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Abstract

We examine how Spike-Timing-Dependent Plasticity

(STDP) can strengthen recurrent excitatory connections in

a network of Poisson neurons stimulated by two pools of

external inputs, where only one pool has spike-time cor-

relation. We derive conditions on the STDP and network

parameters such that the network exhibits a stable activity

in terms of spiking-rates and show how the evolution of the

recurrent weights is determined by the interplay between

STDP, the synaptic mechanisms and the input correlation

structure. The results indicate that STDP induces competi-

tion that causes the emergence of a bimodal distribution of

the weights, while the mean of the weights rapidly reaches

a stable equilibrium. This behaviour can be related to the

emergence of functional areas in recurrently connected net-

works, such as self-organising maps inspired by the evo-

lution of the visual cortex in the first weeks of new-born

mammalian animals.
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1 Introduction

The hypothesis that neural networks become function-

ally organised due to changes in the synaptic efficacies

(or weights) according to the neuronal activity has re-

ceived considerable experimental support. Spike-Timing-

Dependent Plasticity (STDP) [1, 2, 3] is a fruitful can-

didate for this mechanism, which relies on the correla-

tions between pre- and post-synaptic action potentials (or

spikes). It has been observed in various brain areas that

exhibit local recurrent connectivity, such as the cortex or

the hippocampus. Thus, understanding the weight dynam-

ics induced by STDP in recurrent architectures is a crucial

step to investigate learning in the brain. We build our work

on previous studies of the impact of STDP in feed-forward

networks [4, 5] and more recently in recurrently connected

architectures [6]. In our model, the “fast” neural dynamics

(evolution of the spiking activity of the neurons) depends

on the synaptic weights and on the network topology; then

the synaptic weights are in turn changed by STDP accord-

ing to the neural activity on a slower time scale.

2 Models

2.1 Additive STDP

Our version of STDP describes the change of the synap-

tic weight due to the precise timing of single spikes and

of pairs of spikes [1, 4]. For a pre-synaptic spike and a

post-synaptic spike at times tin and tout resp., the change

in the synaptic strength (or weight) J is the sum of three

contributions

δJ ∝





win at time tin

wout at time tout

W (tin − tout) at time max(tin, tout)
(1)

The rate-based contributions win and wout account for the

effects of each pre-synaptic and each post-synaptic spike

resp. The STDP window function W determines the cor-

relation contribution in terms of the spike-time difference

tin−tout [1, 4]. These contributions are scaled by a learning

rate η, typically very small (η ≪ 1) to ensure that the learn-

ing processes are very slow compared to the other neuronal

mechanisms.

A typical choice for the learning window function W
is illustrated in Fig. 1, although the present analysis can

account for any arbitrary shape of W . The left side, corre-

sponding to tin−tout < 0, has positive values of W , which

induces potentiation when the pre-synaptic spike occurs be-

fore the post-synaptic spike, in accordance to Hebb’s postu-

late. The right side, corresponding to the converse situation

tin − tout > 0, is negative and thus induces depression. We

also assume W (0) = 0 here, but this does not play any

role in the dynamics in continuous time. We use an addi-

tive version of STDP [1, 4], in contrast to the multiplicative

version of STDP [7] and other variants [5]. Note that in nu-
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Figure 1. Example of STDP window function W . It consists of

one decaying exponential for potentiation (left), with characteris-

tic time constants equal to 17 ms. Likewise for depression (right)

with a time constant of 34 ms.

merical simulation, this model requires to use bounds on

the weights due to their divergence [4].

2.2 Poisson neuron

In this model, the firing mechanism of a given neuron

i is approximated by an inhomogeneous Poisson process

driven by an intensity parameter ρi(t), in order to gener-

ate the output spike-time series Si(t) (or Dirac comb) [4].

Roughly speaking, a Poisson neuron generates a noisy out-

put spike train with a given spiking-rate (or intensity). The

Poisson parameter ρi(t) can be related to the mean poten-

tial of the soma of neuron i and it evolves over time accord-

ing to the spike-time series Ŝk(t) of pre-synaptic sources

(indexed by k) as illustrated in Fig. 2

ρi(t) = ν0 +
∑

k

[
Jk(t)

∑

n

ǫ (t − tk,n − dk)
]
. (2)

The constant ν0 is the spontaneous spiking-rate (identical

for all the neurons). As in [4], each pre-synaptic spike

at synapse k induces a variation of ρi(t), called a post-

synaptic potential (PSP), whose time course is determined

by the normalised post-synaptic response kernel ǫ, and

scaled by the synaptic efficacies (or weights) Jk. The

delay dk accounts for the axonal propagation duration on

the pre-synaptic neuron. In order to preserve causality,

ǫ(u) = 0 for u < 0. The overall synaptic influx is the

summation of the PSPs over all spike times tk,n (arriving

at the kth synapse, indexed by n). Note that we only

consider positive weights here, i.e. excitatory synapses.

