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ABSTRACT
We studied representations built in Cascade-Correlation 
(Cascor) connectionist models, using a modified 
encoder task in which networks learn to reproduce four-
letter strings of characters and words in a location-
independent fashion. We found that Cascor successfully 
encodes input patterns onto a smaller set of hidden 
units. Cascor learned simultaneously regularities related 
to word structure (“word-ness”, e.g., that certain letters  
never occur in certain positions) and position (location 
invariance). We also found the representations built are 
compatible with the concept of open bigrams: networks 
make the least error on contiguous, forward strings of  
two letters, marginally more on non-contiguous forward 
bigrams, and significantly more on backward or 
reversed bigrams.
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1.  Introduction

Several recent computational models of cognition posit 
a hierarchical system of processing in which simple and 
local features are gradually integrated into more 
abstract and complex features using receptive fields 
(e.g., [1]). The visual cortex (V1, V2) is known to 
detect contrasts and low level features such as lines and 
contours. Applied to the domain of reading and 
language processing, one can wonder what kinds of 
abstractions the visual system builds based on retinal 
information. 

In this study, we investigate the representations built in 
a constructive neural network technique called cascade-
correlation [2]. Using a modified encoder task, we ask 
if cascade-correlation (Cascor) networks perform data  
r educ t ion and bui ld compac t and abs t rac t 
representations, namely open bigrams [3].

2.  Methods

Cascade-correlation (Cascor) is a connectionist (neural 
network) algorithm for supervised learning. In contrast 
to the popular backpropagation architecture, Cascor 

networks not only adjust connection weights as a result 
of learning, but also build an appropriate network 
architecture.  

The Cascor algorithm begins with a simple network 
topology consisting of input and output units only, and 
recruits hidden units until the network has sufficient 
computational resources to solve some task. Learning in 
Cascor proceeds in an alternation of two phases.  In 
input phase, input weights of candidates units in a pool 
are trained to maximize the covariance between their 
outputs and the residual error. The candidate unit with 
the highest covariance is then inserted into the network 
at the end of input phase. In output phase, all the 
weights connected to the output layer are trained to  
minimize residual network error. In input and output 
phases, learning is done using an algorithm for training 
feed-forward networks, such as QuickProp [4]. Changes 
of phase occur when covariance maximization or error 
reduction stagnates in the current phase.

For the experiments presented here, we used a variant 
of Cascor that has no direct input-output connections 
(i.e., all signal pathways go through a hidden layer), and 
which recruits all hidden units onto a single hidden 
layer, sometimes referred to as Flat Cascor. Cascor 
training parameters are as follows: learning rate = 0.175  
in output phase and 1.0 in input phase, decay = 0.0002 
in output phase and 0.0 in input phase, maximum 
growth factor = 2.0 in both phases, maximum epochs 
spent in current phase = 100 in both phase, change 
threshold = 0.01 in output phase and 0.03 in input 
phase, and patience = 8 in both phases. All simulations 
used candidate units with a standard sigmoidal  
activation function.

Learning in cascor occurs in batch: all training patterns 
are processed before a weight update is performed.  

2.1 Task

Experiments presented use a modified encoder task, as  
used in previous work on word processing [5]. Encoder 
tasks involve reproducing input patterns on the output 
units by encoding inputs onto hidden units, then 
decoding hidden units representations at the outputs. 
Here, the encoder task is modified such that, on input 



vectors longer than the outputs, actual data are 
presented at three different locations along the input 
vector. For example, we generate the following three 
training patterns the word WITH: (input  target 
output): WITH##  WITH, #WITH#  WITH, and 
##WITH  WITH where # are blanks. All experiments 
use four-letter items (words or random character 
strings). We used local coding: each letter slot is 
encoded using 26 binary values indicating the presence 
and absence of a given letter, in alphabetical order. For 
instance, presence of letter A is encoded as [1 0 0 ... 0],  
B as [0 1 0 ... 0], Z as [0 0 … 1]. Blanks are coded 
using zeros in all positions [0 0 0... 0]. 

3. Results

3.1 Experiment 1: Generalization to unseen words

We first tested how Cascor networks generalized to 
unseen words and random strings. We trained networks 
on sub-sets of real words (previously used in [6]). The 
list contains 1179 words, and includes information 
about the frequency of occurrence of words in realistic 
corpuses of text. Words were selected in decreasing 
order of frequency (i.e., frequent words selected first) 
until training exceeded computational resources (which 
occurred with 120 words). A single network was trained 
in each condition until perfect accuracy on the train set. 
Networks were then tested on two sets: (1) 500 random 
four-character patterns (e.g., JPQM), and (2) words 
from the word list not used in training. Test items were 
presented in all three positions. To compute accuracy, 
the letter corresponding to the most active output in a 
slot was selected as network response for a letter. A 
word response was considered correct when all four 
constituent letter responses were correct. Accuracy was 
computed as the proportion of correct answers among 
test patterns. 

