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Introduction

Initially, this paper was motivated by developing a unified methodology for solving several types of (neither necessarily finite nor zero-sum) N -player games. But it is also of self-interest in optimization for minimizing the maximum of finitely many rational functions (whence min-max) on a compact basic semi-algebraic set. Briefly, the moment-s.o.s. approach developed in [START_REF] Lasserre | Global Optimization with Polynomials and the Problem of Moments[END_REF][START_REF] Lasserre | A semidefinite programming approach to the Generalized Problem of Moments[END_REF] is extended to two large classes of min-max problems. This allows to obtain a new numerical scheme based on semidefinite programming to compute approximately and sometimes exactly (1) Nash equilibria and the min-max of any finite game 1 and (2) the value and the optimal strategies of any polynomial two-player zero-sum game 2 . In particular, the approach can be applied to the so-called Loomis games defined in [START_REF] Loomis | On a Theorem of von Neumann[END_REF] and to some dynamic games described in Kolhberg [START_REF] Kohlberg | Repeated Games with Absorbing States[END_REF].

Background. Nash equilibrium [START_REF] Nash | Equilibrium Points in N -Person Games[END_REF] is a central concept in non-cooperative game theory. It is a profile of mixed strategies (a strategy for each player) such that each player is best-responding to the strategies of the opponents. An important problem is to compute numerically a Nash equilibrium, an approximate Nash equilibrium for a given precision or all Nash equilibria in mixed strategies of a finite game.

It is well known that any two-player zero-sum finite game (in mixed strategies) is reducible to a linear program (Dantzig [START_REF] Dantzig | Linear Programming and Extenstions[END_REF]) and hence equilibria could be computed in polynomial time (Khachiyan [20]).

Lemke and Howson [START_REF] Lemke | Equilibrium Points of Bimatrix Games[END_REF] provided a famous algorithm that computes a Nashequilibrium (in mixed strategies) of any 2-player non-zero-sum finite game. The algorithm has been extended to N -player finite games by Rosenmüller [START_REF] Rosenmüller | On a Generalization of the Lemke-Howson Algorithm to Non Cooperative N-Person Games[END_REF], Wilson [START_REF] Wilson | Computing Equilibria of N-Person Games[END_REF] and Govindan and Wilson [START_REF] Govindan | A Global Newton Method to Compute Nash Equilibria[END_REF].

An alternative to the Lemke-Howson algorithm for 2-player games is provided in van den Elzen and Talman [START_REF] Elzen | A Procedure for Finding Nash Equilibria in Bi-Matrix Games[END_REF] and has been extended to n-player games by Herings and van den Elzen [START_REF] Herings | Computation of the Nash Equilibrium Selected by the Tracing Procedure in N-Person Games[END_REF]. As shown in the recent survey of Herings and Peeters [START_REF] Herings | Homotopy Methods to Compute Equilibria in Game Theory[END_REF], all these algorithms (including the Lemke-Howson) are homotopy-based and converge (only) when the game is non-degenerate.

Recently, Savani and von Stengel [START_REF] Savani | Hard-to-Solve Bimatrix Games[END_REF] proved that the Lemke-Howson algorithm for 2-player games may be exponential. One may expect that this result extends to all known homotopy methods. Daskalakis, Goldberg and Papadimitriou [START_REF] Daskalakis | The Complexity of Computing a Nash Equilibrium[END_REF] proved that solving numerically 3-player finite games is hard 3 . The result has been extended to 2-player finite games by Chen and Deng [START_REF] Deng | Settling the Complexity of Two-Player Nash Equilibrium[END_REF]. Hence, computing a Nash equilibrium is as hard as finding a Brouwer-fixed point. For a recent and deep survey on the complexity of Nash equilibria see Papadimitriou [START_REF] Papadimitriou | On the Complexity of finding Nash Equilibria[END_REF]. For the complexity of computing equilibria on game theory in general, see [START_REF] Nisan | Algorithmic Game Theory[END_REF] and [START_REF] Roughgarden | Computing Equilibria: a Computational Complexity Perspective[END_REF].

A different approach to solve the problem is to view the set of Nash equilibria as the set of real nonnegative solutions to a system of polynomial equations. Methods of computational algebra (e.g. using Gröbner bases) can be applied as suggested and studied in e.g. Datta [START_REF] Datta | Finding all Nash Equilibria of a Finite Game Using Polynomial Algebra[END_REF], Lipton [START_REF] Lipton | Nash Equilibria via Polynomial Equations[END_REF] and Sturmfels [START_REF] Sturmfels | Solving Systems of Polynomial Equations[END_REF]. However, in this approach, one first computes all complex solutions to sort out all real nonnegative solutions afterwards. Interestingly, polynomial equations can also be solved via homotopy-based methods (see e.g. Verschelde [START_REF] Verschelde | PHCpack: A general-purpose solver for polynomial systems by homotopy continuation[END_REF]).

Another important concept in game theory is the min-max payoff of some player i, v i . This is the level at which the team of players (other than i) can punish player i. The concept plays an important role in repeated games and the famous folk theorem of Aumann and Shapley [START_REF] Aumann | Long-term competition-A game theoretic analysis[END_REF]. To our knowledge, no algorithm in the literature deals with this problem. However, it has been proved recently that computing the min-max for 3 or more player games is NP-hard [START_REF] Borgs | THe Mith of the Folk Theorem[END_REF].

The algorithms described above concern finite games. In the class of polynomial games introduced by Dresher, Karlin and [START_REF] Dresher | Polynomial Games, in Contributions to the Theory of Games[END_REF], the set of pure strategies S i of player i is a product of real intervals and the payoff function of each player is polynomial. When the game is zero-sum and S i = [0, 1] for each player i = 1, 2, Parrilo [START_REF] Parrilo | Polynomial Games and Sum of Squares Optimization[END_REF] showed that finding an optimal solution is equivalent to solving a single semidefinite program. In the same framework but with several players, Stein, Parrilo and Ozdaglar [START_REF] Stein | Correlated Equilibria in Continuous Games: Characterization and Computation[END_REF] propose several algorithms to compute correlated equilibria, one among them using SDP relaxations. Shah and Parrilo [START_REF] Shah | Polynomial Stochastic Games via Sum of Squares Optimization[END_REF] extended the methodology in [START_REF] Parrilo | Polynomial Games and Sum of Squares Optimization[END_REF] to discounted zero-sum stochastic games in which the transition is controlled by one of the two players. Finally, it is worth noticing recent algorithms designed to solve some specific classes of infinite games (not necessarily polynomial). For instance, Gürkan and Pang [START_REF] Gürkan | Approximations of Nash Equilibria[END_REF].

3 More precisely, it is complete in the PPAD class of all search problems that are guaranteed to exist by means of a direct graph argument. This class was introduced by Papadimitriou in [START_REF] Papadimitriou | On the Complexity of the Parity Argument and Other Inefficient Proofs of Existence[END_REF] and is between P and N P .

Contribution. In the first part we consider what we call the MRF problem which consists of minimizing the supremum of finitely many rational functions over a compact basic semi-algebraic set. In the spirit of the moment approach developed in Lasserre [START_REF] Lasserre | Global Optimization with Polynomials and the Problem of Moments[END_REF][START_REF] Lasserre | A semidefinite programming approach to the Generalized Problem of Moments[END_REF] for polynomial optimization, we define a hierarchy of semidefinite relaxations (in short SDP relaxations). Each SDP relaxation is a semidefinite program which, up to arbitrary (but fixed) precision, can be solved in polynomial time and the monotone sequence of optimal values associated with the hierarchy converges to the optimal value of MRF. Sometimes the convergence is finite and a sufficient condition permits to detect whether a certain relaxation in the hierarchy is exact (i.e. provides the optimal value), and to extract optimal solutions. It is shown that computing the min-max or a Nash equilibrium in mixed strategies for static finite games or dynamic finite absorbing games reduces to solving an MRF problem. For zero-sum finite games in mixed strategies the hierarchy of SDP relaxations for the associated MRF reduces to the first one of the hierarchy, which in turn reduces to a linear program. This is in support of the claim that the above MRF formulation is a natural extension to the non linear case of the well-known LP-approach [START_REF] Dantzig | Linear Programming and Extenstions[END_REF] as it reduces to the latter for finite zero-sum games. In addition, if the SDP solver uses primal-dual interior points methods and if the convergence is finite then the algorithm returns all Nash equilibria (if of course there are finitely many).