2.3 Link with physiology

In our model, the neurons have spontaneous activity and are

also excited by external inputs (other neurons) that convey

“neural information” encoded in their spiking-rate and cor-

relation structures. We thus have two sources of stochas-

ticity: that of the external inputs (spike trains described

by their spiking-rate and correlation structures), which can
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Figure 2. Poisson neuron model. (a) Schematic view of the

neuron, with the cell body or soma (circle), the dendritic inputs

(below) and the output axon (above). (b) Illustration of the varia-

tion of ρi(t) (middle plot) for a given succession of pre-synaptic

spikes Ŝk(t) (bottom spike train) and the resulting output Si(t)
(top spike train).

be related to the variability observed in physiological data;

and that which can be understood as the impact of the back-

ground activity upon the firing of each neuron.

The Poisson neuron is a coarse approximation to bio-

logical activation mechanisms. However, we focus on the

weight dynamics in the neural network, which is very slow

compared to the activation dynamics of these neurons (cf.

Sec. 2.1). Therefore, the activation dynamics need not be

precisely accurate in order to qualitatively capture the main

drift of the weight evolution [4, 6].

3 Theoretical analysis

3.1 Presentation of the network

Let us consider a network of N Poisson neurons stimulated

with M Poisson spike trains with constant spiking-rates

(see Fig. 3). In this paper, we consider the situation where

only the recurrent weights J evolve according to STDP (cf.

Eq. (1)); the input weights K are fixed. Note that we do not

allow self-connections of neurons. In order to describe the

neural activity, the variables of importance are the spiking-

rates and the correlations, here averaged over a given time

period T , as well as the synaptic weights [4, 6].

We incorporate the delays in the analysis via the co-

variance coefficients CW
ij between neurons i and j,

CW
ij (t) :=

∫ +∞

−∞

W (u)Cij(t, u − dij) du (3)

Cij(t, u) := Qij(t, u) − νi(t) νj(t)

Qij(t, u) :=
1

T

∫ t

t−T

〈
Si(t

′)Sj(t
′ + u)

〉
dt′

νi(t) :=
1

T

∫ t

t−T

〈
Si(t

′)
〉
dt′,



(a) Schematic view of three neurons

in the network

(b) Network topology

external cross internal

spiking-rates ν̂k(t) νi(t)

covar. coef. Ĉkl(t, u) Fik(t, u) Cij(t, u)
weights Kik(t) Jij(t)

delays d̂ik dij

(c) Table of the network variables

Figure 3. Presentation of the network and the notation. (a) The

N internal neurons (open circles, indexed by 1 ≤ i, j ≤ N and

with output spike trains denoted by Si(t)) receive inputs from

M external input spike trains Ŝk(t) (1 ≤ k ≤ M ). (b) The

internal neurons are split into two groups (open circles), which

each are stimulated by only one of the two external input pools

(filled circles). Here the overlined variables with subscripts 1 and

2 correspond to the mean values (related to ν̂, ν, K, J , etc.) over

each pool of external inputs, each group of internal neurons or

pair of these. (c) The table shows the variables that describe the

neural activity (spiking-rates ν̂ and ν, covariance coefficients Ĉ,

F and C), and those related to the synaptic connections (weights

K and J ; delays d̂ and d).

where Qij is the correlation between neurons i and j, and

νi the time-averaged spiking-rate of neuron i. The delay

dij in Eq. (3) accounts for the axonal propagation of the

spikes and the neurotransmitter diffusion, i.e. a spike fired

at time t0 by neuron j arrives at the post-synaptic site of

the connection j → i at time tin = t0 + dij (cf. Eq. (1));

we neglect the dendritic propagation here.

3.2 Dynamical system that describes the

neural dynamics

A dynamical system of matrix equations can be derived to

model the evolution of the neural activity in the network

(or neural dynamics) in a manner similar to [6], using the

following assumptions

• the expected values of external input spiking-rates

and pairwise covariances are constant in time, which

is here equivalent to constant time-averaged spiking-

rates and covariances for any realization of the spiking

history;

• the separation of the time scales of the activation

mechanisms and the learning dynamics, the latter hap-

pening on a slower time scale (T is chosen in between

these two time scales);

• the expected values of the neuron spiking-rates and

pairwise covariances are quasi-constant in time, i.e.

they only vary due to the slow learning on the weights;

• the input and recurrent delays are sharply distributed:

d̂ik ≃ d̂ for all suitable indices i and k, dij ≃ d for all

i and j;

• the PSP kernel ǫ and the recurrent delays (d) have a

short duration compared to that of W .

