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Abstract

The Pólya process is an urn scheme arising in the context of the contagion
spreading. It exhibits unstable persistence effects. The Friedman urn process
is dual to the Pólya one with antipersistent stabilizing effects. It appears in a
safety campaign problem.

A Pólya-Friedman urn process is investigated with a tuning persistence pa-
rameter extrapolating the latter two extreme processes. The study includes the
diffusion approximations of both the Pólya-Friedman proportion process and
the population gap random walk. The structure of the former is a general-
ized Wright-Fisher diffusion appearing in Population Genetics. The correlation
structure of the latter presents an anomalous character at a critical value of the
persistence parameter.

Keywords: Pólya-Friedman urns, random walks, persistence, Wright-Fisher
model.

Topics: New applications of statistical mechanics. Non-equilibrium pro-
cesses.

1 Introduction and outline of the results

The Pólya process is a discrete-time urn scheme arising in the context of the conta-
gion or rumor spreading. It exhibits unstable inflationary effects. The Friedman urn
process is dual to that of Pólya with antipersistent deflationary effects. It appears
in a safety campaign problem. Both models belong to the class of time-dependent
Markoff chains, a key property leading to specific probabilistic issues.

In this Note, a Pólya-Friedman urn process is investigated with a tuning persis-
tence parameter ρ, |ρ| ≤ 1, extrapolating the latter two extreme processes (corre-
sponding to ρ = 1 and ρ = −1 respectively).

In Section 2, we first revisit the celebrated Pólya process; details include the urn
composition statistics and a short introduction to the discrete-time proportion pro-
cess which plays an important role in the exchangeability property of the increments
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sequence. Then, we investigate a continuous space-time diffusion approximation of
the discrete proportion process. We show that it leads to a time-inhomogeneous
Wright-Fisher diffusion process, a basic model arising in neutral Mathematical Pop-
ulation Genetics ([4]). We compare the discrete and scaling limit processes by means
of an adequate time substitution. In Section 3, we focus on the population gap
process measuring the excess population of the two competing types of individuals
present in the population at all times. We obtain a diffusion approximation of a
scaled version of this process. By doing so, we obtain some insight into the limiting
Gaussian behavior of this quantity.

In Section 4, we start by listing some statistical properties of the Friedman urn
model before concentrating on the full Pólya-Friedman urn process, tuned by ρ.
The study includes the diffusion approximations of the Pólya-Friedman proportion
process and of its associated population gap random walk; it follows the path used
in the previous study for the ‘particular’ Pólya process. Using similar tools, we show
that the structure of the scaled Pólya-Friedman proportion process is a generalized
Wright-Fisher diffusion about which very little seems to be known. We also show that
both the variance and the autocorrelation structure of the Pólya-Friedman population
gap random walk present a qualitative change at the critical value of the persistence
parameter ρ = 1/2. This fact is reminiscent of a dynamical phase transition. The
study makes use of a linear Gaussian time-inhomogeneous diffusion approximation
for this process.

2 The Pólya urn model

We start with generalities on a model attributed to Pólya.

The discrete Pólya model: a reminder. Interest into Pólya urn processes
stems from the following contagion process: an initial population constituted of two
types of genes is randomly pairing, one at a time, with an unlimited external reservoir
of neutral individuals while transmitting to them their genes in the contact process.
The types could also be the religious or political beliefs of a group of initiates ran-
domly sampled in a propaganda campaign to switch to their cause a large set of
initially neutral people in a spreading of rumor process. Then, the current and lim-
iting population sizes of each type deserve interest.

