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SEMIDEFINITE PROGRAMMING FOR N-PLAYER GAMES

R. LARAKI AND J.B. LASSERRE

Abstract. We introduce two min-max problems: the first problem is to min-
imize the supremum of finitely many rational functions over a compact basic
semi-algebraic set whereas the second problem is a 2-player zero-sum poly-
nomial game in randomized strategies and with compact basic semi-algebraic
pure strategy sets. It is proved that their optimal solution can be approximated
by solving a hierarchy of semidefinite relaxations, in the spirit of the moment
approach developed in Lasserre [19, 20]. This provides a unified approach and
a class of algorithms to approximate all Nash equilibria and min-max strate-
gies of many static and dynamic games. Each semidefinite relaxation can be
solved in time which is polynomial in its input size and practice from global
optimization suggests that very often few relaxations are needed for a good
approximation (and sometimes even finite convergence). In many cases (e.g.
for Nash equilibria) the error of a relaxation can be computed.

1. Introduction

This paper is concerned with effective computation (or approximation) of Nash
equilibria for n-player games. To achieve this goal, we provide a numerical scheme
which consists of a hierarchy of semidefinite programs whose associated sequence
of optimal values converges (sometimes in finitely many steps) to the value of the
game. When the convergence is finite and a sufficient condition is met, one may
also compute an optimal strategy.

Background. Nash equilibrium, a central concept in game theory, is a profile of
mixed strategies (a strategy for each player) such that each player is best-responding
to the strategies of the opponents. To show existence of an equilibrium in random-
ized (mixed) strategies for n-player finite static games, Nash used Kakutanyi’s (resp.
Brouwer’s) fixed point theorem in [27] (resp. [28]). Then Glicksberg [12] extended
the proof in Nash [27] to compact-continuous euclidean games.

Computing a fixed point of a function is known to be PPAD-complete (the class
of all search problems that are guaranteed to exist by means of a direct graph
argument, introduced by Papadimitriou [30]). This may be understood from the
fact that Brouwer’s is a consequence of Sperner’s lemma [38] which in turn can be
proved by a direct graph argument (see Border [3]).

Computing optimal solutions for a 2-player zero-sum finite game reduces to solv-
ing a linear program (von-Neumann and Morgenstern [29]) and so can be done in
polynomial time. For a long time it has been thought that the famous Lemke-
Howson [21] algorithm to compute a Nash-equilibrium for a 2-player non-zero-
sum finite game is efficient. Even if it has been extended to n-player games in
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Rosenmüller [36], the common belief in game theory is that the computational
complexity of 2-player games should differ from that of 3-(or more) player games.

In 2001, Papadimitriou [31] wrote “the complexity of finding a Nash equilibrium
[of a 2-player game] is the most important concrete open problem on the boundary
of P” and he analyzes that “because of the guaranteed existence of a solution, the
problem is unlikely to be NP-hard; in fact it belongs to a class of problems between
P and NP” (referring to PPAD).

Since then, Savani and von Stengel [37] proved that the Lemke-Howson algorithm
may be exponential for 2-player games. Daskalakis, Goldberg and Papadimitriou
[5] proved that solving a 4-player game is PPAD-complete and conjectured that for
2-player games, finding a Nash equilibrium may be solved in polynomial time. The
later PPAD-completeness result has been extended to 3-player games by Daskalakis
and Papadimitriou [6] and by Chen and Deng [7]. Unfortunately, Cheng and Deng
[8] showed that a similar PPAD-completeness result holds for 2-player games!

The surprising result of Deng and Chen [8] may perhaps be understood from
the recent and elegant paper of McLenann and Tourky [24] where it is proved that
Kakutanyi may be deduced from 2-player finite imitation games (or from a linear
complementarity problem).

An imitation game is a 2-player game where the payoff matrix of player 2 (the
imitator) is the identity. The game may be described by an m × m matrix A =
(ai,j) (the payoff function of player 1, the mover). Finding a Nash equilibrium is
equivalent to a linear complementarity problem [24]:

Find a β in the unit simplex ∆m such that:

{i : βi = 0} ∪




i : i ∈ arg max
i∈{1,...,m}

m∑

j=1

ai,jβj




 = {1, ..., m}.

One may prove existence of a solution which can be computed by a simple adap-
tation of the Lemke-Howson algorithm. So, McLenann and Tourky [24] provided
an algorithm that computes approximate fixed points of an upper-hemicontinuous
convex and compact correspondence F . Starting from any initial point x1, define re-
cursively {xm} and {ym} . Pick ym ∈ F (xm) arbitrarily and set xm+1 =

∑m

j=1 βm
j yj

where βm is an equilibrium of the imitation game where the payoff of the mover is

ai,j = −‖xi − yj‖
2
. Accumulation points of {xm} are fixed points for F .

A different approach is to view the set of Nash equilibria as the set of real non-
negative solutions to a system of polynomial equations. Methods of computational
algebra (e.g. using Gröbner bases) can be applied as suggested and studied in e.g.
Dutta [10], Lipton [22] and Sturmfels [39]. However, observe that in this algebraic
approach one first computes all complex solutions to sort out all real nonnegative
solutions afterwards.

In the class of polynomial games introduced by Dresher, Karlin and Shapley
(1950), the strategy set Si of each player i is a product of compact intervals and
the payoff function is polynomial. When the game is zero-sum and Si = [0, 1],
Parrilo [32] showed that finding an optimal solution is equivalent to solving a single
semidefinite program. Then Shah and Parrilo [34] extended the methodology to
discounted zero-sum stochastic games in which the transition is controlled by one
player only. Finally, it is worth noticing recent algorithms designed to solve some
specific classes of infinite games. For instance, Gürkan and Pang [13].
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Contribution. In a first part we consider the problem P of minimizing the supre-
mum of finitely many rational functions over a compact basic semi-algebraic set.
In the spirit of the moment approach developed in Lasserre [19, 20], we define
a hierarchy of semidefinite relaxations (in short SDP-relaxations) for which each
SDP-relaxation is a SDP that can be solved in polynomial time and the monotone
sequence of optimal values associated with the hierarchy converges to the optimal
value of P. Sometimes the convergence is finite and a sufficient condition permits
to detect whether a certain relaxation in the hierarchy is exact (i.e. provides the
optimal value), and to extract optimal solutions. Next, we show that computing the
min-max or a Nash equilibrium in mixed strategies for static games or dynamic ab-
sorbing games, reduces to solving problem P mentioned above. We extend Nash’s
result for finite games to a new class of games that we call Loomis’s [23] games
and show that finding a Nash equilibrium of a Loomis game also reduces to solving
problem P. It is worth emphasizing that when the payoffs are linear then the hier-
archy of SDP-relaxations reduces to the first one of the hierarchy, which in turn is
a linear program. This is in support of the claim that the above methodology is a
natural extension to the non linear case of the well-known LP-approach.

The approach may be used to solve imitation games. Combined with McLennan
and Tourky’s construction, it provides an algorithm for computing a fixed point of
any upper-hemicontinuous convex and compact correspondence hence computing a
Nash equilibrium for concave euclidean games [12].

