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ABSTRACT

We present an ideal observer analysis of single word read-

ing in normal readers and central scotoma patients. Using

this technique we are able to predict the spatio-temporal

pattern of saccades in terms of pixels. This enables us to

contrast theories that are impossible to compare using the

traditional letter-slot approaches to modelling reading.
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1 Introduction

From a low-level perspective, reading consists of a succes-

sion of fixations – each of which extracts information from

a text image – interleaved with saccadic movements. From

this perspective, a model of reading must provide an ac-

count of the spatio-temporal properties of these fixations,

and of how these relate to the physiological properties of

the eye. It is well-known that normally-sighted subjects

read words by placing the maximal acuity zone of the retina

(i.e., the fovea) on different locations of the words. How-

ever, patients with macular lesions in the center of the vi-

sual field (i.e., central scotomata), need to place the fovea

outside of the word and use the peripheral zone of the retina

(i.e., the parafovea) to be able to effectively extract infor-

mation about the word.

Current clinical data are not sufficient to identify

which are the oculomotor strategies that would optimize

the reading performance of central scotoma patients. Re-

sults on the ‘pseudo-fovea’ used by these patients – their

preferred retinal location (PRL) – are contradictory: On

the one hand, some studies suggest that there is no correla-

tion between reading performance and PRL ([1]). On the

other hand, some authors argue that such a correlation ex-

ists and that it is best to place the scotoma above the word

to be read (vertical strategy) rather than on the text line to

be read (lateral strategy; [2])

All currently implemented models of eye fixation be-

haviour during reading, rely on the assumption that fixa-

tions must always be centered on the actual line of text

to be read. This enables the computational simplification

that fixations can be described in terms of letter position

slots. Unfortunately however, models of this type are un-

suitable to investigate the optimality of the lateral and ver-

tical strategies described above, as it not even possible to

represent the latter in this way (i.e., fixations occur mostly

above or below that line of text). As a consequence, the

only existing computational model of reading with sco-

toma, Mr. Chips ([3, 4]), directly assumes that the lateral

strategy is optimal, but the fact remains that the lateral was

in fact the only strategy that the model could follow.

Our purpose in this study is to obtain a mathemati-

cal description of the pattern of eye fixations that would

be optimal for the subjects to follow. We operationalize

optimality as the maximization of the amount of informa-

tion about the word identity that one would expect to ob-

tain with a certain pattern of eye-fixations. This is in turn

made explicitely dependendent on the detailed properties

of the retina. Our model describes predicted eye fixation

behaviour at the level of individual image pixels. This per-

mits predicted fixations to be centered either on or outside

the actual text area.

2 Model Description

Humans are very apt in choosing the optimal course of ac-

tions in terms of the benefit they expect to obtain from

them. Subjects performing tasks where an explicit gain

or penalty (in score points) is introduced, choose optimal

movement strategies with respect to their expected gain

([5]). Similarly, [6, 7] have shown that, in visual search

tasks, subjects also optimize their eye movement strategies

with respect to a gain function. In this case, the gain func-

tion was the relevant information that the subjects expected
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Figure 1. Schema of the model

to obtain by fixating on a particular point of an image, with

respect to the task and the constraints imposed by the acuity

of their visual fields.

Our approach to reading assumes that the optimal

reading strategy is the one that optimizes what we term

the Expected Information Gain (EIG) in each fixation. De-

pending on what is considered as information, the EIG can

be defined in slightly different ways. On the one hand,

we could consider a – suboptimal – model where the goal

is to identify the image pixel values, without taking into

consideration that the pixels must form letters and eventu-

ally words. In this case, the EIG would be measured in

terms of information on the individual pixel values. On the

other hand we could consider that our task in reading is

the identification of words from the image, and thus intro-

duce top-down information about the words that the image

should contain. In thi second alternative, the EIG would be

defined in terms of the information about the actual word

identity. Although the latter word-based strategy would be

the optimal one, some support can be found in the literature

for suboptimal reading strategies that do not consider lexi-

cal top-down information ([8]). In order to consider these

two possibilities, we will use both modelling strategies: a

suboptimal pixel-based strategy lacking any top-down in-

formation, and an optimal word-based strategy where top-

down information strongly constrains the possible images.