The mathematical formulation of this model is in term of an urn problem ([12],
[7]): an urn contains initially N balls, n1 of which are of type 1, n0 ≡ N −n1 of type
0. The composition of the urn evolves in time. We shall let N1

n be the number of
type 1 balls within the urn at time n, starting from n1 = [Nx1] type 1 balls, where
x1 ∈ (0, 1). [Possibly, we may wish to consider the case of a random unknown initial
state N1

0 within the urn, in which case we have to randomize n1 or x1].
The evolution mechanism is the one of the contamination model of Pólya: a ball

is drawn and then replaced in the urn, along with a ball of the same color drawn so
that at time n there N + n balls within the urn, N1

n of which being type 1.
Let Pn ≡ N1

n/ (N + n) be the fraction (or proportion) of type 1 balls at time n
and (Un; n ≥ 1) an independent and identically distributed (iid) sequence, uniformly
distributed on [0, 1]. The discrete dynamics of the Pólya process is described by:

N1
n+1 = N1

n + 1Un+1≤Pn
,
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hence, given N1
n = k ∈ {n1, .., n1 + n}

N1
n = k → k + 1 with probability pk,n =

k

N + n
=

1
2

(
1 +

2k − (N + n)
N + n

)
(1)

N1
n = k → k with probability qk,n = 1− k

N + n
=

1
2

(
1− 2k − (N + n)

N + n

)
. (2)

The striking feature of these transition probabilities is that they depend on time n.
This model is in the class of Markoff chains inhomogeneous in time: the origin of
time-inhomogeneity is that there is no conservation of the number of balls within
this unbalanced urn process. Note that, except maybe for the initial condition,
the dynamics of N0

n = (N + n) − N1
n is the same as the one of N1

n in that given
N0

n = k ∈ {n0, .., n0 + n}

N0
n = k → k + 1 with probability pk,n

N0
n = k → k with probability qk,n.

The dynamics of N1
n, obeys the classical transitory Pólya distribution (See ([6]),

Proposition 3):

P
(
N1

n = k
)

=

(
k−1
n1−1

)(
N+n−k−1
N−n1−1

)(
N+n−1

N−1

) , k ∈ {n1, .., n1 + n} . (3)

Let Mn ≡ N1
n −N1

n−1 and recall N1
0 = n1. Then, (M1, ...,Mn) ∈ {0, 1}n may be

viewed as a sequence of binary digits labeling the successive n−draws or jumps, and
it makes sense to compute the probability of a particular n−string. We have:

P (M1 = m1) = m1
n1

N
+ (1−m1)

(
1− n1

N

)
,

and for k ≥ 2 : P (Mk = mk | M1, ...,Mk−1) =

mk

(
n1 +

∑k−1
l=1 1 (Ml = mk)
N + k − 1

)
+ (1−mk)

(
1−

n1 +
∑k−1

l=1 1 (Ml = mk)
N + k − 1

)
.

Proceeding in this way, the joint distribution of (M1, ...,Mn) reads

P (M1 = m1, ...,Mn = mn) =

n∏
k=1

{
mk

n1 +
∑k−1

l=1 1 (Ml = mk)
N + k − 1

+ (1−mk)

(
n0 +

∑k−1
l=1 1 (Ml = 1−mk)
N + k − 1

)}

=
(n1)k1

(n0)k0

(N)n

,

where (n)k ≡ n (n + 1) .. (n + k − 1) and km ≡
∑n

k=1 1 (mk = m) is the number
of occurrences of symbol (type or jump) m ∈ {0, 1} in the n−string, satisfying
k0 + k1 = n. This distribution only depends on k0 and k1 and not on the particular
ordering of the symbols in the chain. In other words, it is invariant under the
permutations of the entries in that for all permutation σ of {1, .., n}

P (Mk = mk; k ∈ {1, .., n}) = P
(
Mk = mσ(k); k ∈ {1, .., n}

)
.
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The sequence (M1, ...,Mn) is called exchangeable, after de Finetti. Thus, all possible
sequences presenting k0 (respectively k1) occurrences of symbol {0} (respectively {1})
in the n−string are equiprobable and there are

(
n
k0

)
such sequences: the probability

to get a n−string with km occurrences of symbols m ∈ {0, 1} therefore is

P

(
n∑

k=1

Mk = k1

)
=

(
n1+k1−1

k1

)(
n0−k0−1

k0

)(
N+n−1

n

) (4)

which, as required, is also P
(
N1

n = n1 + k1

)
of (3) because N1

n = n1 +
∑n

k=1 Mk.
The latter distribution is known as the Dirichlet binomial distribution.