The approach may also be used to compute minima of team optimization prob-
lems in which a continuous function f(x) = f(x1, ..., xn) is to be minimized over a
cartesian product of convex-compact sets X =

∏n
i=1 X i. The theory of teams is a

particular instance of N-player games. Conversely, computing Nash-equilibria may
be viewed as a team optimization problem. The team model has been introduced
in Marschak [25] and studied by many authors ([17, 26]). If the function to mini-
mize is a supremum of finitely many rational functions and the compact sets X i,
i = 1, ..., n are basic semi-algebraic sets then this is a particular instance of prob-
lem P. If the function is separately convex, one can combine the construction of
McLennan and Tourky [24] described above and use our algorithm to solve the asso-
ciated imitation game, where the correspondence F is defined as in N-player games:
F i(x) = argminyi∈Xi f(x1, ..., xi−1, yi, xi+1, ..., xn) and F (x) =

∏n

i=1 F i(x). Be-
cause f is separately convex, finding a point in F can be done, in principle, effi-
ciently.

In a second part, we consider general 2-player zero-sum polynomial games (whose
action sets are basic compact semi-algebraic sets of R

n and the payoff function
polynomial). We show that the value and optimal strategies can be approximated
as closely as desired, again by solving a certain hierarchy of SDP-relaxations. This
result is a multivariate extension of Parrilo’s [32] result for the univariate case where
one needs to solve a single semidefinite program (as opposed to a hierarchy). This
approach may be extended to dynamic absorbing games with discounted rewards,
and in the univariate case one can construct a polynomial time algorithm that
combines a dichotomy on the value of the game with a semidefinite program. Note
that in 2-player absorbing dynamic games, transitions are controlled by both players,
and so our result extends those in Parrilo and Shah [34] where only one player
controls the transition. A natural open question arises: how to adapt the techniques
to approximate general non-zero-sum polynomial games?
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Importantly, and in contrast with numerical algorithms that compute only one
equilibrium, our moment approach allows to compute all Nash equilibria of a finite
game (when that number is finite) and without computing all complex solutions as
in the computational algebra algorithms described in Dutta [10], Lipton [22] and
Sturmfels [39].

To conclude, if the rather negative computational complexity results ([37], [5],
[6], [7], [8]) have conforted the game theory community with the idea that many
game problems are computationally hard, on a more positive tone, our contribution
provides a unified semidefinite programming approach to many game problems: it
shows that optimal value and strategies can be approximated as closely as desired
(and sometimes obtained exactly) by solving a hierarchy of semidefinite relaxations,
very much in the spirit of the moment approach described in [19] for solving poly-
nomial optimization problems (a particular instance of the generalized problem of
moments [20]). Moreover, the algorithm is consistent with previous results [29] and
[32] as it reduces to a linear program for finite zero-sum games and to a single
semidefinite program for univariate infinite zero-sum games.

Finally, even if practice in global optimization seems to reveal that this approach
is efficient, of course the size of the semidefinite relaxations grows rapidly with
the initial problem size. Therefore, in view of the present status of public SDP
solvers available, its application is limited to small to medium size problems so far.
Two big challenges are to (a) detect in advance which relaxation in the hierarchy
solves the problem up to a given tolerance, and (b) when a relaxation is exact, to
determine whether its size is polynomial in the input size of the initial problem.
These questions seem to be very difficult, maybe in the boundary of P = or not =
to NP?

2. Notation and preliminary results

2.1. Notation and definitions. Let R[x] be the ring of real polynomials in the
variables x = (x1, . . . , xn) and let (Xα)α∈N be its canonical basis of monomials.
Denote by Σ[x] ⊂ R[x] the subset (cone) of polynomials that are sums of squares
(s.o.s.), and by R[x]d the space of polynomials of degree at most d.

With y =: (yα) ⊂ R being a sequence indexed in the canonical monomial basis
(Xα), let Ly : R[x] → R be the linear functional

f (=
∑

α∈Nn

fα xα) 7−→
∑

α∈Nn

fα yα, f ∈ R[x].

Moment matrix. Given y = (yα) ⊂ R, the moment matrix Md(y) of order d
associated with y, has its rows and columns indexed by (xα) and its (α, β)-entry is
defined by:

Md(y)(α, β) := Ly(xα+β) = yα+β , |α|, |β| ≤ d.

Localizing matrix. Similarly, given y = (yα) ⊂ R and θ ∈ R[x] (=
∑

γ θγxγ),

the localizing matrix Md(θ y) of order d associated with y and θ, has its rows and
columns indexed by (xα) and its (α, β)-entry is defined by:

Md(θ y)(α, β) := Ly(xα+βθ(x)) =
∑

γ

θγ yγ+α+β, |α|, |β| ≤ d.
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One says that y = (yα) ⊂ R has a representing measure supported on K if there is
some finite Borel measure µ on K such that

yα =

∫

K

xα dµ(x), ∀α ∈ N
n.

For later use, write

Md(y) =
∑

α∈Nn

yα Bα(2.1)

Md(θ,y) =
∑

α∈Nn

yα Bθ
α,(2.2)

for real symmetric matrices (Bα, Bθ
α) of appropriate dimensions.

Definition 2.1 (Putinar’s property). Let (gj)
m
j=1 ⊂ R[x]. A basic closed semi

algebraic set K := {x ∈ R
n : gj(x) ≥ 0, : j = 1, . . . , m} satisfies Putinar’s property

if there exists u ∈ R[x] such that {x : u(x) ≥ 0} is compact and

(2.3) u = σ0 +
m∑

j=1

σj gj

for some (uj)
m
j=0 ⊂ Σ[x]. Equivalently, for some M > 0 the quadratic polynomial

x 7→ M − ‖x‖2 has Putinar’s representation (2.3).

Obviously Putinar’s property implies compactness of K. However, notice that
Putinar’s property is not geometric but algebraic as it is related to the represen-
tation of K by the defining polynomials (gj)’s. Putinar’s property holds if e.g.
the level set {x : gj(x) ≥ 0} is compact for some j, or if all gj are affine (in
which case K is a polytope). In case it is not satisfied and if for some M > 0,
‖x‖2 ≤ M whenever x ∈ K, then it suffices to add the redundant quadratic con-
straint gm+1(x) := M − ‖x‖2 ≥ 0 to the definition of K. The importance of
Putinar’s property stems from the following result:

Theorem 2.2 (Putinar [33]). Let (gj)
m
j=1 ⊂ R[x] and assume that

K := { x ∈ R
n : gj(x) ≥ 0, j = 1, . . . , m}

satisfies Putinar’s property.
(a) Let f ∈ R[x] be positive on K. Then f can be written as u in (2.3).
(b) Let y = (yα). Then y has a representing measure on K if and only if

(2.4) Md(y) � 0, Md(gj y) � 0, j = 1, . . . , m; d = 0, 1, . . .

We also have:

Lemma 2.3. Let K ⊂ R
n be compact and let p, q continuous such that with q > 0

on K. Let M(K) be the set of finite Borel measures on K and let P (K) ⊂ M(K)
be its subset of probability measures on K. Then

min
µ∈P (K)

∫
p dµ∫
q dµ

= min
ϕ∈M(K)

{

∫
p dϕ :

∫
q dϕ = 1}(2.5)

= min
µ∈P (K)

∫
p

q
dµ = min

x∈K
:

p(x)

q(x)
(2.6)
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Proof. Let ρ∗ := minx{p(x)/q(x) : x ∈ K}. As q > 0 on K,
∫

p dµ∫
q dµ

≥

∫
(p/q) q dµ∫

q dµ
≥ ρ∗.