Accuracy results (see Figure 1) suggest that networks 
have generalized to words unseen in training better than 
to random patterns. Thus, Cascor seems to have built a 
representation of “word-ness” as it learned position 
invariance, probably due to statistical regularities in 
words. 
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Figure 1 - Accuracy in the modified encoder task in which 
words are presented in 3 positions

Results about recruited hidden units (see Figure 2) 
suggest successful data reduction. To take 100 words as 
an example, Cascor recruited about 60 hidden units to 
encode 300 patterns (100 words x 3 positions). We also 
see that additional learning was necessary as new words 
are presented. Thus, position invariance did not seem to 
be learned in some abstract, symbolic way, but instead 
was sensitive to word regularities as well, corroborating 
the accuracy results. Figure 3 presents the number of 
epochs for training Cascor networks.
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Figure 2 - Number of Cascor recruits necessary to learn 
the modified encoder task in which words are presented in 
3 positions

0

500

1000

1500

2000

2500

1.7% 3.4% 5.1% 6.8% 8.5%

Ep
oc

h
s

Proportion of words seen during training

Figure 3 - Number of Cascor epochs necessary to learn the 
modified encoder task in which words are presented in 3 
positions

3.2 Experiment 2: Generalization to unseen positions

Second, we investigated more directly how Cascor 
networks learned location independence by measuring 
generalization to known words but unseen or untrained 
positions while manipulating the number of words used 
for training. We randomly and uniquely assigned 
patterns (3 x number of words) to a train and a test set,  
with a probability of 10% of being a test pattern. For 
example, ##WITH and #WITH# may be assigned to the 
training set, and WITH## to the test set. Accuracy 
results are presented in Figure 4. With a logistic 
regression analysis, we found a significant intercept 
(-2.91, z = -7.6, p < .001) and a positive slope (0.013, z 
= 2.7, p < .01) suggesting that accuracy increased with 
the number of patterns used in training. 
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Figure 4 - Mean accuracy (6 networks per condition) on 
unseen positions as a function of the number of words 
included in the training set

3.3 Experiment 3: Open bigrams

Finally, we investigated the internal representations 
built while learning location independence. As argued 
in the introduction, we expect these representations to 
be more compact and abstract than the inputs they 
represent. Open bigrams code two-letters combinations, 
in such an abstract and largely position-independent 
fashion. For example, WITH is composed of following 
open bigrams: WI, WT, WH, IT, IH and TH. Activation 
of open bigrams can be modulated by distance 
(contiguous bigrams like WI are more active than non-
contiguous bigrams such as IH). An important 
characteristic of open bigrams is that, while they allow 
for non-contiguous letter combinations, they preserve 
letter order. For example, IW is not an open bigram for  
the word WITH.

1 2 3 4 5 6 7 8 9 10

Test patterns

# # # X X X X # # #

Training patterns

1 A B C D # # # # # #
2 # A B C D # # # # #
3 # # A B C D # # # #
4 # # # A B C D # # #
5 # # # # A B C D # #
6 # # # # # A B C D #
7 # # # # # # A B C D

Table 1 – Illustration of training and test data. Xs indicate 
where the 4 letters of the test strings were presented 
(always in the center), and # indicate blanks.  Each word 
in the train set is presented in 7 locations. We see that all 
central locations (slots 4 to 7) are trained on all the letters 
of the train data.

In experiment 3, training patterns consisted of five 
strings of four randomly selected letters. As shown in 
Table 1, training strings were presented in 7 positions 
and tested in central locations only (slots no. 4, 5, 6 and 
7). With this design, letters were trained in all positions 
where they were tested. Thus, performance differences 
could not be attributed to certain letter-slot 
combinations trained more than others, and would more 
likely be about relationships between letters. Test 
strings were constructed as combinations of bigrams 
from words used as inputs. Two binary factors were 

crossed: (1) direction (forward or backward); (2) letter 
contiguousness (e.g., contiguous (e.g., AB) or not (e.g., 
AC)). Table 2 shows the set of test strings with 
hypothetical strings ABCD and EFGH. 