The sequence (M1, ...,Mn) is called a Pólya urn sequence, enjoying the distin-
guished exchangeability property. Finally, we observe that

P (M1 = m1, ...,Mn = mn) =
∫ 1

0

xk1 (1− x)k0 u (x) dx

where u (x) = Γ(N)
Γ(n0)Γ(n1)

xn1−1 (1− x)n0−1 is the density of a beta(n1;n0) distributed
random variable on [0, 1] . Moreover,

P

(
n∑

k=1

Mk = k1

)
=
(

n

k0

)∫ 1

0

xk1 (1− x)k0 u (x) dx (5)

and the Dirichlet binomial distribution may be viewed as a randomized binomial dis-
tribution with mixing beta density u. The interpretation of this probability density
arises from the observation that 1

n

∑n
k=1 Mk converges in distribution to a random

variable P with density u. Although not iid, the increments (Mn;n ≥ 0) are condi-
tionally iid Bernoulli given P , being 1 with probability P and 0 with probability 1−P.

A simple way to see this is as follows: the normalized proportion process Pn =
N1

n/ (N + n) is a martingale with values in [0, 1] converging almost surely (a.s.) to a
non-degenerate limit P . Indeed

E (Pn+1 | Pn = x) =
x (N + n) + 1

N + n + 1
px(N+n),n +

x (N + n)
N + n + 1

qx(N+n),n = x.

Moreover, as it can be checked from the distribution of N1
n displayed in (3), that:

Pn ≡ N1
n/ (N + n) d→n↑∞ P

with law beta(n1;N − n1) :

P (P ∈ dx) =
Γ (N)

Γ (n1) Γ (N − n1)
xn1−1 (1− x)N−n1−1

dx ≡ u (x) dx. (6)

Now, Pn = (n1 +
∑n

k=1 Mk) / (N + n) and so both Pn and 1
n

∑n
k=1 Mk converge to

the same limit as n →∞. This result dates back to Pólya (1931), ([12]).

When N is large, if n1 = [Nx1] , the mean value of P is: [Nx1] /N ∼ x1. The
order-2 moment is (if ε ≡ 1/N):

[Nx1] ([Nx1] + 1)
N (N + 1)

∼ x1 (x1 + ε (1− x1)) ,
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so that the variance of P is of order εx1 (1− x1) → 0.
The limit P is random and so Pn is sensitive to the initial conditions, translating

the fact that the distribution of the Pólya urn composition is widely spread. When
N is large, by Stirling formula:

Γ (N)
Γ ([Nx1]) Γ (N − [Nx1])

∼ 1√
2πNx1 (1− x1)

(
xx1

1 (1− x1)
1−x1

)−N

and

u (x) ∼ 1√
2πNx1 (1− x1)

((
x

x1

)x1
(

1− x

1− x1

)1−x1
)N

which is very peaked around x1. P admits a variance that goes to 0 and P → δx1 : if
N is large, one recovers asymptotically the initial proportion of type 1 balls, which
may be useful if the initial composition is fixed but unknown.

For the population ratio of type 1 to 0 balls:

N1
n

N0
n

=
Pn

1− Pn
→n↑∞ W =

P

1− P
> 0 a.s.

where the random variable W admits a generalized Pareto density v (z) , z > 0 given
by:

v (z) =
Γ (N)

Γ (n1) Γ (n0)
zn1−1 (1 + z)−N ∼

z↑∞

Γ (N)
Γ (n1) Γ (n0)

z−(n0+1), (7)

a power law with exponent n0.

Diffusion approximation of the Pólya urn proportion process: the
Wright-Fisher model. When N is large, we can rather work on the novel rescaled
[0, 1]−valued random process:

Xt = N1
[tN ]/ (N + [tN ]) = P[tN ], (8)

in continuous time t. Here, a time unit of Xt corresponds to a lapse of time N for
the discrete original process N1

n. The dynamics of Xt can be approximated by an
inhomogeneous Itô diffusion equation with ‘small’ noise which should capture the
essential features of N1

n. We shall briefly sketch how this works and show with an ex-
ample the discrepancies between the discrete and continuous (space-time) processes.
To be more precise, we may state:

When N gets large (or ε ≡ N−1 gets small), the rescaled Pólya urn proportion
process, namely: Xt = N1