Similarly,
∫
(p/q)dµ ≥ ρ∗

∫
dµ = ρ∗. Other hand, with x∗ ∈ K a global mini-

mizer of p/q on K, let µ := δx∗ ∈ P (K) be the Dirac measure at x = x∗. Then∫
pdµ/

∫
qdµ = p(x∗)/q(x∗) =

∫
(p/q)dµ = ρ∗, and therefore

min
µ∈P (K)

∫
pdµ∫
qdµ

= min
µ∈P (K)

∫
p

q
dµ = min

x∈K
:

p(x)

q(x)
= ρ∗.

Next, for every ϕ ∈ M(K) with
∫

qdϕ = 1,
∫

p dϕ ≥
∫

ρ∗ q dϕ = ρ∗, and so
minϕ∈M(K){

∫
p dϕ :

∫
q dϕ = 1} ≥ ρ∗. Finally taking ϕ := q(x∗)−1δx∗ yields∫

qdϕ = 1 and
∫

p dϕ = p(x∗)/q(x∗) = ρ∗.
Another way to see why this is true is throughout the following argument: the

function µ →
∫

p dµ∫
q dµ

is quasi-concave so that the optimal value of the minimization

problem may be achieved on the boundary. �

3. Minimizing a max of rational functions

Let K ⊂ R
n be the basic semi-algebraic set

(3.1) K := {x ∈ R
n : gj(x) ≥ 0, j = 1, . . . , p}

for some polynomials (gj) ⊂ R[x], and let fi = pi/qi be rational functions, i =
0, 1, . . . , m, with pi, qi ∈ R[x].

Consider the problem

(3.2) P : ρ := inf
x

{f0(x) + max
i=1,...,m

fi(x) : x ∈ K },

or, equivalently,

(3.3) P : ρ = inf
x,z

{f0(x) + z : z ≥ fi(x), x ∈ K }.

Assumption 3.1. qi > 0 for all x ∈ K and every i = 0, . . . , m.

Assumption 3.2. K satisfies Putinar’s property.

With K ⊂ R
n as in (3.1), let K̂ ⊂ R

n+1 be the basic semi algebraic set

(3.4) K̂ := {(x, z) ∈ R
n × R : x ∈ K, z qi(x) − pi(x) ≥ 0, i = 1, . . . , m}

and consider the new optimization problem

(3.5) P : ρ̂ := inf
µ

{

∫
(p0 + z q0) dµ :

∫
q0 dµ = 1, µ ∈ M(K̂)}

where M(K̂) is the set of finite Borel measures on K̂.

Proposition 3.3. Let K ⊂ R
n be as in (3.1) and let Assumption 3.1 hold.

If ρ > −∞ then ρ = ρ̂.

Proof. Let x ∈ K be such that f0(x) + maxi=1,...,m fi(x) ≤ ρ + ǫ for ǫ > 0 fixed,

arbitrary. Let z := maxi=1,...,m fi(x) so that (x, z) ∈ K̂ because x ∈ K and
qi > 0 on K for every i = 1, . . . , m. Let µ := q0(x)−1δ(x,z), with δ(x,z) being

the Dirac measure at (x, z) ∈ K̂. Then µ ∈ M(K̂) and
∫

q0dµ = 1. In addition,
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∫
(p0 + zq0)dµ = p0(x)/q0(x) + z ≤ ρ + ǫ. As ǫ > 0 was arbitrary, it follows that

ρ̂ ≤ ρ.

On the other hand, let µ ∈ M(K̂) be such that
∫

q0dµ = 1. As p0(x)/q0(x) +
maxi=1,...,m fi(x) ≥ ρ for all x ∈ K, it follows that p0(x)/q0(x) + z ≥ ρ for all

(x, z) ∈ K̂. Equivalently, p0 + zq0 ≥ ρq0 for all (x, z) ∈ K̂ because q0 > 0 on K.

Integrating with respect to µ ∈ M(K̂) yields
∫
(p0 + zq0)dµ ≥ ρ

∫
q0dµ = ρ, which

proves that ρ̂ ≥ ρ, and so, ρ̂ = ρ, the desired result. �

We next describe how to solve P via a hierarchy of semidefinite relaxations.

SDP-relaxations for solving P. If K is compact, and under Assumption 3.1,
let

(3.6) M1 := max
i=1,...,m

{
max{|pi(x)| : x ∈ K}

min{qi(x), x ∈ K}

}
,

and

(3.7) M2 := min
i=1,...,m

{
min{pi(x) : x ∈ K}

max{qi(x) : x ∈ K}

}
.

Redefine the set K̂ to be

(3.8) K̂ := {(x, z) ∈ R
n × R : hj(x, z) ≥ 0, j = 1, . . . p + m + 2}

with

(3.9)






(x, z) 7→ hj(x, z) := gj(x) j = 1, . . . , p
(x, z) 7→ hj(x, z) := z qj(x) − pj(x) j = p + 1, . . . , p + m
(x, z) 7→ hj(x, z) := M1 − z j = m + p + 1
(x, z) 7→ hj(x, z) := z − M2 j = m + p + 2

.

Lemma 3.4. Let K ⊂ R
n be compact and let Assumptions 3.1, 3.2 hold. Then the

set K̂ ⊂ R
n+1 defined in (3.8) satisfies Putinar’s property.

Proof. By Assumption 3.2, K satisfies Putinar’s property. Equivalently, the qua-
dratic polynomial x 7→ M − ‖x‖2 can be written in the form (2.3). Next,

(M1 − z)(z − M2) = (M1 − M2)
[
(z − M2)

2(M1 − z) + (M1 − z)2(z − M2)
]
,

and so consider quadratic polynomial

(x, z) 7→ w(x, z) = M − ‖x‖2 + (M1 − z)(z − M2).

Obviously, its level set {x : w(x, z) ≥ 0} ⊂ R
n+1 is compact and moreover, w can

be written in the form

w(x, z) = σ0(x, z) +

p∑

j=1

σj(x, z) gj(x) +

m+p+2∑

j=m+p+1

σj(x, z)hj(x, z)

with (σj) ⊂ Σ[x, z]. Therefore K̂ satisfies Putinar’s property in Definition 2.1, the
desired result. �

We are now in position de define the hierarchy of semidefinite relaxations for
solving P. Let y = (yα) be a real sequence indexed in the monomial basis (xβzk)
of R[x, z] (with α = (β, k) ∈ N

n × N).
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Let h0(x, z) := p0(x)+zq0(x), and let vj := ⌈(deg hj)/2⌉ for every j = 0, . . . , m+
p + 2. For r ≥ r0 := max

j=0,...,p+m+1
vj , introduce the semidefinite program

(3.10) Qr :





infy Ly(h0)
s.t. Mr(y) � 0

Mr−vj
(hj y) � 0, j = 1, . . . , m + p + 2

Ly(q0) = 1

with optimal value denoted inf Qr (and minQr if the infimum is attained).