To compute all Nash equilibria, homotopy algorithms are developed in Kostreva and Kinard [START_REF] Kostreva | A Differential Homotopy Approach for Solving Polynomial Optimization Problems and Noncooperative Games[END_REF] and Herings and Peeters [START_REF] Herings | A Globally Convergent Algorithm to Compute all Nash Equilibria for n-Person Games[END_REF]. They apply numerical techniques to obtain all solutions of a system of polynomial equations.

In the second part, we consider general 2-player zero-sum polynomial games in mixed strategies (whose action sets are basic compact semi-algebraic sets of R n and payoff functions are polynomials). We show that the common value of max-min and min-max problems can be approximated as closely as desired, again by solving a certain hierarchy of SDP relaxations. Moreover, if a certain rank condition is satisfied at an optimal solution of some relaxation of the hierarchy, then this relaxation is exact and one may extract optimal strategies. Interestingly and not surprisingly, as this hierarchy is derived from a min-max problem over sets of measures, it is a subtle combination of moment and sums of squares (s.o.s.) constraints whereas the hierarchy for polynomial optimization is based on either moments (primal formulation) or s.o.s. (dual formulation) but not both. This is a multivariate extension of Parrilo's [START_REF] Parrilo | Polynomial Games and Sum of Squares Optimization[END_REF] result for the univariate case where one needs to solve a single semidefinite program (as opposed to a hierarchy). The approach may be extended to dynamic absorbing games 4 with discounted rewards, and in the univariate case, one can construct a polynomial time algorithm that combines a binary search with a semidefinite program.

Hence the first main contribution is to formulate several game problems as a particular instance of the MRF problem while the second main contribution extends the moment-s.o.s. approach of [START_REF] Lasserre | Global Optimization with Polynomials and the Problem of Moments[END_REF][START_REF] Lasserre | A semidefinite programming approach to the Generalized Problem of Moments[END_REF] in two directions. The first extension ( the MRF problem) is essentially a non trivial adaptation of Lasserre's approach [START_REF] Lasserre | Global Optimization with Polynomials and the Problem of Moments[END_REF] to the problem of minimizing the sup of finitely many rational functions. Notice that the sup of finitely many rational functions is not a rational function. However one reduces the initial problem to that of minimizing a single rational function 4 In dynamic absorbing games, transitions are controlled by both players, in contrast with Parrilo and Shah [START_REF] Shah | Polynomial Stochastic Games via Sum of Squares Optimization[END_REF] where only one player controls the transitions.

(but now of n + 1 variables) on an appropriate set of R n+1 . As such, this can also be viewed as an extension of Jibetean and De Klerk's result [START_REF] Jibetean | Global optimization of rational functions: an SDP approach[END_REF] for minimizing a single rational function. The second extension generalizes (to the multivariate case) Parrilo's approach [START_REF] Parrilo | Polynomial Games and Sum of Squares Optimization[END_REF] for the univariate case, and provides a hierarchy of mixed moment-s.o.s. SDP relaxations. The proof of convergence is delicate as one has to consider simultaneously moment constraints as well as s.o.s.-representation of positive polynomials. (In particular, and in contrast to polynomial optimization, the converging sequence of optimal values associated with the hierarchy of SDP relaxations is not monotone anymore.)

To conclude, within the game theory community the rather negative computational complexity results ( [START_REF] Borgs | THe Mith of the Folk Theorem[END_REF], [START_REF] Daskalakis | The Complexity of Computing a Nash Equilibrium[END_REF], [START_REF] Deng | Settling the Complexity of Two-Player Nash Equilibrium[END_REF], [START_REF] Roughgarden | Computing Equilibria: a Computational Complexity Perspective[END_REF], [START_REF] Savani | Hard-to-Solve Bimatrix Games[END_REF]) have reinforced the idea that solving a game is computationally hard. On a more positive tone our contribution provides a unified semidefinite programming approach to many game problems. It shows that optimal value and optimal strategies can be approximated as closely as desired (and sometimes obtained exactly) by solving a hierarchy of semidefinite relaxations, very much in the spirit of the moment approach described in [START_REF] Lasserre | Global Optimization with Polynomials and the Problem of Moments[END_REF] for solving polynomial minimization problems (a particular instance of the Generalized Problem of Moments [START_REF] Lasserre | A semidefinite programming approach to the Generalized Problem of Moments[END_REF]). Moreover, the methodology is consistent with previous results of [START_REF] Dantzig | Linear Programming and Extenstions[END_REF] and [START_REF] Parrilo | Polynomial Games and Sum of Squares Optimization[END_REF] as it reduces to a linear program for finite zero-sum games and to a single semidefinite program for univariate polynomial zero-sum games.

Finally, even if practice from problems in polynomial optimization seems to reveal that this approach is efficient, of course the size of the semidefinite relaxations grows rapidly with the initial problem size. Therefore, in view of the present status of public SDP solvers available, its application is limited to small and medium size problems so far.

Quoting Papadimitriou [START_REF] Papadimitriou | On the Complexity of finding Nash Equilibria[END_REF]: "The PPAD-completeness of Nash suggests that any approach to finding Nash equilibria that aspires to be efficient [...] should explicitly take advantage of computationally beneficial special properties of the game in hand ". Hence to make our algorithm efficient for larger size problems, one could exploit possible sparsity and regularities often present in the data (which will be the case if the game is the normal form of an extensive form game). Indeed specific SDP relaxations for minimization problems that exploit sparsity efficiently have been provided in Kojima et al. [START_REF] Waki | Sums of Squares and Semidefinite Programming Relaxations for Polynomial Optimization Problems with Structured Sparsity[END_REF] and their convergence has been proved in [START_REF] Lasserre | Convergent SDP-relaxations in polynomial optimization with sparsity[END_REF] under some condition on the sparsity pattern.

Notation and preliminary results

2.1. Notation and definitions. Let R[x] be the ring of real polynomials in the variables x = (x 1 , . . . , x n ) and let (X α ) α∈N be its canonical basis of monomials. Denote by Σ[x] ⊂ R[x] the subset (cone) of polynomials that are sums of squares (s.o.s.), and by R[x] d the space of polynomials of degree at most d. Finally let x denote the Euclidean norm of x ∈ R n .

With y =: (y α ) ⊂ R being a sequence indexed in the canonical monomial basis (X α ), let L y : R[x] → R be the linear functional

f (= α∈N n f α x α ) -→ α∈N n f α y α , f ∈ R[x].
Moment matrix. Given y = (y α ) ⊂ R, the moment matrix M d (y) of order d associated with y, has its rows and columns indexed by (x α ) and its (α, β)-entry is defined by:

M d (y)(α, β) := L y (x α+β ) = y α+β , |α|, |β| ≤ d.
Localizing matrix. Similarly, given y = (y α ) ⊂ R and θ ∈ R[x] (= γ θ γ x γ ), the localizing matrix M d (θ, y) of order d associated with y and θ, has its rows and columns indexed by (x α ) and its (α, β)-entry is defined by:

M d (θ, y)(α, β) := L y (x α+β θ(x)) = γ θ γ y γ+α+β , |α|, |β| ≤ d.
One says that y = (y α ) ⊂ R has a representing measure supported on K if there is some finite Borel measure µ on K such that

y α = K x α dµ(x), ∀ α ∈ N n .
For later use, write

M d (y) = α∈N n y α B α (2.1) M d (θ, y) = α∈N n y α B θ α , (2.2)
for real symmetric matrices (B α , B θ α ) of appropriate dimensions. Note that the above two summations contain only finitely many terms.