After some calculations inspired by [8], we obtain the fol-

lowing equations that approximate the evolution of the net-

work activity

ν =
(
1N − J

)
−1 (

ν0 E + K ν̂
)

(4)

CW =
(
1N − J

)
−1

K ĈW∗ζ KT
(
1N − J

)
−1T

J̇ = ΦJ

(
win E νT + wout ν ET + W̃ ν νT + CW

)
.

Time has been rescaled to remove η and the dependence on

time t of the variables is omitted here and in the remainder

of the paper. The N × N matrix 1N is the identity, the

N -column vector E is filled with ones and the superscript

T denotes transposition. ΦJ is a projector in the space of

the matrices J that nullifies non-existing connections, in

particular self-connections [6]. The scalar W̃ is the integral

value of the STDP window function W

W̃ =

∫
W (u) du. (5)

The function ζ describes the filtering of the short-term neu-

ronal mechanisms on the input covariance Ĉ to obtain the

neuron covariance C

ζ(r) ≃

∫
ǫ(r + r′ + d)ǫ(r′) dr′. (6)

The coefficient ĈW∗ζ is defined similarly to CW in Eq. (3)

by replacing W by W ∗ζ (where ∗ denotes the convolution)

and C by Ĉ. With correlated inputs generated as described

in [5] for a spiking-rate ν̂0 and a correlation level ĉ, we have

ĈW∗ζ
kl =

{
ĉ ν̂0 [W ∗ ζ](0) for k and l in same pool,

0 otherwise.

(7)

The system Eq. (4) differs from that in [6] in the use of “co-

variance” coefficients instead of “correlation” coefficients,

and in the presence of ζ. Note that this dynamical sys-

tem only captures the main drift (i.e. “first-order”) of the

stochastic evolution of the weights. However the present

framework can still be used to evaluate higher orders of

the network dynamics, such as the variance of the weights

[4, 6].



4 Analysis of the evolution of the recurrent

weights

We focus on a particular network topology: the exter-

nal inputs are divided into two independent pools of the

same size, with homogeneous spiking-rates and correla-

tions within each; each input pool excites half of the re-

currently connected neurons as illustrated in Fig. 3(b). The

recurrent connectivity is full except for self-connections.

This situation can be obtained, for example, by symme-

try breaking on the input weights K due to a previous

learning with STDP on the K [5]. We can work in a

reduced-dimension space, averaging the spiking-rates and

the weights over each pool and group (cf. Fig. 3(b)). We

define

ν̃ := ν0 E + K ν̂ (8)

C̃ := KĈW∗ζKT,

which are determined by the fixed external inputs.

4.1 Homeostatic equilibrium

Using a similar analysis to that in [6] for the case of no ex-

ternal inputs, we examine the conditions of equilibrium on

the mean values of the spiking-rates νav = (ν̄1 + ν̄2)/2 and

of the weights Jav = (J̄11 + J̄21 + J̄12 + J̄22)/4 averaged

over all the neurons and recurrent connections in the whole

network, cf. Fig. 3(b). The homeostatic equilibrium, i.e.

the situation when νav and Jav correspond to a zero drift

J̇av = 0, corresponds to

ν∗

av = −
win + wout

W̃ + C̃av/ν̃2
av

(9)

J∗

av =
ν∗

av − ν̃av

nJ
avν

∗

av

,

where the subscript ‘av’ denotes the means of the variables

over the whole network, and nJ
av is the average number of

pre-synaptic recurrent connections for the neurons. The in-

tegral value W̃ in Eq. (5) of the STDP window function W
reflects the balance between potentiation and depression.

The homeostatic equilibrium is stable provided that

W̃ +
C̃av

ν̃2
av

< 0. (10)

For weak correlation, this expression reduces to W̃ < 0,

which implies more depression than potentiation induced

by STDP for uncorrelated inputs. Note that it is realisable

only if the equilibrium mean spiking-rate ν∗

av > 0, which

requires that win +wout > 0. These last two conditions are

the same as those obtained in the case of no external inputs

[6].

4.2 Learning the input correlation structure

When input pool #1 has correlation and pool #2 has none,

it can be shown that the weight means J̄11 and J̄21 (i.e.
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Figure 4. Evolution of the recurrent weights J due to correlated

input stimulation. The network corresponds to Fig. 3(b) with two

groups of N = 30 neurons each stimulated by only one pool of

30 inputs. Only input pool #1 has non-zero spike correlation. The

STDP parameters corresponded to W̃ < 0 and [W ∗ ζ](0) > 0.