Theorem 3.5. Let K ⊂ R
n be compact and as in (3.1). Let Assumptions 3.1, 3.2

hold. Let Qr be the semidefinite program (3.10) with (hj) ⊂ R[x, z] and M1, M2

defined in (3.9) and (3.6)-(3.7) respectively. Then:
(a) inf Qr ↑ ρ as r → ∞.
(b) Let yr be an optimal solution of the SDP-relaxation Qr in (3.10). If

(3.11) rankMr(y
r) = rankMr−r0

(yr) = t

then one may extract t points x∗(t) ∈ K, all global minimizers of P.

For a proof the reader is referred to §7.1. To solve (3.10) one may use e.g.
the Matlab based public software GloptiPoly 3 [15] dedicated to solve the gener-
alized problem of moments described in [20]. It is an extension of GloptiPoly [14]
previously dedicated to solve polynomial optimization problems. A procedure for
extracting optimal solutions is implemented in Gloptipoly when the rank condition
(3.11) is satisfied. For more details the interested reader is referred to [15] and
www.laas.fr/∼henrion/software/.

Remark 3.6. If gj is affine for every j = 1, . . . , p and if pj is affine and qj ≡ 1 for
every j = 0, . . . , m, then hj is affine for every j = 0, . . . , m. In this case it suffices
to solve the single semidefinite relaxation Q1 which is in fact a linear program.
Indeed, for r = 1, y = (y0, (x, z), Y ) and

M1(y) =




y0 | (x z)
− −(
x
z

)
| Y


 .

Then (3.10) reads

Q1 :






infy h0(x)
s.t. M1(y) � 0

hj(x, z) ≥ 0, j = 1, . . . , m + p + 2
y0 = 1

.

But as vj = 1 for every j, M1−1(hjy) � 0 ⇔ M0(hjy) = Ly(hj) = hj(x, z) ≥ 0, a
linear constraint. Hence the constraint M1(y) � 0 can be discarded as given any
(x, z) one may always find Y such that M1(y) � 0. Therefore, (3.10) is a linear
program.

4. Applications to games

4.1. Standard static games. A finite game is a tuple (N,
{
Si

}
i=1,...,N

,
{
gi

}
i=1,...,N

)

where N ∈ N is the set of players, Si is the finite set of pure strategies of player i
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and gi : S → R is the payoff function of player i, where S := S1 × ...× SN . The set

∆i =

{
(
pi(si)

)
si∈Si : pi(si) ≥ 0,

∑

si∈Si

pi(si) = 1

}

of probability distributions over Si is called the set of mixed strategies of player i.
Notice that ∆i is a compact basic semi-algebraic set. If each player j chooses the
mixed strategy pj(·), the vector denoted p =

(
p1, ..., pN

)
∈ ∆ = ∆1 × ... × ∆N is

called the profile and the expected payoff of a player i is

gi(p) =
∑

s∈S

p1(s1) × ... × pN(sN )gi(s).

For a player i, and a profile p, let p−i be the profile of the other players except i:
that is p−i = (p1, ..., pi−1, pi+1, ..., pN ). Let S−i = S1 × ...× Si−1 × Si+1 × ...× SN

and

gi(si, p−i) =
∑

s−i∈S−i

p1(s1) × ... × pi−1(sN ) × pi+1(sN ) × ... × pN (sN )gi(s).

A profile p0 is a Nash equilibrium (in mixed strategies) if and only for all i ∈ N
and all si ∈ Si, gi(p0) ≥ gi(si, p−i

0 ) or equivalently if

p0 ∈ arg min
p∈∆

max
i∈N,si∈Si

{
gi(si, p−i

0 ) − gi(p0)
}

This min-max problem is a particular instance of problem P in (3.2). Assumption
3.1 and 3.2 are satisfied and so Theorem 3.5 applies. That is, by solving the
hierarchy of SDP-relaxations (3.10), one can approximate the value of the game as
closely as desired. In addition, if (3.11) is satisfied at some relaxation Qr, then one
obtains an optimal strategy. Since the optimal value is zero, one knows when the
algorithm should stop and if it does not stop, one has a bound on payoffs so that
one knows which epsilon-equilibrium is reached.

Example 4.1. Consider the simple illustrative example of a 2 × 2 game with data

s2

1 s1

2

s1

1 (a, c) (0, 0)
s1

2 (0, 0) (b, d)

for some scalars (a, b, c, d). Denote x ∈ [0, 1] the probability for player 1 of playing s1

1 and
y ∈ [0, 1] the probability for player 2 of playing s2

1. Then one must solve

min
x,y

max






ax − axy − b(1 − x)(1 − y)
b(1 − y) − axy − b(1 − x)(1 − y)
cx − cxy − d(1 − x)(1 − y)
d(1 − x) − cxy − d(1 − x)1 − y)

.

We have solved the hierarchy of semidefinite programs (3.10) with GloptiPoly 3 [15]. For
instance, the moment matrix M1(y) of the first SDP-relaxation Q1 reads

M1(y) =




y0 y100 y010 y001

y100 y200 y010 y001

y010 y110 y020 y011

y001 y101 y011 y002


 ,



10 R. LARAKI AND J.B. LASSERRE

and Q1 reads

Q1 :






inf
y

y001

s.t. M1(y) � 0
y001 − ay100 + ay110 + b(y0 − y100 − y010 + y110) ≥ 0
y001 − by0 + by010 + ay110 + b(y0 − y100 − y010 + y110) ≥ 0
y001 − cy100 + cy110 + d(y0 − y100 − y010 + y110) ≥ 0
y00 − dy0 + dy100 + cy110 + d(y0 − y100 − y010 + y110) ≥ 0
y0 = 1

.

With (a, b, c, d) = (0.05, 0.82, 0.56, 0.76), solving Q3 yields the optimal value 3.93.10−11

and the three optimal solutions (0, 0), (1, 1) and (0.57575, 0.94253). With randomly gen-

erated a, b, c, d ∈ [0, 1] we also obtained a very good approximation of the global optimum

0 and 3 optimal solutions in most cases with r = 3 (i.e. with moments or order 6 only)

and sometimes r = 4.

We have also solved 2-player non-zero-sum p×q games with randomly generated reward

matrices A,B ∈ R
p×q and p, q ≤ 5. We could solve (5, 2) and (4, q) (with q ≤ 3) games

exactly with the 4th (sometimes 3rd) SDP-relaxation, i.e. inf Q4 = O(10−10) ≈ 0 and

one extracts an optimal solution1. However, the size is relatively large and one is close

to the limit of present public SDP-solvers like SeDuMi. Indeed, for a 2-player (5, 2) or

(4, 3) game, Q3 has 923 variables and M3(y) ∈ R
84×84, whereas Q4 has 3002 variables

and M4(y) ∈ R
210×210 . For a (4, 4) game Q3 has 1715 variables and M3(y) ∈ R

120×120

and Q3 is still solvable, whereas Q4 has 6434 variables and M4(y) ∈ R
330×330 .