Definition 2.1 (Putinar's property). Let (g j ) m j=1 ⊂ R[x]. A basic closed semi algebraic set K := {x ∈ R n : g j (x) ≥ 0, : j = 1, . . . , m} satisfies Putinar's property if there exists u ∈ R[x] such that {x : u(x) ≥ 0} is compact and (2.3) u = σ 0 + m j=1
σ j g j for some s.o.s. polynomials (σ j ) m j=0 ⊂ Σ[x]. Equivalently, for some M > 0 the quadratic polynomial x → M -x 2 has Putinar's representation (2.3). Obviously Putinar's property implies compactness of K. However, notice that Putinar's property is not geometric but algebraic as it is related to the representation of K by the defining polynomials (g j )'s. Putinar's property holds if e.g. the level set {x : g j (x) ≥ 0} is compact for some j, or if all g j are affine and K is compact (in which case it is a polytope). In case it is not satisfied and if for some known M > 0, x 2 ≤ M whenever x ∈ K, then it suffices to add the redundant quadratic constraint g m+1 (x) := M -x 2 ≥ 0 to the definition of K. The importance of Putinar's property stems from the following result:

Theorem 2.2 (Putinar [38]). Let (g j ) m j=1 ⊂ R[x] and assume that K := { x ∈ R n : g j (x) ≥ 0, j = 1, . . . , m} satisfies Putinar's property. (a) Let f ∈ R[x]
be strictly positive on K. Then f can be written as u in (2.3). (b) Let y = (y α ). Then y has a representing measure on K if and only if

(2.4) M d (y) 0, M d (g j , y) 0, j = 1, . . . , m; d = 0, 1, . . .
We also have:

Lemma 2.3. Let K ⊂ R n be compact and let p, q continuous with q > 0 on K. Let M (K) be the set of finite Borel measures on K and let P (K) ⊂ M (K) be its subset of probability measures on K. Then

min µ∈P (K) K p dµ K q dµ = min ϕ∈M(K) { K p dϕ : K q dϕ = 1} (2.5) = min µ∈P (K) K p q dµ = min x∈K p(x) q(x) (2.6) Proof. Let ρ * := min x {p(x)/q(x) : x ∈ K}. As q > 0 on K, K p dµ K q dµ = K (p/q) q dµ K q dµ ≥ ρ * . Hence if µ ∈ P (K) then K (p/q)dµ ≥ ρ * K dµ = ρ * .
On the other hand, with x * ∈ K a global minimizer of p/q on K, let µ := δ x * ∈ P (K) be the Dirac measure at x = x * . Then K pdµ/ K qdµ = p(x * )/q(x * ) = K (p/q)dµ = ρ * , and therefore min µ∈P (K)

K pdµ K qdµ = min µ∈P (K) K p q dµ = min x∈K : p(x) q(x) = ρ * .
Next, for every ϕ ∈ M (K) with K qdϕ = 1, K p dϕ ≥ K ρ * q dϕ = ρ * , and so min ϕ∈M(K) { K p dϕ

: K q dϕ = 1} ≥ ρ * . Finally taking ϕ := q(x * ) -1 δ x * yields K qdϕ = 1 and K p dϕ = p(x * )/q(x * ) = ρ * .
Another way to see why this is true is throughout the following argument. The function µ → R K p dµ R K q dµ is quasi-concave (and also quasi-convex) so that the optimal value of the minimization problem is achieved on the boundary.

Minimizing the max of finitely many rational functions

Let K ⊂ R n be the basic semi-algebraic set (3.1)

K := {x ∈ R n : g j (x) ≥ 0, j = 1, . . . , p}
for some polynomials (g j ) ⊂ R[x], and let f i = p i /q i be rational functions, i = 0, 1, . . . , m, with p i , q i ∈ R[x]. We assume that:

• K satisfies Putinar's property (see Definition 2.1) and,

• q i > 0 on K for every i = 0, . . . , m.

Consider the following problem denoted by MRF:

(3.2) MRF : ρ := min x {f 0 (x) + max i=1,...,m f i (x) : x ∈ K },
or, equivalently,

(3.3) MRF : ρ = min x,z {f 0 (x) + z : z ≥ f i (x), i = 1, . . . , m; x ∈ K }. With K ⊂ R n as in (3.1), let K ⊂ R n+1 be the basic semi algebraic set (3.4) K := {(x, z) ∈ R n × R : x ∈ K; z q i (x) -p i (x) ≥ 0, i = 1, . . . , m}
and consider the new infinite-dimensional optimization problem (3.5)

P : ρ := min µ { K (p 0 + z q 0 ) dµ : K q 0 dµ = 1, µ ∈ M ( K)}
where M ( K) is the set of finite Borel measures on K. Problem (3.5) is a particular instance of the Generalized Problem of Moments for which a general methodology (based on a hierarchy of semidefinite relaxations) has been described in [START_REF] Lasserre | A semidefinite programming approach to the Generalized Problem of Moments[END_REF]. To make the paper self-contained we explain below how to apply this methodology in the above specific context.

Proposition 3.1. Let K ⊂ R n be as in (3.1). Then ρ = ρ.

Proof. The following upper and lower bounds

z := min i=1,...,m min x∈K f i (x); z := max i=1,...,m max x∈K f i (x),
are both well-defined since K is compact and q i > 0 on K for every i = 1, . . . , m.

Including the additional constraint z ≤ z ≤ z in the definition of K makes it compact without changing the value of ρ. Next observe that

(3.6) ρ = min (x,z) p 0 (x) + zq 0 (x) q 0 (x) : (x, z) ∈ K .
Applying Lemma 2.3 with K in lieu of K, and with (x, z) → p(x, z) := p 0 (x)+zq 0 (x) and (x, z) → q(x, z) := q 0 (x), yields the desired result.

Remark 3.2. (a) When m = 0, that is when one wishes to minimize the rational function f 0 on K, then P reads min µ { K f 0 dµ : K q 0 dµ = 1; µ ∈ M (K)}. Using the dual problem P * : max {z : p 0 (x) -zq 0 (x) ≥ 0 ∀x ∈ K}, Jibetean and DeKlerk [START_REF] Jibetean | Global optimization of rational functions: an SDP approach[END_REF] proposed to approximate the optimal value by solving a hierarchy of semidefinite relaxations. The case m ≥ 2 is a nontrivial extension of the case m = 0 because one now wishes to minimize on K a function which is not a rational function.

However, by adding an extra variable z, one obtains the moment problem (3.5), which indeed is the same as minimizing the rational function (x, z) → p0(x)+z q0(x) q0(x) on a domain K ⊂ R n+1 . And the dual of P now reads max {ρ : p 0 (x) + zq 0 (x)ρq 0 (x) ≥ 0 ∀(x, z) ∈ K}. Hence if K is compact and satisfies Putinar's property one may use the hierarchy of semidefinite relaxations defined in [START_REF] Jibetean | Global optimization of rational functions: an SDP approach[END_REF] and adapted to this specific context; see also [START_REF] Lasserre | A semidefinite programming approach to the Generalized Problem of Moments[END_REF].

(b) The case m = 1 (i.e., when one wants to minimize the sum of rational functions f 0 + f 1 on K) is also interesting. One way is to reduce to the same denominator q 0 × q 1 and minimize the rational function (p 0 q 1 + p 1 q 0 )/q 0 q 1 . But then the first SDP relaxation of [START_REF] Lasserre | A semidefinite programming approach to the Generalized Problem of Moments[END_REF][START_REF] Jibetean | Global optimization of rational functions: an SDP approach[END_REF] would have to consider polynomials of degree at least d := max[deg p 0 + deg q 1 , deg p 1 + deg q 0 , deg q 0 + deg q 1 ], which may be very penalizing when q 0 and q 1 have large degree (and sometimes it may even be impossible!). Indeed this SDP relaxation has as many as O(n d ) variables and a linear matrix inequality of size O(n ⌈d/2⌉ ). In contrast, by proceeding as above in introducing the additional variable z, one now minimizes the rational function (p 0 + zq 0 )/q 0 which may be highly preferable since the first relaxation only considers polynomials of degree bounded by max[deg p 0 , 1 + deg q 0 ] (but now in n + 1 variables). For instance, if deg

p i = deg q i = v, i = 1, 2, then one has O(n v+1 ) variables instead of O(n 2v
) variables in the former approach.

We next describe how to solve the MRF problem via a hierarchy of semidefinite relaxations.