We measured the discrepancy between target and actual  
output values using a standard SSE measure (the sum of 
square distances between outputs and targets over all 
test patterns). An ANOVA on SSE with two repeated 
factors (direction, letter contiguousness) revealed three 
significant effects: (1)  a main effect of direction, F (1, 
19) = 56, p < .001 indicating that networks produce less 
error for forward bigrams (M = 1096) than backwards 
bigrams (M = 1186); (2) a main effect of letter  
contiguousness, F (1,19) = 9.3, p < .01, showing that 
networks made less error on contiguous (M = 1128) 
than non-contiguous (M = 1153) bigrams; and (3) a 
direction by letter contiguousness interaction, F (1,19) 
= 7.3, p < .05, suggesting networks were less sensitive 
to letter contiguousness in reversed (inverted) bigrams 
than in forward bigrams (see Figure 5).

Forward Backward

Letter 
contiguous

ABEF; EFAB; 
ABFG; FGAB; 
ABGH; GHAB; 
BCEF; EFBC; 
BCFG; FGBC; 
BCGH; GHBC; 
CDEF; EFCD; 
CDFG; FGCD; 
CDGH; GHCD;

BAFE; FEBA; 
BAGF; GFBA; 
BAHG; HGBA; 
CBFE; FECB; 
CBGF; GFCB; 
CBHG; HGCB; 
DCFE; FEDC; 
DCGF; GFDC; 
DCHG; HGDC;

Letter non-
Contiguous

ACEG; EGAC; 
ACEH; EHAC; 
ACFH; FHAC; 
ADEG; EGAD; 
ADEH; EHAD; 
ADFH; FHAD; 
BDEG; EGBD; 
BDEH; EHBD; 
BDFH; FHBD;

CAGE; GECA; 
CAHE; HECA; 
CAHF; HFCA; 
DAGE; GEDA; 
DAHE; HEDA; 
DAHF; HFDA; 
DBGE; GEDB; 
DBHE; HEDB; 
DBHF; HFDB;

Table 2 – Exhaustive set of test patterns for some 
hypothetical words ABCD and EFGH
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Figure 5 - Average error (SSE) of 20 networks by direction 
and letter contiguousness



4.  Conclusion

Hierarchical cognitive models of printed word 
processing (e.g., [1]) build increasingly abstract and 
compact representations in successive layers. We have 
shown that a connectionist model based on Cascade-
Correlation (Cascor) can perform such useful 
abstractions. Cascor successfully encoded input patterns 
onto a smaller set of hidden units. Results suggest 
Cascor learned simultaneously regularities related to 
word structure (“word-ness”, e.g., that certain letters 
never occur in certain positions) and position (location 
invariance). We also find the representations built are 
compatible with the concept of open bigrams: networks 
make the least error on contiguous, forward strings of  
two letters, marginally more on non-contiguous forward 
bigrams, and significantly more on backward or 
reversed bigrams.

Future models will use more realistic input data. For 
instance, bitmap images of printed words could be used 
as more realistic approximations of the information 
available at the retina.

Acknowledgements

This project was supported by the Agence Nationale de 
la Recherche (grant no. ANR-06-BLAN-0337).

References

[1] S. Dehaene, L. Cohen, M. Sigman, & F. Vinckier, 
The neural code for written words: a proposal, Trends 
in Cognitive Sciences, 9 (7), 2005, 335-341.
[2] S. E. Fahlman, & C. Lebiere, The cascade-
correlation learning architecture (In Advances in neural 
information processing systems 2, D. S. Touretzky 
(ed.), Los Altos, CA: Morgan Kaufmann, 1990, 
524-532).
 [3] J. Grainger, & W. J. B. Van Heuven, Modeling 
letter position coding in printed word perception (In P. 
Bonin (Ed.), The Mental lexicon. New York : Nova 
Science Publishers, 2003, 1-24).
[4] S. E. Fahlman, Faster-learning variations on back-
propagation: An empirical study (In T. J. Sejnowski, G. 
E. Hinton & D. S. Touretzky (Eds.), the Proceedings of 
the 1988 Connectionist Models Summer School. San 
Mateo, CA: Morgan Kaufmann, 1988).
[5] R. Shillcock, & P. Monaghan, The computational 
exploration of visual word recognition in a split model, 
Neural Computation, 13, 2001, 1171-1198.
[6] J. McClelland, & D. E. Rumelhart, Explorations in 
parallel distributed processing (Cambridge, MA: The 
MIT Press, 1988).


	ABSTRACT
	KEY WORDS