[tN ]/ (N + [tN ]), obeys the neutral Wright-Fisher stochastic
differential equation (SDE) in the sense of Itô:

dXt =

√
εXt (1−Xt)

1 + t
dBt, X0 = x1 ∈ (0, 1) . (9)

Here, Bt is the standard Brownian motion and so Xt is a martingale with no drift:
f (x) ≡ 0 and with time-dependent local standard deviation given by gε,t (x) ≡√

εx(1−x)

1+t .
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We shall now give a sketch of proof. Formally, with δXt = Xt+ε − Xt and
(ζt; t ∈ εZ) an iid standard Gaussian sequence, we look for the drift f and local
standard deviation gε,t such that:

δXt = f (Xt) ε +
√

εgε,t (Xt) ζt+ε.

From (8), we have
δXt =

N1
[(t+ε)N ]

N + [(t + ε) N ]
−

N1
[tN ]

N + [tN ]
=

N1
[tN ]+1

N + [tN ] + 1
−

N1
[tN ]

N + [tN ]
=

N1
[tN ] + δN1

[tN ]

N + [tN ] + 1
−

N1
[tN ]

N + [tN ]
=

(N + [tN ])Xt + δN1
[tN ]

N + [tN ] + 1
−Xt =

δN1
[tN ] −Xt

N + [tN ] + 1
.

Given Xt = x, the law of δN1
[tN ] is

1 with probability x

0 with probability 1− x.

Thus

f (x) ε≡E (δXt) =
(1− x)

N + [tN ] + 1
x− x

N + [tN ] + 1
(1− x) = 0

εg2
ε (x)≡ σ2 (δXt) =

(1− x)2

(N + [tN ] + 1)2
x +

x2

(N + [tN ] + 1)2
(1− x)

=
x (1− x)

(N + [tN ] + 1)2
.

leading to a null drift: f (x) = 0 and to the local standard deviation

gε,t (x) =

√
x (1− x)√

ε (ε−1 + [t/ε] + 1)
=

√
εx (1− x)

1 + ε ([t/ε] + 1)
∼
√

εx (1− x)
1 + t

.

Thus, we obtain a diffusion process inhomogeneous in time whose local vari-
ance depends on time: this diffusion process has the time-dependent Fokker-Planck-
Kolmogorov backward (respectively forward) infinitesimal generator:

Gt (·) =
ε

2 (1 + t)2
x (1− x) ∂2

x (·) (respectively G∗
t (·) =

ε

2 (1 + t)2
∂2

x [x (1− x) ·] ).

Continuous-time Pólya: the time substitution.
Let

τt =
∫ t

0

(1 + s)−2
ds =

t

1 + t
(10)
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be an increasing time change. If tτ = τ
1−τ is the inverse of τt, the new pro-

cess Xτ ≡ Xtτ
now is a time-homogeneous Brownian motion with local variance

εx (1− x) . Indeed, the forward (respectively backward) infinitesimal generator of
the time-changed process Xτ becomes: G = (1 + t)2 Gt = 1

2εx (1− x) ∂2
x (respec-

tively: G∗ = (1 + t)2 G∗
t = ε∂2

x [x (1− x) ·]).

The underlying process is the celebrated Wright-Fisher model of population ge-
netics, now obeying the time-homogeneous SDE:

dXτ =
√

εXτ (1−Xτ )dBτ , X0 = x1 ∈ (0, 1) . (11)

This SDE is also the continuous space-time limit of the Moran model when a popu-
lation of size N evolves in discrete time by choosing at random a pair of individuals,
one of which will duplicate, the other will die out while preserving the total number
N of individuals at each generation (the constant-size branching process). See ([11]),
([4]), ([1]) and ([10]).

When looking for the long-time (t → ∞) behavior of Xt, we need to compute
the transitory solution of the neutral time-homogeneous Wright-Fisher model Xτ till
time τ = 1. It turns out that the generators of the neutral Wright model admit
a discrete spectrum with known eigenfunctions (Bernoulli polynomials) and known
eigenvalues. Therefore, the current distribution of Xτ is accessible, allowing to com-
pute the limiting moments and the limit law of Xt (t → ∞) simply by considering
the moments and law of Xτ till time τ = 1. We shall briefly sketch how this works
(See ([11]) and ([10]) for additional details).