SDP relaxations for solving the MRF problem. As K is compact and q i > 0 on K, for all i, let (3.7)

M 1 := max i=1,...,m max{|p i (x)|, x ∈ K} min{q i (x), x ∈ K} , and 
(3.8) M 2 := min i=1,...,m min{p i (x), x ∈ K} max{q i (x), x ∈ K} .
Redefine the set K to be (3.9)

K := {(x, z) ∈ R n × R : h j (x, z) ≥ 0, j = 1, . . . p + m + 1} with (3.10)    (x, z) → h j (x, z) := g j (x) j = 1, . . . , p (x, z) → h j (x, z) := z q j (x) -p j (x) j = p + 1, . . . , p + m (x, z) → h j (x, z) := (M 1 -z)(z -M 2 ) j = m + p + 1 . Lemma 3.3. Let K ⊂ R n satisfy Putinar's property. Then the set K ⊂ R n+1
defined in (3.9) satisfies Putinar's property.

Proof. Since K satisfies Putinar's property, equivalently, the quadratic polynomial

x → u(x) := M -x 2 can be written in the form (2.3), i.e., u(x) = σ 0 (x) + p j=1 σ j (x)g j (x) for some s.o.s. polynomials (σ j ) ⊂ Σ[x]. Next, consider the quadratic polynomial (x, z) → w(x, z) = M -x 2 + (M 1 -z)(z -M 2 ).
Obviously, its level set {x : w(x, z) ≥ 0} ⊂ R n+1 is compact and moreover, w can be written in the form

w(x, z) = σ 0 (x) + p j=1 σ j (x) g j (x) + (M 1 -z)(z -M 2 ) = σ ′ 0 (x, z) + m+p+1 j=1 σ ′ j (x, z) h j (x, z)
for appropriate s.o.s. polynomials (σ ′ j ) ⊂ Σ[x, z]. Therefore K satisfies Putinar's property in Definition 2.1, the desired result.

We are now in position to define the hierarchy of semidefinite relaxations for solving the MRF problem. Let y = (y α ) be a real sequence indexed in the monomial basis (x

β z k ) of R[x, z] (with α = (β, k) ∈ N n × N).
Let h 0 (x, z) := p 0 (x)+zq 0 (x), and let v j := ⌈(deg h j )/2⌉ for every j = 0, . . . , m+ p + 1. For r ≥ r 0 := max j=0,...,p+m+1 v j , introduce the hierarchy of semidefinite programs:

(3.11) Q r :        min y L y (h 0 ) s.t. M r (y) 0 M r-vj (h j , y) 0, j = 1, . . . , m + p + 1 L y (q 0 ) = 1,
with optimal value denoted inf Q r (and min Q r if the infimum is attained).

Theorem 3.4. Let K ⊂ R n (compact) be as in (3.1). Let Q r be the semidefinite program (3.11) with (h j ) ⊂ R[x, z] and M 1 , M 2 defined in (3.10) and (3.7)- (3.8) respectively. Then:

(a) inf Q r ↑ ρ as r → ∞.
(b) Let y r be an optimal solution of the SDP relaxation Q r in (3.11). If

(3.12) rank M r (y r ) = rank M r-r0 (y r ) = t
then min Q r = ρ and one may extract t points (x * (k)) t k=1 ⊂ K, all global minimizers of the MRF problem.

(c) Let y r be a nearly optimal solution of the SDP relaxation (3.11) (3.6) has a unique global minimizer x * ∈ K then the vector of first-order moments (L y r (x 1 ), . . . , L y r (x n )) converges to x * as r → ∞.

(with say inf Q r ≤ L y r ≤ inf Q r + 1/r. If
Proof. As already mentioned in Remark 3.2, convergence of the dual of the semidefinite relaxations (3.11) was first proved in Jibetean and de Klerk [START_REF] Jibetean | Global optimization of rational functions: an SDP approach[END_REF] for minimizing a rational function on a basic compact semi-algebraic set (in our context, for minimizing the rational function (x, z) → (p 0 (x) + zq 0 (x))/q 0 (x) on the set K ⊂ R n+1 ). See also [26, §4.1] and [START_REF] Lasserre | Moments and sums of squares for polynomial optimization and related problems[END_REF]Theor. 3.2]. In particular to get (b) see [START_REF] Lasserre | Moments and sums of squares for polynomial optimization and related problems[END_REF]Theor. 3.4]. The proof of (c) is easily adapted from Schweighofer [START_REF] Schweighofer | Optimization of polynomials on compact semialgebraic sets[END_REF].

Remark 3.5. Hence, by Theorem 3.4(b), when finite convergence occurs one may extract t := rank M r (y) global minimizers. On the other hand, a generic MRF problem has a unique global minimizer x * ∈ K and in this case, even when the convergence is only asymptotic, one may still obtain an approximation of x * (as closely as desired) from the vector of first-order moments (L y r (x 1 ), . . . , L y r (x n )). For instance, one way to have a unique global minimizer is to ǫ-perturb the objective function of the MRF problem by some randomly generated polynomial of a sufficiently large degree, or to slightly perturb the coefficients of the data (h i , g j ) of the MRF problem.

To solve (3.11) one may use e.g. the Matlab based public software GloptiPoly 3 [START_REF] Henrion | GloptiPoly 3: Moments, Optimization and Semidefinite Programming[END_REF] dedicated to solve the generalized problem of moments described in [START_REF] Lasserre | A semidefinite programming approach to the Generalized Problem of Moments[END_REF]. It is an extension of GloptiPoly [START_REF] Henrion | GloptiPoly : Global Optimization over Polynomials with Matlab and SeDuMi[END_REF] previously dedicated to solve polynomial optimization problems. A procedure for extracting optimal solutions is implemented in Gloptipoly when the rank condition (3.12) is satisfied 5 . For more details the interested reader is referred to [START_REF] Henrion | GloptiPoly 3: Moments, Optimization and Semidefinite Programming[END_REF] and www.laas.fr/∼henrion/software/. Remark 3.6. If g j is affine for every j = 1, . . . , p and if p j is affine and q j ≡ 1 for every j = 0, . . . , m, then h j is affine for every j = 0, . . . , m. One may also replace the single quadratic constraint

h m+p+1 (x, z) = (M 1 -z)(z -M 2 ) ≥ 0 with the two equivalent linear constraints h m+p+1 (x, z) = M 1 -z ≥ 0 and h m+p+2 (x, z) = z -M 2 ≥ 0.
In this case, it suffices to solve the single semidefinite relaxation Q 1 , 5 In fact GloptiPoly 3 extracts all solutions because most SDP solvers that one may call in GloptiPoly 3 (e.g. SeDuMi) use primal-dual interior points methods with the self-dual embedding technique which find an optimal solution in the relative interior of the set of optimal solutions; see [27, §4.4.1, p. 663]. In the present context of (3.11) this means that at an optimal solution y * , the moment matrix Mr(y * ) has maximum rank and its rank corresponds to the number of solutions.

which is in fact a linear program. Indeed, for r = 1, y = (y 0 , (x, z), Y ) and

M 1 (y) =     y 0 | (x z) - - x z | Y     .
Then (3.11) reads

Q 1 :        min y h 0 (x) s.t. M 1 (y) 0 h j (x, z) ≥ 0, j = 1, . . . , m + p + 2 y 0 = 1.
.

As v j = 1 for every j, M 1-1 (h j , y) 0 ⇔ M 0 (h j , y) = L y (h j ) = h j (x, z)
≥ 0, a linear constraint. Hence the constraint M 1 (y) 0 can be discarded as given any (x, z) one may always find Y such that M 1 (y) 0. Therefore, (3.11) is a linear program. This is fortunate for finite zero-sum games applications since computing the value is equivalent to minimizing a maximum of finitely many linear functions (and it is already known that it can be solved by Linear Programming).

Applications to finite games

In this section we show that several solution concepts of static and dynamic finite games reduce to solving the MRF problem (3.2). Those are just examples and one expects that such a reduction also holds in a much larger class of games (when they are described by finitely many scalars).

Standard static games.