Another important concept in game theory is the min-max payoff vi, also called
the individually rational level of player i. It plays an important role is the famous
folk theorem (Aumann and Shapley [2]). It is a min-max problem:

vi = min
p−i∈∆−i

max
si∈Si

gi(si, p−i)

where ∆−i = ∆1 × ... × ∆i−1 × ∆i+1 × ... × ∆N . This problem is also a particular
instance of problem P in (3.2). It seems more difficult to compute the min-max
strategies compared to Nash equilibrium strategies because we do not know in
advance the value of vi.

Note that in the case of two players, if the function gi(si, p−i) is linear in p then
by remark 3.6 it suffices to solve the first relaxation Q1, a linear program.

4.2. Loomis games. Loomis [23] extended the min-max theorem of Von Neuman
on zero-sum games to any rational fraction of two multilinear extensions. His model
and result may be extended to N -player games.

Associates to each player i ∈ N two functions gi : S → R and f i : S → R where
f i > 0. As above, their multilinear extensions to ∆ is also denoted by gi and f i.

Definition 4.2. Loomis game is an euclidean game. The (pure) strategy set of

player i is ∆i with payoff function hi(p) = gi(p)
fi(p) if the profile p ∈ ∆ is chosen.

1In fact GloptiPoly 3 extracts all solutions because most SDP-solvers that one may call in

GloptiPoly 3 (e.g. SeDuMi) use primal-dual interior points methods which find an optimal solution
in the relative interior of the feasible set. In the present context of (3.10) this means that at an
optimal solution y∗, the moment matrix Mr(y∗) has maximum rank and its rank corresponds to
the numbers of solutions.
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Lemma 4.3 (Extension of Loomis [23] result). A Loomis game admits a (pure)
Nash equilibrium.

Proof. Note that each payoff function is quasi-concave in pi (and also quasi-convex
so that it is a quasi-linear function). Actually, if hi(pi

1, p
−i) ≥ α and hi(pi

2, p
−i) ≥ α

then δgi(pi
1, p

−i) ≥ δδf i(pi
1, p

−i), and (1−δ)gi(pi
1, p

−i) ≥ (1−δ)δf i(pi
1, p

−i) so that

gi(δpi
1 + (1 − δ)pi

2, p
−i) ≥ f i(δpi

1 + (1 − δ)pi
2, p

−i)α

hence hi(δpi
1 + (1 − δ)pi

2, p
−i) ≥ α. One may now apply Glicksberg’s [12] theo-

rem because the strategy sets are compact, convex, and the payoff functions are
continuous. �

Corollary 4.4. p0 ∈ ∆ is a (pure) Nash equilibrium of a Loomis game if and only
if

p0 ∈ arg min
p∈∆

max
i∈N,si∈Si

{
hi(si, p−i) − hi(p)

}
.

Proof. Clearly, p0 ∈ ∆ is an equilibrium of the Loomis game if and only if

p0 ∈ arg min
p∈∆

max
i∈N,p̃i∈∆i

{
g(p̃i, p−i)

f i(p̃i, p−i)
−

gi(p)

f i(p)

}
.

Using the quasi-linearity of the payoffs or Lemma 2.3, one deduces:

max
p̃i∈∆i

gi(p̃i, p−i)

f i(p̃i, p−i)
= max

si∈Si

gi(si, p−i)

f i(si, p−i)

which is the desired result. �

Again, this problem is a particular instance of problem P in (3.2) and so can be
solved via the hierarchy of semidefinite relaxations (3.10).

4.3. Finite absorbing games. This subclass of stochastic games have been in-
troduced by Kohlberg [18]. A N -player finite absorbing games is defined as follows.
As above, there are N finite sets (S1, ..., SN). There are 2 × N -payoff functions
gi : S → R and f i : S → R for each i ∈ {1, ..., N} and a probability transition
function q : S → [0, 1].

The game is played in discrete time as follows. Inductively, at stage t = 1, 2, ...,
players have to play simultaneously. A player i chooses at random an action si

t ∈ Si.
Then,

(i) with probability 1 − q
(
s1

t , ..., s
N
t

)
the game is terminated and each player i

gets at every stage s ≥ t the payoff f i
(
s1

t , ..., s
N
t

)
,and

(ii) with probability q
(
s1

t , ..., s
N
t

)
the game continues and the payoff of each

player j at stage t is gi
(
a1

t , ..., a
N
t

)
.

We consider the λ-discounted game G (λ) (0 < λ < 1). If the payoff of player i
at stage t is ri(t) then its λ-discounted payoff in the game is

∑∞
t=1 λ(1−λ)t−1ri(t).

Hence, a player is optimizing his expected λ-discounted payoff.

Let g̃i = gi × q and f̃ i = f i × (1− q) and extend g̃i, f̃ i and q multilinearly to ∆.

Lemma 4.5. Stationary Nash-equilibria exists. p0 ∈ ∆ is a stationary equilibrium
with a corresponding payoff vector w =

(
w1, ..., wN

)
∈ R

N if and only if for every
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i ∈ N :

wi = max
si∈Si

(
λg̃i(si, p−i

0 ) + (1 − λ)q(si, p−i
0 )wi + f̃ i(si, p−i

0 )
)

= max
pi∈∆i

(
λg̃i(pi, p−i

0 ) + (1 − λ)q(pi, p−i
0 )wi + f̃ i(pi, p−i

0 )
)

pi
0 ∈ arg max

pi∈∆i

(
λg̃i(pi, p−i

0 ) + (1 − λ)q(si, p−i
0 )wi + f̃ i(pi, p−i

0 )
)

Proof. A consequence of Fink [11]. �

Corollary 4.6. p0 ∈ ∆ is a stationary equilibrium of the absorbing game if and
only if

(4.1) p0 ∈ arg min
p∈∆

max
i,si

{
λg̃i(si, p−i) + f̃ i(si, p−i)

λq(si, p−i) + (1 − q(si, p−i))
−

λg̃i(p) + f̃ i(p)

λq(p) + (1 − q(p))

}

Or equivalently, iff p0 is a Nash equilibrium of the Loomis game with payoff

functions p → λg̃i(p)+f̃i(p)
λq(p)+(1−q(p)) , i = 1, ..., N .

Proof. A simple computation shows that p0 ∈ ∆ is a stationary equilibrium with
payoff w =

(
w1, ..., wN

)
∈ R

N if for every i ∈ N :

wi = max
si∈Si

λg̃i(si, p−i
0 ) + f̃ i(si, p−i

0 )

λq(si, p−i
0 ) + (1 − q(si, p−i

0 ))

= max
pi∈∆i

λg̃i(pi, p−i
0 ) + f̃ i(pi, p−i

0 )

λq(pi, p−i
0 ) + (1 − q(pi, p−i

0 ))

and

pi
0 ∈ arg max

pi∈∆i

λg̃i(pi, p−i
0 ) + f̃ i(pi, p−i

0 )

λq(pi, p−i
0 ) + (1 − q(pi, p−i

0 ))

A calculus as in Loomis games shows the equivalence with the statement of the
lemma. �

Similarly, the min-max of a discounted absorbing game may be shown to satisfy
the following formula:

vi = min
p−i∈∆−i

max
si∈Si

λg̃i(si, p−i) + f̃ i(si, p−i)

λq(si, p−i) + (1 − q(si, p−i))

Hence from (4.1) in Corollary 4.6, solving a finite absorbing game reduces to
solving a problem P as defined in (3.2), which again can be solved via the hierarchy
of semidefinite relaxations (3.10).