Figure 1 summarizes the three main steps in the model

we propose. After a fixation (initially fixed at the center of

the display due to the fixation cross), the model updates its

probability distributions of pixel values (depending on the

degree of top-down information used in the model this can

either be done directly at the pixel level, or through a me-

diating lexical level). This is done by combining the retinal

acuity matrix centered on the fixated point, with the image

pixel values. This results in a noisy sample from the actual

image, with the level of noise depending on the visual acu-

ity at each particular pixel. This sample is combined with
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Figure 2. Pixel-based prior probabilities. Red indicates a

high probability of a pixel being active (i.e., “black”). Blue

areas correspond to a high probability of the pixel being

inactive (i.e., “white”)

the previous knowledge about the image obtained through

the previous fixations (initially the prior expectations). Fur-

ther detail on this initial stage can be found in Section 2.1.

In the second step, the EIG for each possible next fix-

ation is computed. For this purpose, the effect of a sub-

sequent fixation in each possible point is evaluated. The

pixel probabilities are transformed into pixel-level mutual

informations (either about pixel values or word identities).

These mutual information are combined (i.e., convoluted)

with the retinal acuity matrix to obtain an estimate of how

much information would be obtained by fixating each point

of the image. See Section 2.2 for more details on this step.

Finally, in the last step, the EIG distribution obtained

in the previous step is normalized into a probability density

function. This implements the assumption that the proba-

bility of fixating a point is directly proportional to the EIG

from fixating that point. The next fixation is then sampled

from this probability distribution (one could also choose

the maximum of this distribution, but this would result in a

deterministic strategy, that does not correspond well to hu-

man behavior). Section 2.3 provides more details on this.

These three steps are iterated until a predefined level of cer-

tainty (θ) about the value of the pixels (or the identity of the

word) is reached.

2.1 Updating the Probability Distributions

Before each fixation, the model has a prior expectation on

the possible color values (black or white) of the pixels in

the screen. This prior expectation corresponds to the in-

formation we have obtained by the previous fixations – or

just to the overall prior of the model, if there have not been

any fixations yet. We will refer to this pixel-based prior

after the k-th fixation as P (k). This expectation is a ma-

trix whose elements are the the probabilities that each pixel

takes the value of 1. The prior P (0) represents the prob-

ability of a pixel being active before obtaining any infor-



mation through fixations. As for the moment we will only

consider the situation where words are presented in a con-

stant font at the middle of the screen, this prior will be the

sum of the images corresponding to the 30,000 most fre-

quent French words weighted by the corresponding word

frequencies. Figure 2 illustrates how this prior looks like in

our experiments.

In order to update this matrix using the visual infor-

mation, we resort to Bayes’ theorem. The probability that

point pj is active after fixating on point i is estimated as:

P
(k+1)
j = P

(k)
j

P (di,j |pj = 1)

P (di,j |pj = 0) + P (di,j |pj = 1)
, (1)

where di,j is the value of point j that results from center-

ing the acuity matrix at point i of the image, and adding

noise in each point in inverse proportion to the level of

acuity at that point (see Figure 3 for the acuity matrices

that we used). The likelihood in this equation is calculated

as a coming from a Bernoulli trial with the corresponding

amount of noise.