A finite game is a tuple (N, S i i=1,...,N , g i i=1,...,N ) where N ∈ N is the set of players, S i is the finite set of pure strategies of player i and g i : S → R is the payoff function of player i, where S := S 1 × ... × S N . The set

∆ i = p i (s i ) s i ∈S i : p i (s i ) ≥ 0, s i ∈S i p i (s i ) = 1
of probability distributions over S i is called the set of mixed strategies of player i.

Notice that ∆ i is a compact basic semi-algebraic set. If each player j chooses the mixed strategy p j (•), the vector denoted p = p 1 , ..., p N ∈ ∆ : = ∆ 1 × ... × ∆ N is called a profile of mixed strategies and the expected payoff of a player i is

g i (p) = s=(s 1 ,...,s N )∈S p 1 (s 1 ) × ... × p i (s i ) × ... × p N (s N )g i (s).
This is nothing but the multi-linear extension of g i . For a player i, and a profile p, let p -i be the profile of the other players except i: that is p -i = (p 1 , ..., p i-1 , p i+1 , ..., p N ). Let S -i = S 1 × ... × S i-1 × S i+1 × ... × S N and define

g i (s i , p -i ) = s -i ∈S -i p 1 (s 1 ) × ... × p i-1 (s i-1 ) × p i+1 (s i+1 ) × ... × p N (s N )g i (s),
where s -i := (s 1 , ..., s i-1 , s i+1 , ..., s N ) ∈ S -i .

A profile p 0 is a Nash [START_REF] Nash | Equilibrium Points in N -Person Games[END_REF] equilibrium if and only for all i = 1, ..., N and all s i ∈ S i , g i (p 0 ) ≥ g i (s i , p -i 0 ) or equivalently if:

(4.1) p 0 ∈ arg min p∈∆ max i=1,...,N max s i ∈S i g i (s i , p -i 0 ) -g i (p 0 ) .
Since each finite game admits at least one Nash equilibrium [START_REF] Nash | Equilibrium Points in N -Person Games[END_REF], the optimal value of the min-max problem (4.1) is zero. Notice that (4.1) is a particular instance of the MRF problem (3.2) (with a set K = ∆ that satisfies Putinar's property and with q i = 1 for every i = 0, . . . , m), and so Theorem 3.4 applies. Finally, observe that the number m of polynomials in the inner double "max" of (4.1) (or, equivalently, m in (3.2)) is just m = n i=1 |S i |, i.e., m is just the total number of all possible actions.

Hence by solving the hierarchy of SDP relaxations (3.11), one can approximate the value of the min-max problem as closely as desired. In addition, if (3.12) is satisfied at some relaxation Q r , then one may extract all the Nash equilibria of the game.

If there is a unique equilibrium p * then by Theorem 3.4(c), one may obtain a solution arbitrary close to p * and so obtain an ǫ-equilibrium in finite time. Since game problems are not generic MRF problems, they have potentially several equilibria which are all global minimizers of the associated MRF problem. Also, perturbing the data of a finite game still leads to a non generic associated MRF problem with possibly multiple solutions. However, as in Remark 3.5, one could perturb the MRF problem associated with the original game problem to obtain (generically) an ǫ-perturbed MRF problem with a unique optimal solution. Notice that the ǫ-perturbed MRF is not necessarily coming from a finite game. Doing so, by Theorem 3.4(c), one obtains a sequence that converges asymptotically (and sometimes in finitely many steps) to an ǫ-equilibrium of the game problem. Recently, Lipton, Markakis and Mehta [START_REF] Lipton | Playing Large Games Using Simple Strategies[END_REF] provided an algorithm that computes an ǫ-equilibrium in less than exponential time but still not polynomial (namely n logn ǫ 2

where n is the total number of strategies). This promising result yields Papadimitriou [START_REF] Papadimitriou | On the Complexity of finding Nash Equilibria[END_REF] to argue that "finding a mixed Nash equilibrium is PPAD-complete raises some interesting questions regarding the usefulness of Nash equilibrium, and helps focus our interest in alternative notions (most interesting among them the approximate Nash equilibrium)".

Example 4.1. Consider the simple illustrative example of a 2 × 2 game with data

s 2 1 s 1 2 s 1 1 (a, c) (0, 0) s 1 2 (0, 0) (b, d)
for some scalars (a, b, c, d). Denote x1 ∈ [0, 1] the probability for player 1 of playing s 1 1 and x2 ∈ [0, 1] the probability for player 2 of playing s 2 1 . Then one must solve min

x 1 ,x 2 ∈[0,1] max 8 > > < > > : ax1 -ax1x2 -b(1 -x1)(1 -x2) b(1 -x2) -ax1x2 -b(1 -x1)(1 -x2) cx1 -cx1x2 -d(1 -x1)(1 -x2) d(1 -x1) -cx1x2 -d(1 -x1)(1 -x2)
.

We have solved the hierarchy of semidefinite programs (3.11) with GloptiPoly 3 [START_REF] Henrion | GloptiPoly 3: Moments, Optimization and Semidefinite Programming[END_REF]. For instance, the moment matrix M1(y) of the first SDP relaxation Q1 reads M1(y) = 2 6 6 4 y0 y100 y010 y001 y100 y200 y010 y001 y010 y110 y020 y011 y001 y101 y011 y002 

8 > > > > > > > > > > > < > > > > > > > > > > > : min y y001 s.t. M1(y) 0 y001 -ay100 + ay110 + b(y0 -y100 -y010 + y110) ≥ 0 y001 -by0 + by010 + ay110 + b(y0 -y100 -y010 + y110) ≥ 0 y001 -cy100 + cy110 + d(y0 -y100 -y010 + y110) ≥ 0 y00 -dy0 + dy100 + cy110 + d(y0 -y100 -y010 + y110) ≥ 0 y100 -y200 ≥ 0; y010 -y020 ≥ 0; 9 -y002 ≥ 0 y0 = 1 .
With (a, b, c, d) = (0.05, 0.82, 0.56, 0.76), solving Q3 yields the optimal value 3.93.10 -11 and the three optimal solutions (0, 0), (1, 1) and (0.57575, 0.94253). With randomly generated a, b, c, d ∈ [0, 1] we also obtained a very good approximation of the global optimum 0 and 3 optimal solutions in most cases with r = 3 (i.e. with moments or order 6 only) and sometimes r = 4.

We have also solved 2-player non-zero-sum p×q games with randomly generated reward matrices A, B ∈ R p×q and p, q ≤ 5. We could solve (5, 2) and (4, q) (with q ≤ 3) games exactly with the 4th (sometimes 3rd) SDP relaxation, i.e. inf Q4 = O(10 -10 ) ≈ 0 and one extracts an optimal solution6 . However, the size is relatively large and one is close to the limit of present public SDP solvers like SeDuMi. Indeed, for a 2-player (5, 2) or (4, 3) game, Q3 has 923 variables and M3(y) ∈ R 84×84 , whereas Q4 has 3002 variables and M4(y) ∈ R 210×210 . For a (4, 4) game Q3 has 1715 variables and M3(y) ∈ R 120×120 and Q3 is still solvable, whereas Q4 has 6434 variables and M4(y) ∈ R 330×330 .

Finally we have also solved randomly generated instances of 3-player non-zero sum games with (2, 2, 2) actions and (3, 3, 2) actions. In all (2, 2, 2) cases the 4th relaxation Q4 provided the optimal value and the rank-test (3.12) was passed (hence allowing to extract global minimizers). For the (3, 3, 2) games, the third relaxation Q3 was enough in 30% of cases and the fourth relaxation Q4 in 80% of cases.

Another important concept in game theory is the min-max payoff v i which plays an important role in repeated games (Aumann and Shapley [START_REF] Aumann | Long-term competition-A game theoretic analysis[END_REF]):

v i = min p -i ∈∆ -i max s i ∈S i g i (s i , p -i )
where ∆ -i = ∆ 1 ×...×∆ i-1 ×∆ i+1 ×...×∆ N . This is again a particular instance of the MRF problem (3.2). Hence, it seems more difficult to compute the approximate min-max strategies compared to approximate Nash equilibrium strategies because we do not know in advance the value of v i while we know that the min-max value associated to the Nash problem is always zero. This is not surprising: in theory, computing a Nash-equilibrim is PPAD-complete [START_REF] Papadimitriou | On the Complexity of finding Nash Equilibria[END_REF] while computing the min-max is NP-hard [START_REF] Borgs | THe Mith of the Folk Theorem[END_REF]. In the case of two players, the function g i (s i , p -i ) is linear in p -i . By remark 3.6 it suffices to solve the first relaxation Q 1 , a linear program.