Top: For each neuron, two grey lines represent the means of its

pre-synaptic recurrent weights coming from group #1, and from

group #2; the thick lines are the corresponding means over all the

neurons, i.e. (J̄11 + J̄21)/2 for the dashed line and (J̄12 + J̄22)/2
for the dotted line (the solid black line is J̄av). The weights com-

ing from group #1 became potentiated (dashed line), while the

weights coming from group #2 (dotted line) became depressed.

Bottom: Weight matrix J̄ after the emergence of the structure.

Lighter pixels indicate potentiated weights: the left side (with

means J̄11 and J̄21) has become more potentiated than the right

side (J̄12 and J̄22). The black diagonal corresponds to the non-

existent self-connections.

weights coming from the neuron group #1, see Fig. 3(b))

in the dynamical system of Eq. (4) will evolve in the same

direction, opposite to that for J̄12 and J̄22 (i.e. from group

#2). This results from two concomitant effects of STDP:

the mean pre-synaptic weight stabilises for each neuron

(i.e. the spiking-rate of each neuron reaches a stable equi-

librium), which implies in particular that J̄11 + J̄12 =
const., while the input correlation causes the difference

J̄11 − J̄12 to grow either positively or negatively, depend-

ing on the sign of [W ∗ ζ](0). Likewise for J̄21 and J̄22.

The weights J̄11 and J̄21 are potentiated if [W ∗ ζ](0) > 0
(cf. Eq. (7)), which means that neuron group #1 dominates

group #2 in the recurrent network, as illustrated in Fig. 4.

The converse situation happens when [W ∗ ζ](0) < 0.

Starting from initial homogeneous recurrent weights,

STDP causes them to split into a bimodal distribution,

which corresponds to the emergence of a feed-forward

pathway in the recurrent connections. The asymptotic val-

ues of the weight means for each subset (J̄11, . . . ) de-

pend on the bounds in a complex manner, since the weights

means J̄11, . . . , are separated while Jav is constrained to a

stable value. It was observed in general that the potentia-

tion of J̄21 was higher than that of J̄11, but further examina-

tion is necessary to understand the reason, which does not

clearly follow from the analysis of the system of equations.



5 Conclusion

We have shown that a simple model of STDP can cause

the recurrently connected weights to self-organise in a net-

work of Poisson neurons stimulated by two pools of ex-

ternal inputs, where only one pool has spike-time correla-

tion. The results indicate that while the mean of the weights

rapidly reaches a stable equilibrium, the input correlation

structure is captured by STDP so that a bimodal distribu-

tion of the recurrent weights emerges. This behaviour oc-

curs for a broad range of STDP parameters, in particular

win + wout > 0 and W̃ < 0, i.e. STDP is asymmetric

and induces more depression than potentiation for uncorre-

lated inputs. Moreover, the STDP window function W , the

PSP kernel ǫ and the recurrent delay d (assumed identical)

interplay through the sign of [W ∗ ζ](0) to determine the

splitting of the recurrent weights in the configuration we

consider.

Our results can be related to self-organising maps

[9, 10, 11]: after symmetry breaking on the input con-

nections [4, 5], the areas sensitive to a given input path-

way that conveys information (here correlation) develop

stronger within-group feedback (i.e. more synchronisation)

and takes over other areas which receive uncorrelated in-

puts (“no information”), under the condition [W ∗ ζ](0) >
0. In our model where the PSP kernel ǫ and the recurrent

delays (dij ≃ d) have a short duration compared to that of

W , the condition [W ∗ ζ](0) > 0 is satisfied for example

when the potentiation induced by W for small time lags

(near the origin) is stronger than the depression for similar

small time lags, i.e. W (0−) > |W (0+)|, as illustrated in

Fig. 1. A feed-forward pathway then emerges among the

recurrent connections.

Further studies are needed to gain a better understand-

ing of the weights dynamics due to STDP in recurrent net-

works, in particular in the interesting case of two balanced

correlated input pools. Minimal assumptions were delib-

erately made in order to obtain such a self-organisation

scheme; incorporating a cortically-realistic spatial distribu-

tion of connections (including inhibitory ones) could lead

to richer dynamics and consists of a natural extension of

our theoretical framework, towards a more faithful rep-

resentation of the cortical physiology. Studying the im-

pact of a change of neuron model, such as the Integrate-

and-Fire neuron, would also be of great interest since we

showed here that the short-time neuronal mechanisms take

part in determining the qualitative evolution of the recur-

rent weights.
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