5. Zero-sum polynomial games

Let K1,K2 ⊂ R
n be two basic and closed semi-algebraic sets

K1 := {x ∈ R
n : gj(x) ≥ 0, j = 1, . . . , m1}(5.1)

K2 := {x ∈ R
n : hk(x) ≥ 0, k = 1, . . . , m2}(5.2)

for some polynomials (gjhk) ⊂ R[x].
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Let P (Ki) be the set of Borel probability measures on Ki, i = 1, 2, and consider
the following min-max problem:

(5.3) P : J∗ = inf
µ∈P (K1)

sup
ν∈P (K2)

∫ ∫
p(x, z) dµ(x) dν(z)

for some polynomial p ∈ R[x, z].
If K1 and K2 are compact, it is well-known that

J∗ = min
µ∈P (K1)

max
ν∈P (K2)

∫ ∫
p(x, z) dµ(x) dν(z)(5.4)

= max
ν∈P (K2)

min
µ∈P (K1)

∫ ∫
p(x, z) dµ(x) dν(z),

that is, there exist µ∗ ∈ P (K1) and ν∗ ∈ P (K2) such that:

(5.5) J∗ =

∫ ∫
p(x, z) dµ∗(x) dν∗(z).

The probability measures µ∗ and ν∗ are the optimal strategies of players 1 and 2
respectively.

Semidefinite relaxations for P. With p ∈ R[x, z] as in (3.2), write

p(x, z) =
∑

α∈Nn2

pα(x) zα with(5.6)

pα(x) =
∑

β∈Nn1

pαβ xβ , |α| ≤ dz

where dz is the total degree of p when seen as polynomial in R[z]. So, let pαβ := 0
for every β ∈ N

n1 whenever |α| > dz.

Let rj := ⌈deg gj/2⌉, for every j = 1, . . . , m1, and consider the following semi-
definite program:

(5.7)






min
y,λ,Zk

λ

s.t. λ Iα=0 −
∑

β∈Nn1

pαβ yβ = 〈Z0, Bα〉 +

m2∑

k=1

〈Zk, Bhk
α 〉, |α| ≤ 2d

Md(y) � 0
Md−rj

(gj y) � 0, j = 1, . . . , m1

y0 = 1

Zk � 0, k = 0, 1, . . .m2

where y is a finite sequence indexed in the canonical basis (xα) of R[x]2d. Denote
by λ∗

d its optimal value. In fact, with h0 ≡ 1 and p(y, ·) ∈ R[z] defined by:

(5.8) z 7→ p(y, z) :=
∑

α∈Nn2




∑

β∈Nn1

pαβ yβ



 zα,
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the semidefinite program (5.7) has the equivalent formulation:

(5.9)






min
y,λ,σk

λ

s.t. λ − p(y, ·) =

m2∑

k=0

σk hk

Md(y) � 0
Md−rj

(gj y) � 0, j = 1, . . . , m1

y0 = 1

σk ∈ Σ[z]; : deg σk + deg hk ≤ 2d, k = 0, 1, . . . , m2.

Observe that for any admissible solution (y, λ) and p(y, ·) as in (5.8),

(5.10) λ ≥ sup
z
{p(y, z) : z ∈ K2}.

Similarly, with p as in (3.2), write

p(x, z) =
∑

α∈Nn1

p̂α(z)xα with(5.11)

p̂α(z) =
∑

β∈Nn2

p̂αβ zβ, |α| ≤ dx

where dx is the total degree of p when seen as polynomial in R[x]. So, let p̂αβ := 0
for every β ∈ N

n2 whenever |α| > dx.

Let lk := ⌈deg hk/2⌉, for every k = 1, . . . , m2, and with

(5.12) x 7→ p̂(x,y) :=
∑

α∈Nn1




∑

β∈Nn2

p̂αβ yβ


 xα,

consider the following semidefinite program (with g0 ≡ 1):

(5.13)






max
y,γ,σj

γ

s.t. p̂(·,y) − γ =

m1∑

j=0

σj gj

Md(y) � 0
Md−lk(hk y) � 0, k = 1, . . . , m2

y0 = 1

σj ∈ Σ[x]; deg σj + deg gj ≤ 2d, j = 0, 1, . . . , m1.

where y is a finite sequence indexed in the canonical basis (zα) of R[z]2d. Denote
by γ∗

d its optimal value. In fact, (5.13) is the dual of the semidefinite program (5.7).

Observe that for any admissible solution (y, γ) and p̂(·,y) as in (5.12),

(5.14) γ ≤ inf
x
{p̂(x,y) : x ∈ K1}.

Assumption 5.1. K1 and K2 are compact and both satisfy Putinar’s property:
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Theorem 5.2. Let P be the min-max problem defined in(3.2) and let Assumption
5.1 hold. Let λ∗

d and γ∗
d be the optimal values of the semidefinite program (5.9) and

(5.13) respectively. Then λ∗
d → J∗ and γ∗

d → J∗ as d → ∞.

We also have a test to detect whether finite convergence has occurred.

Theorem 5.3. Let P be the min-max problem defined in (3.2) and let Assumption
3.2 hold.

(a) Let λ∗
d be the optimal value of the semidefinite program (5.9), and suppose

that with r := maxj=1,...,m1
rj , the condition

(5.15) rankMd−r(y) = rankMd(y) (=: s1)

holds at an optimal solution (y, λ, σk) of (5.7).
Then λ∗

d = J∗ and an optimal strategy for player 1 is a probability measure µ
supported on s1 points of K1.

(b) Let γ∗
d be the optimal value of the semidefinite program (5.13), and suppose

that with r := maxk=1,...,m2
lk, the condition

(5.16) rankMd−r(y) = rankMd(y) (=: s2)

holds at an optimal solution (y, γ, σj) of (5.13).
Then γ∗

d = J∗ and an optimal strategy for player 2 is a probability measure ν
supported on s2 points of K2.

For a proof the reader is referred to §7.2.

Remark 5.4. In the univariate case, when K1,K2 are (not necessarily bounded)
intervals of the real line, the optimal value J∗ = λ∗

d (resp. J∗ = γ∗
d) is obtained by

solving the single semidefinite program (5.9) (resp. (5.13)) with d = d0. Theorem
5.3 in the univariate case was proved in Parrilo [32].

6. Zero-sum polynomial absorbing games

As in the previous section, consider two compact basic semi-algebraic sets K1 ⊂
R

n1 , K2 ⊂ R
n2 and polynomials g, f and q : K1 × K2 → [0, 1]. Recall that

P (K1) (resp. P (K2)) denotes the set of probability measures on K1 (resp. K2).
The absorbing game is played in discrete time as follows. At stage t = 1, 2, ...
player 1 chooses at random xt ∈ K1 (using some mixed action µt ∈ P (K1)) and,
simultaneously, Player 2 chooses at random yt ∈ K2 (using some mixed action
νt ∈ P (K2)).

(i) with probability 1 − q (xt, yt) the game is absorbed and player 1 receives
f (xt, yt) from that stage and forever (player 2 receives −f (xt, yt)),

and
(ii) with probability q (xt, yt) player 2 receives at that stage g (xt, yt) (player 2

receives −g (xt, yt)) and the interaction continues one step further (the situation is
repeated at step t + 1).