Remark 4.2. The Nash equilibrium problem may be reduced to solving a system of polynomial equations (see e.g. [START_REF] Datta | Finding all Nash Equilibria of a Finite Game Using Polynomial Algebra[END_REF]). In the same spirit, an alternative for the Nash-equilibrium problem (but not for the MRF problem in general) is to apply the moment approach described in Lasserre et al. [START_REF] Lasserre | Semidefinite characterization and computation of zero-dimensional real radical ideals[END_REF] for finding real roots of polynomial equations. If there are finitely many Nash equilibria then its convergence is finite and in contrast with the algebraic methods [START_REF] Datta | Finding all Nash Equilibria of a Finite Game Using Polynomial Algebra[END_REF][START_REF] Lipton | Nash Equilibria via Polynomial Equations[END_REF][START_REF] Sturmfels | Solving Systems of Polynomial Equations[END_REF] mentioned above, it provides all real solutions without computing all complex roots. 4.2. Loomis games. Loomis [START_REF] Loomis | On a Theorem of von Neumann[END_REF] extended the min-max theorem to zero-sum games with a rational fraction. His model may be extended to N -player games as follows. Our extension is justified by the next section.

Associated with each player i ∈ N are two functions g i : S → R and f i : S → R where f i > 0 and S := S 1 × ... × S N . With same notation as in the last section, let their multi-linear extension to ∆ still be denoted by g i and f i . That is, for p ∈ ∆, let:

g i (p) = s=(s 1 ,...,s N )∈S p 1 (s 1 ) × ... × p i (s i ) × ... × p N (s N )g i (s).
and similarly for f i .

Definition 4.3. A Loomis game is defined as follows. The strategy set of player

i is ∆ i and if the profile p ∈ ∆ is chosen, his payoff function is h i (p) = g i (p) f i (p) .
One can show the following new lemma 7 .

Lemma 4.4. A Loomis game admits a Nash equilibrium 8 .

Proof. Note that each payoff function is quasi-concave in p i (and also quasi-convex so that it is a quasi-linear function). Actually, if h i (p i 1 , p -i ) ≥ α and h i (p i 2 , p -i ) ≥ α then for any δ ∈ [0, 1],

g i (δp i 1 + (1 -δ)p i 2 , p -i ) ≥ f i (δp i 1 + (1 -δ)p i 2 , p -i )α, so that h i (δp i 1 + (1 -δ)p i 2 , p -i ) ≥ α.
One can now apply Glicksberg's [START_REF] Glicksberg | A Further Generalization of the Kakutani Fixed Point Theorem with Applications to Nash Equilibrium Points[END_REF] theorem because the strategy sets are compact, convex, and the payoff functions are quasiconcave and continuous. 

s i ∈S i h i (s i , p -i ) -h i (p) .
7 As far as we know, non-zero sum Loomis games are not considered in the literature. This model could be of interest in situations where there are populations with many players. A mixed strategy for a population describes the proportion of players in the population that uses some pure action. g i (p) is the non-normalized payoff of population i and f i (p) may be interpreted as the value of money for population i so that h i (p) = g i (p) f i (p) is the normalized payoff of population i. 8 Clearly, the lemma and its proof still hold in infinite games where the sets S i are convexcompact-metric and the functions f i and g i are continuous. The summation in the multi-linear extension should be replaced by an integral.

Proof. Clearly, p 0 ∈ ∆ is an equilibrium of the Loomis game if and only if

p 0 ∈ arg min p∈∆ max i=1,...,N max e p i ∈∆ i g( p i , p -i ) f i ( p i , p -i ) - g i (p) f i (p) .
Using the quasi-linearity of the payoffs or Lemma 2.3, one deduces that:

max e p i ∈∆ i g i ( p i , p -i ) f i ( p i , p -i ) = max s i ∈S i g i (s i , p -i ) f i (s i , p -i )
which is the desired result.

Again, the min-max optimization problem (4.2) is a particular instance of the MRF problem (3.2) and so can be solved via the hierarchy of semidefinite relaxations (3.11). Notice that in (4.2) one has to minimize the supremum of rational functions (in contrast to the supremum of polynomials in (4.1)). 4.3. Finite absorbing games. This subclass of stochastic games has been introduced by Kohlberg [START_REF] Kohlberg | Repeated Games with Absorbing States[END_REF]. The following formulas are established in [START_REF] Laraki | Explicit Formulas for Repeated Games with Absorbing States[END_REF]. It shows that absorbing games could be reduced to Loomis games. An N -player finite absorbing game is defined as follows.

As above, there are N finite sets (S 1 , ..., S N ). There are two functions g i : S → R and f i : S → R associated to each player i ∈ {1, ..., N } and a probability transition function q : S → [0, 1].

The game is played in discrete time as follows. At each stage t = 1, 2, ..., if the game has not been absorbed before that day, each player i chooses (simultaneously) at random an action s i t ∈ S i . If the profile s t = (s 1 t , ..., s N t ) is chosen, then: (i) the payoff of player i is g i (s t ) at stage t. (ii) with probability 1 -q(s t ) the game is terminated (absorbed) and each player i gets at every stage s > t the payoff f i (s t ), and (iii) with probability q(s t ) the game continues (the situation is repeated at stage t + 1).

Consider the λ-discounted game G (λ) (0 < λ < 1). If the payoff of player i at stage t is r i (t) then its λ-discounted payoff in the game is

∞ t=1 λ(1 -λ) t-1 r i (t).
Hence, a player is optimizing his expected λ-discounted payoff.

Let g i = g i × q and f i = f i × (1 -q) and extend g i , f i and q multilinearly to ∆ (as above in Nash and Loomis games).

A profile p ∈ ∆ is a stationary equilibrium of the absorbing game if (1) each player i plays iid at each stage t the mixed strategy p i until the game is absorbed and (2) this is optimal for him in the discounted absorbing game if the other players do not deviate.

Lemma 4.6. A profile p 0 ∈ ∆ is a stationary equilibrium of the absorbing game if and only if it is a Nash equilibrium of the Loomis game with payoff functions

p → λe g i (p)+(1-λ) e f i (p) λq(p)+(1-q(p)) , i = 1, ..., N .
Proof. See Laraki [START_REF] Laraki | Explicit Formulas for Repeated Games with Absorbing States[END_REF].

As shown in [START_REF] Laraki | Explicit Formulas for Repeated Games with Absorbing States[END_REF], the min-max of a discounted absorbing game satisfies:

v i = min p -i ∈∆ -i max s i ∈S i λ g i (s i , p -i ) + (1 -λ) f i (s i , p -i ) λq(s i , p -i ) + (1 -q(s i , p -i )) .
Hence solving a finite absorbing game is equivalent to solving a Loomis game (hence a particular instance of the MRF problem (3.2)) which again can be solved via the hierarchy of semidefinite relaxations (3.11). Again one has to minimize the supremum of rational functions.

Zero-sum polynomial games

Let K 1 ⊂ R n1 and K 2 ⊂ R n2 be two basic and closed semi-algebraic sets (not necessarily with same dimension):

K 1 := {x ∈ R n1 : g j (x) ≥ 0, j = 1, . . . , m 1 } (5.1) K 2 := {x ∈ R n2 : h k (x) ≥ 0, k = 1, . . . , m 2 } (5.2) for some polynomials (g j ) ⊂ R[x 1 , . . . x n1 ] and (h k ) ⊂ R[x 1 , . . . x n2 ].
Let P (K i ) be the set of Borel probability measures on K i , i = 1, 2, and consider the following min-max problem:

(5.3)

P : J * = min µ∈P (K1) max ν∈P (K2) K2 K1 p(x, z) dµ(x) dν(z) for some polynomial p ∈ R[x, z]. If K 1 and K 2 are compact, it is well-known that J * = min µ∈P (K1) max ν∈P (K2) K2 K1 p(x, z) dµ(x) dν(z) (5.4) = max ν∈P (K2) min µ∈P (K1) K1 K2 p(x, z) dν(z) dµ(x),
that is, there exist µ * ∈ P (K 1 ) and ν * ∈ P (K 2 ) such that:

(5.5)

J * = K2 K1
p(x, z) dµ * (x) dν * (z).