2.2 Computation of the EIG

As mentioned above, we define the EIG as the mutual in-

formation between the probability distribution of pixel val-

ues (using the current estimate at each point), and the word

identity.1 More precisely, we consider the mutual infor-

mations (in the strict bi-variate sense) between each indi-

vidual pixel and the word identity. These mutual informa-

tions are summed and weighted by the acuity matrix for

each possible fixation. The weighted sum is easily com-

puted as the convolution (performed in Fourier space) be-

tween the matrix of mutual informations for each pixel, and

the retinal acuity matrix. Note that in a word-based strat-

egy this will result in an overestimation of the total mutual

information, as much of the information provided by one

pixel is redundant with the others. A direct estimation of

the amount of redundancy in each pixel is difficult to ob-

tain. However, the mutual information between pixels in

natural images decreases as a power-law of their distance

([10]), and this applies also to sequences of letters in run-

ning text ([11]). Therefore, we can correct our estimation

by de-convoluting the resulting information matrix with a

power-law filter with wider horizontal than vertical covari-

ance (this is to account for the mutual information between

pixels being larger within the same line of text). The appli-

cation of this filter results in a high-passed version of the

matrix of pixel-word mutual informations (with a stronger

horizontal component).

As pixel values univocally determine word identies

(we use constant fonts, sizes, and word locations) the mu-

tual information between words and individual pixel values

1Strictly, mutual information is not defined between more than two

variables. More precisely, what we approximated was the generalization

of mutual information to the multivatiate case that [9] introduced as total

correlation

reduces to the plain entropy of each pixel. Thus it is easy to

convert the probability matrix P (k) into the corresponding

matrix of individual mutual informations I(k) at fixation k:

I(k) = −P (k) log2 P (k)− (1−P (k)) log2(1−P (k)). (2)

In order to compute the EIG for the next fixation

(EIG(k+1)), in the pixel-based approach we only need to

convolute the matrix of pixel-word mutual informations

(I(k)) with the corresponding acuity matrix (A). In the

word-based approach an additional correction for redun-

dancy is obtained by de-convoluting the result with the fil-

ter described above.

2.3 Selection of the next fixation

The expected information gain matrix (EIG(k+1)) repre-

sents our estimation of the gain in information that will

be obtained by fixating in each point of the screen. Max-

imizing this gain can be done in two ways. An option

could be picking directly the maximum of EIG(k+1) as

the next point to fixate, leading to a deterministic (max-

imum posterior) strategy. Alternatively one can sample

from EIG(k+1) as if it were a probability distribution (af-

ter a normalization by its sum). This presents a non-

deterministic strategy, which is more suitable to model non-

deterministic human data, and still converges to an optimal

strategy. Note that this non-deterministic strategy is equiv-

alent to saying that the probability of fixating a particular

point is directly proportional to the information we expect

to obtain from it, thus more informative points will be sam-

pled more often.

Repeated sampling from a probability distribution

presents the disadvantage of a great unstability. A differ-

ent point will be selected in each cycle of the algorithm

(the probability of changing location asymptotes to one

with growing image resolution). Ideally, we would want

some points to remain fixated longer than others, as is the

case in humans. This can be accounted for by introduc-

ing an additional cost for movement. During time when

the eye is being moved, no information is acquired by the

system. Therefore in a really optimal strategy the system

would take this into account by evaluating at each point

whether it is likely to obtain more information by moving

than by just remaining on the same location, thus saving

the cost of an eye movement when it is not likely to be ad-

vantegeous. Formally, if at time k we are fixating at point

i, the condition that must be satisfied in order to move is:

αEIG
(k+1)
i < E(EIG(k+1)), (3)

where α ≥ 1 is a free parameter representing a ‘conser-

vativeness’ bias. This bias ultimately reflects the time that

is spent moving (which would be spent obtaining informa-

tion if we did not move). The operator E(x) refers to the

expectation of x. The expectation of the EIG after sampling

is equal to the sum of the EIG at each point j (EIG
(k+1)
j )

weighed to the probability that the next point to be fixated



Figure 3. Retinal acuity matrices for normal (left panel) and simulated central scotoma (right panel). Red areas indicate zones

of very high sensitivity (i.e., the fovea), while blue represents ‘blind’ areas. Notice that, in the scotoma the most sensitive areas

correspond to the parafovea, and still these are not very sensitive relative to the normal maximal acuity zones.

is j (P (j)). In fact, as described in the previous section,

the probability of fixating each point in the screen will be

proportional to the EIG itself:

P (j) =
EIG

(k+1)
j

∑

j EIG
(k+1)
j

. (4)

Therefore the expectation of the EIG is readily computed

as:

E(EIG(k+1)) =
∑

i

EIG
(k+1)
i

∑

j EIG
(k+1)
j

· EIG
(k+1)
i

=

∑

j

(

EIG
(k+1)
j

)2

∑

j EIG
(k+1)
j

. (5)

3 Results and Discussion

Figure 4 illustrates the distributions of predicted fixations

that one obtains using the method described above (in a

pixel-based strategy). The most apparent difference be-

tween the normal retina and the central scotoma case is that,

while in the normal case fixations would mostly happen di-

rectly on the word, most fixations in the scotoma condition

would fall either above or below the actual word, with only

a few of them falling on the sides. Thus, according to our

analysis, the optimal reading strategy in scotoma would be

the “vertical” one mentioned in the introduction, which is

strongly preferred over the “lateral” strategy (which is also

present but in a much lesser degree). This strategy is pre-

ferred across all stages of the recognition process, from the

very early ones to the last ones. Thus, an ideal observer

analysis of (single word) reading, provides support for the

“vertical” strategy, consistent with the experimental results

of [2].

The graph in Figure 5 shows the predicted reading

latencies (measured in fixation cycles, which may or may

not correspond to actual different fixations, depending on
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Figure 5. Comparison of recognition times (number of cy-

cles in the system) as a function of word length for the sco-

toma case (grey line) and normal case (black line). The

lines represent non-parametric regressions.

the condition) for the normal and scotoma cases as a func-

tion of word length. Two issues are noteworthy. First, the

scotoma case is predicted to be overall much slower than

than the normal retina case. Second, although both cases

are strongly affected by word length in a roughly linear

manner, with longer words being slower to be recognized,

this effect is much more pronounced in the scotoma case.

Both of these predictions are consistent with experimental

results.

We have presented a simple ‘ideal-observer’ analysis

of single word reading that is able to model fixation loca-



Figure 4. Probability density functions of fixation locations predicted by the model (pixel-based) for the word “responsable”.

The upper panels depict the fixation distributions using the “normal” retinal acuity matrix, while the distributions obtained

using the “simulated scotoma” retinal acuity matrix are shown in the lower panels. The leftmost column plots the distribution

of predicted first fixations (after the initial fixation at the center). The mid column plots the distribution of fixation midway

through the recognition process (5 fixations for normal and 21 for scotoma). The rightmost panels plot distribution of predicted

fixations after the last one. The histograms on the margins of each panel show the horizontal and vertical marginal probability

density functions.



tions and recognition latencies for both normal readers and

central scotoma patients. Our analysis supports that, in the

single word case, a vertical reading strategy is preferable

for central scotoma patients, consistent with the results pre-

sented in [2], and not with those of [1]. Despite being over-

all succesfull, our analysis also fails to account for some

additional facts reported in the literature. These differences

between the model and the actual human behaviors are of

great interest. In a sense, the ideal observer methodology

presents the behavior that participants should show if they

were following an optimal strategy. It is the deviations from

optimality that present evidence for the need of additional

neurophysiological constraints. Of particular interest in our

case is that our analyses it appears that – for the first fixa-

tion – both the lateral and vertical strategies should be sym-

metrical (equal preferences for above or below and right or

left of the word). However, actual scotoma patients (and

experimental participants in ‘simulated scotoma’ experi-

ments) tend to show a slight preference for PRLs respec-

tively to the left and below the scotoma (in the visual field).

This may suggest additional mechanisms in the system or,

alternatively, a modification of the priors (for instance to

account for the fact that reading in French mostly involves

following the text left-to-right, top-down in a page).

The model we have presented has additional predic-

tive power, as it enables us to estimate how much informa-

tion about word identity a subject has obtained through a

particular fixation (instead of sampling from the distribu-

tions, actual experimental data can be fed into the model to

compute on-line the optimality of their movements). This

enables us to compare the goodness of fit to experimental

data of different strategies. For instance, we can evaluate to

which extent does top-down lexical or letter level informa-

tion plays a role in the determination of eye movements.
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