If the stream of payoffs is r(t), t = 1, 2, ..., the λ-discounted-payoff of the game
is

∑∞
t=1 λ(1 − λ)t−1r(t).

Let g̃ = g × q and f̃ = f × (1 − q) and extend g̃, f̃ and q multilinearly to
P (K1) × P (K2).

Player 1 maximizes the expected discounted-payoff and player 2 minimizes that
payoff. Using an extension of the Shapley operator [35] one can deduce that the
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game has a value v (λ) that uniquely satisfies,

v (λ) = max
µ∈P (K1)

min
ν∈P (K2)

∫

Θ

(
λg̃ + (1 − λ)v(λ)p + f̃

)
dµ ⊗ ν

= min
ν∈P (K2)

max
µ∈P (K1)

∫

Θ

(
λg̃ + (1 − λ)v(λ)p + f̃

)
dµ ⊗ ν

with Θ := K1 × K2. A simple computation yields

(6.1) v (λ) = max
µ∈P (K1)

min
ν∈P (K2)

∫
Θ P dµ ⊗ ν∫
Θ Q dµ ⊗ ν

= min
ν∈P (K2)

max
µ∈P (K1)

∫
Θ P dµ ⊗ ν∫
Θ Q dµ ⊗ ν

where

(x, y) 7→ P (x, y) := λg̃(x, y) + f̃(x, y)

(x, y) 7→ Q(x, y) := λq(x, y) + 1 − q(x, y)

Or equivalently, v (λ) is the unique real t such that

0 = max
µ∈P (K1)

min
ν∈P (K2)

[∫

Θ

(P (x, y) − t Q(x, y)) dµ(x)dν(y)

]

= min
ν∈P (K2)

min
ν∈P (K1)

[∫

Θ

(P (x, y) − t Q(x, y)) dµ(x)dν(y)

]
.

Actually, the function s : R → R defined by:

t → s(t) := max
µ∈P (K1)

min
ν∈P (K2)

[∫

Θ

(P (x, y) − tQ(x, y)) dµ(x)dν(y)

]

is continuous, strictly decreasing and goes from +∞ to −∞ as t increases from −∞
to +∞.

In the univariate case, if K1 and K2 are both real intervals (not necessarily
compact), then evaluating s(t) for some fixed t can be done by solving a single
semidefinite program; see Remark 5.4. Therefore, in this case, one may approximate
the optimal value s∗ (= s(t∗)) of the game by a dichotomy on t and so, the problem
can be solved in a polynomial time. This extends Shah and Parrilo [34].

7. Appendix

7.1. Proof of Theorem 3.5. We already know that inf Qr ≤ ρ for all r ≥ r0.
Next, we need to prove that inf Qr > −∞ for sufficiently large r. Let m′ := m+p+2.
Recall that the quadratic module Q(h) ⊂ R[x, z] generated by the polynomials

{hj} ⊂ R[x, z] that define K̂ is the set

Q(h) := { σ ∈ R[x, z] | σ =

m′∑

j=0

σj hj with {σj}
m′

j=0 ⊂ Σ[x, z]}.

In addition, let Qt(h) ⊂ Q(h) be the set of elements σ of Q(h) which have a

representation σ0+
∑m′

j=0 σj hj for some s.o.s. family {σj} ⊂ Σ[x, z] with deg σ0 ≤ 2t

and deg σjhj ≤ 2t for all j = 1, . . . , m′.

Let r ∈ N be fixed. As q > 0 on K̂, then q > δ on K̂ for some scalar δ > 0.
Therefore, by Theorem 2.2, q − δ ∈ Q(h). Similarly, there exists N such that

N ± (x, z)α > 0 on K̂, for all α ∈ N
n+1 with |α| ≤ 2r. Therefore by Theorem 2.2

the polynomial (x, z) 7→ N ± (x, z)α belongs to Q(h). But there is even some l(r)
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such that q−δ ∈ Ql(r)(h) and (x, z) 7→ N ±(x, z)α ∈ Ql(r)(h) for every |α| ≤ 2r. Of
course we also have q−δ ∈ Ql(h) and (x, z) 7→ N±(x, z)α ∈ Ql(h) for every |α| ≤ 2r,
whenever l ≥ l(r). Therefore, let us take l(r) ≥ r0, with r0 ≥ maxj=0,...,m′ rj .

As q − δ ∈ Ql(r)(h), q − δ = σ0 +
∑m′

j=1 σjhj, for some (σj) ⊂ Σ[x, z] with

deg σ0 ≤ 2l(r) and deg σj + deg hj ≤ 2l(r), for all j = 1, . . . , m′. Hence, for every
feasible solution y of Ql(r) (and of Ql with l ≥ l(r)),

1 − δy0 = Ly(q − δ) = Ly(σ0) + Ly(

m′∑

j=1

σjhj) ≥ 0,

where the last inequality follows from Ml(r)(y) � 0 and Ml(r)−rj
(y hj) � 0, j =

1, . . . , m′. Therefore, y0 ≤ δ−1.

Similarly, N ± (x, z)α = σ0 +
∑m′

j=1 σj hj for some (σj) ⊂ Σ[x, z] with deg σ0 ≤

2l(r) and deg σj + deg hj ≤ 2l(r), for all j = 1, . . . , m′. Hence, for same reasons as
above,

Ny0 ± yα = Ly(N ± (x, z)α) = Ly(σ0) +

m′∑

j=1

Ly(σj hj) ≥ 0,

which implies |yα| = | Ly((x, z)α) | ≤ Ny0 ≤ Nδ−1, for all |α| ≤ 2r.
In particular, Ly(h0) ≥ −Nδ−1

∑
α |(h0)α|, which proves that inf Ql(r) > −∞,

and so inf Qr > −∞ for sufficiently large r.

Next, from what precedes, and with k ∈ N arbitrary, let l(k) ≥ k be such that
q − δ ∈ Ql(k)(h) and

(7.1) Nk ± (x, z)α ∈ Ql(k)(h) ∀α ∈ N
n+1 with |α| ≤ 2k,

for some Nk. Let r ≥ l(r0), and let yr be a nearly optimal solution of Qr with
value

(7.2) inf Qr ≤ Lyr(h0) ≤ inf Qr +
1

r

(
≤ ρ +

1

r

)
.

Fix k ∈ N. Notice that from (7.1), one has

|Lyr((x, z)α) | ≤ Nky0 ≤ Nkδ−1, ∀α ∈ N
n+1 with |α| ≤ 2k, ∀ r ≥ l(k).

Therefore,

(7.3) |yr
α| = |Lyr((x, z)α) | ≤ N ′

k, ∀α ∈ N
n+1 with |α| ≤ 2k, ∀ r ≥ r0.

where N ′
k = max[Nkδ−1, Vk], with

Vk := max
α,r

{ |yr
α| : |α| ≤ 2k ; r0 ≤ r ≤ l(k) }.