The probability measures µ * and ν * are the optimal strategies of players 1 and 2 respectively. For the univariate case n = 1, Parrilo [START_REF] Parrilo | Polynomial Games and Sum of Squares Optimization[END_REF] showed that J * is the optimal value of a single semidefinite program, namely the semidefinite program [START_REF] Dresher | Polynomial Games, in Contributions to the Theory of Games[END_REF] in [37, p. 2858], and mentioned how to extract optimal strategies since there exist optimal strategies (µ * , ν * ) with finite support. In [START_REF] Parrilo | Polynomial Games and Sum of Squares Optimization[END_REF] the author mentions that extension to the multivariate case is possible. We provide below such an extension which, in view of the proof of its validity given below, is non trivial. The price to pay for this extension is to replace a single semidefinite program with a hierarchy of semidefinite programs of increasing size. But contrary to the polynomial optimization case in e.g. [START_REF] Lasserre | Global Optimization with Polynomials and the Problem of Moments[END_REF], proving convergence of this hierarchy is more delicate because one has (simultaneously in the same SDP) moment matrices of increasing size and an s.o.s.representation of some polynomial in Putinar's form (2.3) with increasing degree bounds for the s.o.s. weights. In particular, the convergence is not monotone anymore. When we do n = 1 in this extension, one retrieves the original result of Parrilo [START_REF] Parrilo | Polynomial Games and Sum of Squares Optimization[END_REF], i.e., the first semidefinite program in the hierarchy (5.9) reduces to [START_REF] Dresher | Polynomial Games, in Contributions to the Theory of Games[END_REF] in [37, p. 2858] and provides us with the exact desired value. Let r j := ⌈deg g j /2⌉, for every j = 1, . . . , m 1 , and consider the following semidefinite program:

(5.7)

                               min y,λ,Z k λ s.t. λ I α=0 - β∈N n 1 p αβ y β = Z 0 , B α + m2 k=1 Z k , B h k α , |α| ≤ 2d M d (y) 0 M d-rj (g j , y) 0, j = 1, . . . , m 1 y 0 = 1 Z k 0, k = 0, 1, . . . m 2 ,
where y is a finite sequence indexed in the canonical basis (x α ) of R[x] 2d . Denote by λ * d its optimal value. In fact, with h 0 ≡ 1 and p y ∈ R[z] defined by:

(5.8) z → p y (z) :=

α∈N n 2   β∈N n 1 p αβ y β   z α ,
the semidefinite program (5.7) has the equivalent formulation:

(5.9)

                             min y,λ,σ k λ s.t. λ -p y (•) = m2 k=0 σ k h k M d (y) 0 M d-rj (g j , y) 0, j = 1, . . . , m 1 y 0 = 1 σ k ∈ Σ[z]; : deg σ k + deg h k ≤ 2d, k = 0, 1, . . . , m 2 ,
where the first constraint should be understood as an equality of polynomials. Observe that for any admissible solution (y, λ) and p y as in (5.8), Let l k := ⌈deg h k /2⌉, for every k = 1, . . . , m 2 , and with (5.12)

x → py (x) :=

α∈N n 1   β∈N n 2 pαβ y β   x α ,
consider the following semidefinite program (with g 0 ≡ 1):

(5.13)

                              max y,γ,σj γ s.t. py (•) -γ = m1 j=0 σ j g j M d (y) 0 M d-l k (h k , y) 0, k = 1, . . . , m 2 y 0 = 1 σ j ∈ Σ[x]; deg σ j + deg g j ≤ 2d, j = 0, 1, . . . , m 1 .
where y is a finite sequence indexed in the canonical basis (z α ) of R[z] 2d . Denote by γ * d its optimal value. In fact, (5.13) is the dual of the semidefinite program (5.7).

Observe that for any admissible solution (y, γ) and py as in (5.12),

(5. We also have a test to detect whether finite convergence has occurred. Theorem 5.2. Let P be the min-max problem defined in (3.2).

Let λ * d be the optimal value of the semidefinite program (5.9), and suppose that with r := max j=1,...,m1 r j , the condition

(5.15) rank M d-r (y) = rank M d (y) (=: s 1 )
holds at an optimal solution (y, λ, σ k ) of (5.9). Let γ * t be the optimal value of the semidefinite program (5.13), and suppose that with r := max k=1,...,m2 l k , the condition

(5.16) rank M t-r (y ′ ) = rank M t (y ′ ) (=: s 2 )
holds at an optimal solution (y ′ , γ, σ j ) of (5.13).

If λ * d = γ * t then λ * g = γ * t = J * and an optimal strategy for player 1 (resp. player 2) is a probability measure µ * (resp. ν * ) supported on s 1 points of K 1 (resp. s 2 points of K 2 ).

For a proof the reader is referred to §8. Remark 5.3. In the univariate case, when K 1 , K 2 are (not necessarily bounded) intervals of the real line, the optimal value J * = λ * d (resp. J * = γ * d ) is obtained by solving the single semidefinite program (5.9) (resp. (5.13)) with d = d 0 , which is equivalent to [START_REF] Dresher | Polynomial Games, in Contributions to the Theory of Games[END_REF] in Parrilo [37, p. 2858].

Zero-sum polynomial absorbing games

As in the previous section, consider two compact basic semi-algebraic sets K 1 ⊂ R n1 , K 2 ⊂ R n2 and polynomials g, f and q : K 1 × K 2 → [0, 1]. Recall that P (K 1 ) (resp. P (K 2 )) denotes the set of probability measures on K 1 (resp. K 2 ). The absorbing game is played in discrete time as follows. At stage t = 1, 2, ... player 1 chooses at random x t ∈ K 1 (using some mixed action µ t ∈ P (K 1 )) and, simultaneously, Player 2 chooses at random y t ∈ K 2 (using some mixed action ν t ∈ P (K 2 )).

(i) player 1 receives g (x t , y t ) at stage t;

(ii) with probability 1 -q (x t , y t ) the game is absorbed and player 1 receives f (x t , y t ) in all stages s > t; and (iii) with probability q (x t , y t ) the game continues (the situation is repeated at step t + 1).

If the stream of payoffs is r(t), t = 1, 2, ..., the λ-discounted-payoff of the game is ∞ t=1 λ(1 -λ) t-1 r(t). Let g = g × q and f = f × (1 -q) and extend g, f and q multilinearly to P (K 1 ) × P (K 2 ).

Player 1 maximizes the expected discounted-payoff and player 2 minimizes that payoff. Using an extension of the Shapley operator [START_REF] Shapley | Stochastic Games[END_REF] one can deduce that the game has a value v (λ) that uniquely satisfies,

v (λ) = max µ∈P (K1) min ν∈P (K2) Θ λ g + (1 -λ)v(λ)p + (1 -λ) f dµ ⊗ ν = min ν∈P (K2) max µ∈P (K1) Θ λ g + (1 -λ)v(λ)p + (1 -λ) f dµ ⊗ ν with Θ := K 1 × K 2 .
As in the finite case, it may be shown [START_REF] Laraki | Explicit Formulas for Repeated Games with Absorbing States[END_REF] that the problem may be reduced to a zero-sum Loomis game, that is:

(6.1) v (λ) = max µ∈P (K1) min ν∈P (K2) Θ P dµ ⊗ ν Θ Q dµ ⊗ ν = min ν∈P (K2) max µ∈P (K1) Θ P dµ ⊗ ν Θ Q dµ ⊗ ν where (x, y) → P (x, y) := λ g(x, y) + (1 -λ) f (x, y) (x, y) → Q(x, y) := λq(x, y) + 1 -q(x, y)
Or equivalently, as it was originally presented by Loomis [START_REF] Loomis | On a Theorem of von Neumann[END_REF], v (λ) is the unique real t such that (P (x, y) -t Q(x, y)) dµ(x)dν(y) .

