directly re-
fer to the properties of the velocity space and the shunting
mechanism employed in the suggested model. For small
difference angles and small speeds the resulting actiatio
mutually compete and these result in low activation. In
contrast, motions with a high discriminating angle or speed
will be represented with a stronger activation. Thus the
model makes the prediction of a systematic dependence be-
tween angular difference, motion speeds and the acuity to
perceive transparent motion. We have proposed a center-
surround shunting mechanism defined in velocity space and
demonstrated that this computational mechanism is robust
against different noise influences. A decision-making pro-
cess has been simulated in which an observer selects a mo-
tion direction between two opposite directions (2AFC task)
based on the ratio of velocity responses pooled over a spa-
tial region. The fitted psychometric functions for diffeten
threshold settings correspond to the results of a direction
discrimination task reported by [18]. This demonstrates
that the model representations generated provide results
comparable with animal behavior in decision-making.



In all, we presented a neural mechanism of transpar-
ent motion processing based on model areas V1, MT, and
MST, and their inter-areal as well as intra-areal interac-
tions extending the model of [2]. With these extensions
the detection, representation, and processing of transpar
ent motion stimuli as well as the perception of motion of
opaque surfaces can be explained in a single framework.
Our model can explain psychophysical findings concern-
ing grating acuity [5] and attentional priming [12, 8]. We
claim that such mechanisms will help to steer the learning
to improve performance in speed and direction discrimina-
tion tasks. This will be investigated in the future. In addi-
tion, further work will also focus on interactions with the
form channel to increase alignment acuity [5].

5 Acknowledgements

This research has been supported in part by grants from
the European Union (EU FP6 IST Cognitive Systems In-
tegrated projectDecisions-in-Motion project no. 027
198), the German Ministry of Research and Technology
(BMBF, Brain Plasticity and Perceptual Learningroject

no. 01GWO0763), and a scholarship to F.R. from the Grad-
uate School oMathematical Analysis of Evolution, Infor-
mation and Complexitstt UlIm University. We thank Pierre
Kornprobst (Odyssee lab, INRIA) for kindly providing the
image sequence used in Fig.5.

References

[1] E.A. Adelson and J.R. Bergen. Spatiotemporal energy
models for the perception of motiord. of Opt. Soc.
of Amercia, Series /&:284-299, 1985.

[2] P. Bayerl and H. Neumann. Disambiguation vi-
sual motion through contextual feedback modulation.
Neural Comp.16:2041-2066, 2004.

[3] P.Bayerl and H. Neumann. A neural model of feature
attention in motion perceptiorBioSys. 89:208-215,
2007.

[4] O. Braddick and N. Qian. The organization of global
motion and transparencyn J. Zanker, J. Zeil (eds.)
Motion Vision: Computational, neural, and ocolog-
ical constraints, Springer Verlag, Heidelberg, 2001
pages 85-112.

[5] D. Burr, S. McKee, and C.M. Morrone. Resolution
for spatial segregation and spatial localization by mo-
tion signals.Vis. Res.46:932—-939, 2006.

[6] W. Curran, P.B. Hibbard, and A. Johnston. The vi-
sual processing of motion-defined transpareRegc.
Roy. Soc. of London,R274:1049-1056, 2007.

[7]1 S. Durant, A. Donoso-Barrera, S. Tan, and A. John-
ston. Moving from spatially segregated to transpar-
ent motion: a modelling approactBiology Letters
2:101-105, 2006.

[8] F.M. Felisberti and J.M. Zanker. Attention modulates

perception of transparent motioviis. Res.45:2587—
2599, 2005.

[9] M.S.A Graziano, R.A. Andersen, and R. Snowden.
Tuning of mst neurons to spiral motionk.of Neuro-
science14:54-67, 1994.

[10] AV.M. Herz, T. Gollisch, C.K. Machens, and
D. Jaeger. Modeling single-neuron dynamics and
computations: a balance of details and abstraction.
Science314:80-85, 2006.

[11] A.L. Hodkin and A.F. Huxley. A quantitative descrip-
tion of membrane current and its application to con-
duction and excitation in nervd. of Phys.117:500—
544, 1952.

[12] D.R. Mestre, G.S. Masson, and L.S. Stone. Spatial
scale of motion segmentation from speed cu¥s.
Res, 41:2697-2713, 2001.

[13] C. Mota, M. Dorr, . Stuke, and E. Barth. Categoriza-
tion of transparent-motion patterns using the projec-
tive plane.J. Comp. and Inf. Sg5(2):129-40, 2004.

[14] J.B. Mulligan. Moation transparency is restricted to
two planes. Irinv. Ophth. Vis. Sci. (suppl.), 33, 1049
1992,

[15] H. Nover, C.H. Anderson, and G.C. DeAngelis. A
logarithmic, scale-invariant representation of speed
in macaque middle temporal area accounts for speed
discrimination performance. J. of Neuroscienge
25(24):10049-10060, 2005.

[16] N. Qian, R.A. Anderson, and E.A. Adelson. Trans-
parent motion perception as detection of unbalanced
motion signals. iii. modeling. J. of Neuroscienge
14(12):7381-7392, 1994.

[17] W. Reichardt. Evaluation of optical information by
movement detectors]. of Comp. Phys. A161:533—
547, 1987.

[18] J.D. Roitman and M.N. Shadlen. Response of neu-
rons in the lateral intraparietal area during a combined
visual discrimination reaction time tasi. of Neuro-
science22(21):9475-9489, 2002.

[19] A.L. Rothenstein and J.K. Tsotsos. Attention links
sensing to recoginitionlm. and Vis. Comp26:114—
126, 2008.

[20] R.J. Snowden and F.A.J. Verstraten. Motion trans-
parency: making models of motion perception trans-
parent.Trends in Cogn. S¢i3:369-377, 1999.

[21] S. Treue, K. Hol, and H.-J. Rauber. Seeing multiple
directions of motion - physiology and psychophysics.
Nature Neuroscien¢é(3):270-276, 2000.

[22] S. Vanni, M. Dojat, J. Warnking, C. Delon-Martin,
C. Segebarth, and J. Bullier. Timing of interactions
across the visual field in the human cort®&eurolm-
age 21:818-828, 2004.

[23] O. Watanabe and M. Kikuchi. Nonlinearity of the
population activity to transparent motiddeural Net-
works 18:15-22, 2005.

[24] J.M. Zanker. A computational analysis of separat-
ing motion signals in transparent random dot kine-
matogramsSpat. Vis. 18(4):431-445, 2005.