Complete each vector yr with zeros to make it an infinite bounded sequence in
l∞, indexed in the canonical basis in u∞(x, z) of R[x, z]. In view of (7.3), one has
yr
0 ≤ δ−1 and

(7.4) |yr
α| ≤ N ′

k ∀α ∈ N
n with 2k − 1 ≤ |α| ≤ 2k,

and for all k = 1, 2, . . ..
Hence let ŷr ∈ l∞ be a new sequence defined by ŷr

0 = δyr
0 and

ŷr
α :=

yr
α

N ′
k

, ∀α ∈ N
n+1 with 2k − 1 ≤ |α| ≤ 2k, ∀ k = 1, 2, . . . ,
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and in l∞, consider the sequence {ŷr}r, as r → ∞.
Obviously, the sequence {ŷr}r is in the unit ball B1 of l∞, and so, by the Banach-

Alaoglu theorem (see e.g. Ash [1]), there exists ŷ ∈ B1, and a subsequence {ri},
such that ŷri → ŷ as i → ∞, for the weak ⋆ topology σ(l∞, l1) of l∞. In particular,
pointwise convergence holds, that is,

lim
i→∞

ŷri

α → ŷα ∀α ∈ N
n+1.

Next, define y0 = δ−1ŷ0 and

yα := ŷα × N ′
k ∀α ∈ N

n+1 with 2k − 1 ≤ |α| ≤ 2k, ∀ k = 1, 2, . . .

Clearly, the pointwise convergence ŷri → ŷ implies yri → y, i.e.,

(7.5) lim
i→∞

yri

α → yα ∀α ∈ N
n+1.

Next, let r ∈ N be fixed. From the pointwise convergence (7.5) we deduce that

lim
i→∞

Mr(hj yri) = Mr(hj y) � 0, j = 0, 1, . . . , m′.

As r was arbitrary we obtain

(7.6) Mr(hj y) � 0, j = 0, 1, . . . , m′; r = 1, 2, . . .

By Theorem 2.2(b), (7.6) implies that y is the sequence of moments of some finite

measure µ with support contained in K̂.
Next, from the pointwise convergence (7.5) and the constraints of Qr, one has

1 = lim
i→∞

Lyri (q) = Ly(q) =

∫
q dµ,

that is, µ is a feasible solution of P in (3.5). Finally, the pointwise convergence (7.5)
implies Lyri (h0) → Ly(h0) =

∫
h0 dµ (≤ ρ by (7.2)), we deduce that inf Qri

→ ρ =∫
h0 dµ, and in fact the desired result inf Qr ↑ ρ, because the sequence {inf Qr} is

monotone nondecreasing. �

7.2. Proof of Theorem 5.2. We first need the following partial result.

Lemma 7.1. Let (yd)d be a sequence of admissible solutions of the semidefinite
program (5.7). Then there exists ŷ ∈ R

∞ and a subsequence (di) such that ydi → ŷ

pointwise as i → ∞, that is,

(7.7) lim
i→∞

ydi

α = ŷα, ∀α ∈ N
n.

The proof is omitted because it is exactly along the same lines as the proof of
Theorem 3.5 as among the constraints of the feasible set, one has

yd
0 = 1, Md(y

d) � 0, Md(gj yd) � 0, j = 1, . . . , m1.
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Proof of Theorem 5.2. Let µ∗ ∈ P (K1), ν
∗ ∈ P (K2) be optimal strategies of player

1 and player 2 respectively, and let y∗ = (y∗
α) be the sequence of moments of µ∗

(well-defined because K1 is compact). Then

J∗ = sup
ν∈P (K2)

∫ (∫
p(x, z)dµ∗(x)

)
dν(z)

= sup
ν∈P (K2)

∫ ∑

α∈Nn




∑

β∈Nn

pαβ

∫
xβ dµ∗(x)



 zαdν(z)

= sup
ν∈P (K2)

∫ ∑

α∈Nn




∑

β∈Nn

pαβy∗
αβ


 zαdν(z)

= sup
ν∈P (K2)

∫
p(y∗, z) dν(z)

= sup
z

{p(y∗, z) : z ∈ K2}

= inf
λ,σk

{λ : λ − p(y∗, ·) = σ0 +

m2∑

k=1

σk hk; (σj)
m2

j=0 ⊂ Σ[z]}

with z 7→ p(y∗, z) defined in (5.8). Therefore, with ǫ > 0 fixed arbitrary,

(7.8) J∗ − p(y∗, ·) + ǫ = σǫ
0 +

m2∑

k=1

σǫ
k hk,

for some polynomials (σǫ
k) ⊂ Σ[z] of degree at most 2d1

ǫ . So (y∗, J∗ + ǫ, σǫ
k) is an

admissible solution for the semidefinite program (5.9) whenever d ≥ maxj rj and
d ≥ d1

ǫ + maxk lk, because

(7.9) 2d ≥ deg σǫ
0 ; 2d ≥ deg σǫ

k + deg hk, k = 1, . . . , m2.

Therefore,

(7.10) λ∗
d ≤ J∗ + ǫ, ∀d ≥ d̃1

ǫ := max

[
max

j
rj , d1

ǫ + max
k

lk

]
.

Now, let (yd, λd) be an admissible solution of the semidefinite program (5.9) with
value λd ≤ λ∗

d + 1/d. By Lemma 7.1, there exists ŷ ∈ R
∞ and a subsequence (di)

such that ydi → ŷ pointwise, that is, (7.7) holds. But then, invoking (7.7) yields

Md(ŷ) � 0 and Md(gj ŷ) � 0, ∀j = 1, . . . , m1; d = 0, 1, . . .

By Theorem 2.2, there exists µ̂ ∈ P (K1) such that

ŷα =

∫
xα dµ̂, ∀α ∈ N

n.

On the other hand,

J∗ ≤ sup
ν∈P (K2)

∫ (∫
p(x, z)dµ̂(x)

)
dν(z)

= sup
z

{p(ŷ, z) : z ∈ K2}

= inf{λ : λ − p(ŷ, ·) = σ0 +

m2∑

k=1

σk hk; (σj)
m2

j=0 ⊂ Σ[z]}
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with

z 7→ p(ŷ, z) :=
∑

α∈Nn




∑

β∈Nn

pαβ ŷβ


 zα.

Next, let ρ := supz∈K2
p(ŷ, z) (hence ρ ≥ J∗), and consider the polynomial

z 7→ p(yd, z) :=
∑

α∈Nn




∑

β∈Nn

pαβ yd
β


 zα.

It has same degree as p(ŷ, ·), and by (7.7), ‖p(ŷ, ·) − p(ydi , ·)‖ → 0 as i → ∞.
Hence, supz∈K2

p(ydi , z) → ρ as i → ∞, and by construction of the semidefinite

program (5.9), λ∗
di

≥ supz∈K2
p(ydi , z).

Therefore, λ∗
di

≥ ρ−ǫ for all sufficiently large i (say di ≥ d2
ǫ ) and so, λ∗

di
≥ J∗−ǫ

for all di ≥ d2
ǫ . This combined with λ∗

di
≤ J∗ + ǫ for all di ≥ d̃1

ǫ , yields the desired
result that limi→∞ λ∗

di
= J∗ because ǫ > 0 fixed was arbitrary;

Finally, as the converging subsequence (ri) was arbitrary, we get that the entire
sequence (λ∗

d) converges to J∗. �
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