Actually, the function s : R → R defined by:

t → s(t) := max µ∈P (K1) min ν∈P (K2) Θ (P (x, y) -tQ(x, y)) dµ(x)dν(y)
is continuous, strictly decreasing from +∞ to -∞ as t increases in (-∞, +∞).

In the univariate case, if K 1 and K 2 are both real intervals (not necessarily compact), then evaluating s(t) for some fixed t can be done by solving a single semidefinite program; see Remark 5.3. Therefore, in this case, one may approximate the optimal value s * (= s(t * )) of the game by binary search on t and so, the problem can be solved in a polynomial time. This extends Shah and Parrilo [START_REF] Shah | Polynomial Stochastic Games via Sum of Squares Optimization[END_REF].

Conclusion

We have proposed a common methodology to approximate the optimal value of games in two different contexts. The first algorithm, intended to compute (or approximate) Nash equilibria in mixed strategies for static finite games or dynamic absorbing games, is based on a hierarchy of semidefinite programs to approximate the supremum of finitely many rational functions on a compact basic semi-algebraic set. Actually this latter formulation is also of self-interest in optimization. The second algorithm, intended to approximate the optimal value of polynomial games whose action sets are compact basic semi-algebraic sets, is also based on a hierarchy of semidefinite programs. Not surprisingly, as the latter algorithm comes from a min-max problem over sets of measures, it is a subtle combination of moment and s.o.s. constraints whereas in polynomial optimization it is entirely formulated either with moments (primal formulation) or with s.o.s. (dual formulation). Hence the above methodology illustrates the power of the combined moment-s.o.s. approach. A natural open question arises: how to adapt the second algorithm to compute Nash equilibria of a non-zero-sum polynomial game? Proof of Theorem 5.1. Let µ * ∈ P (K 1 ), ν * ∈ P (K 2 ) be optimal strategies of player 1 and player 2 respectively, and let y * = (y * α ) be the sequence of moments of µ * (well-defined because K 1 is compact). Then It has same degree as p ŷ, and by (8.1), p ŷ(•) -p y d i (•) → 0 as i → ∞. Hence, max z∈K2 p y d i (z) → ρ as i → ∞, and by construction of the semidefinite program (5.9), λ * di ≥ max z∈K2 p y d i (z). Therefore, λ * di ≥ ρ-ǫ for all sufficiently large i (say d i ≥ d 2 ǫ ) and so, λ * di ≥ J * -ǫ for all d i ≥ d 2 ǫ . This combined with λ * di ≤ J * + ǫ for all d i ≥ d1 ǫ , yields the desired result that lim i→∞ λ * di = J * because ǫ > 0 fixed was arbitrary; Finally, as the converging subsequence (r i ) was arbitrary, we get that the entire sequence (λ * d ) converges to J * . The convergence γ * d → J * is proved with similar arguments. 8.2. Proof of Theorem 5.2. By the flat extension theorem of Curto and Fialkow (see e.g. [START_REF] Lasserre | A semidefinite programming approach to the Generalized Problem of Moments[END_REF]), y has a representing s 1 -atomic probability measure µ * supported on K 1 and similarly, y ′ has a representing s 2 -atomic probability measure ν * supported on K 2 . But then from the proof of Theorem 5.1, and so as λ * d = γ * t one has J * = λ * d = γ * t . This in turn implies that µ * (resp. ν * ) is an optimal strategy for player 1 (resp. player 2).

J * ≤ max ψ∈P ( 

Corollary 4 . 5 .

 45 A profile p 0 ∈ ∆ is a Nash equilibrium of a Loomis game if and only if (4.2) p 0 ∈ arg min p∈∆ max i=1,...,N max

1 p

 1 Semidefinite relaxations for solving P. With p ∈ R[x, z] as in (3.2), writep(x, z) = α∈N n 2 p α (x) z α with (5.6) p α (x) = β∈N n αβ x β , |α| ≤ d zwhere d z is the total degree of p when seen as polynomial in R[z]. So, let p αβ := 0 for every β ∈ N n1 whenever |α| > d z .

( 5 . 1 pαn 2 pαβ

 512 10) λ ≥ max z {p y (z) : z ∈ K 2 }.Similarly, with p as in (3.2), writep(x, z) = α∈N n z β , |α| ≤ d xwhere d x is the total degree of p when seen as polynomial in R[x]. So, let pαβ := 0 for every β ∈ N n2 whenever |α| > d x .

  x, y) -t Q(x, y)) dµ(x)dν(y)

8 . Appendix 8 . 1 .

 881 Proof of Theorem 5.1. We first need the following partial result. Lemma 8.1. Let (y d ) d be a sequence of admissible solutions of the semidefinite program(5.7). Then there exists ŷ ∈ R ∞ and a subsequence(d i ) such that y di → ŷ pointwise as i → ∞, that is, , ∀α ∈ N n .The proof is omitted because it is exactly along the same lines as the proof of Theorem 3.4 as among the constraints of the feasible set, one hasy d 0 = 1, M d (y d) 0, M d (g j , y d ) 0, j = 1, . . . , m 1 .

K2 α∈N n 2   β∈N n 1 p

 21 αβ y * αβ   z α dν(z) = max ν∈P (K2) K2p y * (z) dν(z)= max z {p y * (z) : z ∈ K 2 } = min λ,σ k {λ : λ -p y * (•) = σ 0 + m2 k=1 σ k h k ; (σ j ) m2 j=0 ⊂ Σ[z]}with z → p y * (z) defined in(5.8). Therefore, with ǫ > 0 fixed arbitrary, (8.2)J * -p y * (•) + ǫ = σ ǫ 0 + m2 k=1 σ ǫ k h k , for some polynomials (σ ǫ k ) ⊂ Σ[z] of degree at most 2d 1 ǫ . So (y * , J * + ǫ, σ ǫ k) is an admissible solution for the semidefinite program (5.9) whenever d ≥ max j r j andd ≥ d 1 ǫ + max k l k , because (8.3) 2d ≥ deg σ ǫ 0 ; 2d ≥ deg σ ǫ k + deg h k , k = 1, . . . , m 2 . Therefore, (8.4) λ * d ≤ J * + ǫ, ∀d ≥ d1 ǫ := max max j r j , d 1 ǫ + max k l k .Now, let (y d , λ d ) be an admissible solution of the semidefinite program (5.9) with value λ d ≤ λ * d + 1/d. By Lemma 8.1, there exists ŷ ∈ R ∞ and a subsequence (d i ) such that y di → ŷ pointwise, that is, (8.1) holds. But then, invoking (8.1) yields M d (ŷ) 0 and M d (g j , ŷ) 0, ∀j = 1, . . . , m 1 ; d = 0, 1, . . . By Theorem 2.2, there exists μ ∈ P (K 1 ) such that ŷα =K1x α dμ, ∀α ∈ N n .On the other hand,J * ≤ max ν∈P (K2) K2 K1 p(x, z)dμ(x) dν(z) = max z {p ŷ(z) : z ∈ K 2 } = min{λ : λ -p ŷ(•) = σ 0 + m2 k=1 σ k h k ; (σ j ) m2 j=0 ⊂ Σ[z]}with z → p ŷ(z) ρ := max z∈K2 p ŷ(z) (hence ρ ≥ J * ), and consider the polynomial z → p y d (z) :=

  K2) K2 K1 p(x, z)dµ * (x) dψ(z) = max ψ∈P (K2) K2 p y (z)dψ(z) = max z { p y (z) : z ∈ K 2 } ≤ λ * d . J * ≥ min ψ∈P (K1) K1 K2 p(x, z)dν * (z) dψ(x) = min ψ∈P (K1) K1 py ′ (x)dψ(x) = min x { py ′ (x) : x ∈ K 1 } ≥ γ * t ,

In general, it is not known which relaxation suffices to solve the min-max problem. Also, as already mentioned, GloptiPoly 3 extracts all solutions because most SDP solvers that one may call in GloptiPoly 3 (e.g. SeDuMi) use primal-dual interior points methods with the self-dual embedding technique which find an optimal solution in the relative interior of the set of optimal solutions. This is explained in[27, §4.4.1, p. 663] 
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