Limiting moments of Xt. The Bernoulli polynomials Bk (x) , k ≥ 1 are defined
by:

t
ext − 1
et − 1

=
∑
k≥1

Bk (x)
k!

tk.

Let uk (x) = (−1)k−1
k!Bk (x). Then, uk (x) , k ≥ 1 are the eigenfunctions of

the infinitesimal generator G = 1
2εx (1− x) ∂2

x associated to the eigenvalues λk =
−εk (k − 1) /2, k ≥ 1:

G (uk (x)) = λkuk (x) .

For instance, u1 (x) = x, u2 (x) = x − x2, u3 (x) = x − 3x2 + 2x3, u4 (x) =
x− 6x2 + 10x3 − 5x4...

The system uk (x) , k ≥ 2 constitutes a complete orthogonal system of eigenvec-
tors. Thus, for all function ϕ (x) admitting a decomposition within the basis uk (x)

Ex1ϕ (X∞) = Ex1ϕ (Xτ ) =
∑
k≥2

ckeλkτuk (x1) (12)

where 〈ϕ, uk〉w ≡
∫ 1

0
ϕ (x) uk (x)w (x) dx, w (x) = 1/ (x (1− x)) and ck ≡

〈ϕ,uk〉w
〈vk,uk〉 .

In particular, with xk =
∑k

l=1 ck,lul (x) where the coefficients ck,l ∈ Z :

Ex1
(
Xk
∞
)

= Ex1
(
X k

τ=1

)
=

k∑
l=1

ck,le
λlul (x1) ,

7



are the limiting moments of Xt, t →∞.
For the first two moments, we obtain:

- Ex1 (X∞) = Ex1 (X1) = u1 (x1) e−0 = x1.
- Ex1

(
X2
∞
)

= Ex1
(
X 2

1

)
= u1 (x1) e−0 − u2 (x1) e−ε = x1 (1− (1− x1) e−ε) ∼

ε↓0
x1 (x1 + ε (1− x1)) so that the limiting variance of Xt is: σ2

x1
(X∞) ∼ εx1 (1− x1) .

As required, the laws of P as from (6) and of X∞ admit comparable first and
second order moments in the small ε limit.

Limit law of Xt. The eigenfunctions of the dual Kolmogorov operator G∗ (·) =
ε
2∂2

x [x (1− x) ·] are given by vk (x) = w (x)·uk (x) , k ≥ 1 where the weight-orthogonality
measure w (x) dx is given by: w (x) = 1

x(1−x) , for the same eigenvalues, meaning:

G∗ (vk (x)) = λkvk (x) .

For instance, v1 (x) = 1
1−x , v2 (x) = 1, , v3 (x) = 1− 2x, v4 (x) = 1− 5x + 5x2...

Then, the following decomposition of the probability measure of Xτ=1 over the
series of measures vk (x) dx holds:

Px1 (X∞ ∈ dx) = Px1 (X1 ∈ dx) =
∑
k≥2

e−εk(k−1)/2uk (x1)
〈vk, uk〉

vk (x) dx. (13)

It coincides with the law of X∞. When ε is small, this distribution approaches the
one (6) of P , which is beta

([
ε−1x1

]
; ε−1 −

[
ε−1x1

])
, arising in the discrete-time

setting. At time τ = 1, the law of the time-changed process of course keeps track of
the initial condition x1. But τ = 1 is t = ∞ for the original process: the origin of
the sensitivity to the initial conditions of the limit law for Xt can be clarified in this
way.

3 The Pólya population gap process

In the Pólya expression of pk,n, (1)-(2), we have |2k − (N + n)| < N + n suggesting
that what really drives the dynamics of N1

n is the gap process quantifying the excess
population of type 1 balls within the urn, namely the quantity:

∆n ≡ 2N1
n − (N + n) = N1

n −N0
n with initial condition: ∆0 = 2n1 −N. (14)

The support of the law of ∆n is thus {∆0 − n, ∆0 + n} . Given ∆n = k, we obtain
the random walk model

∆n = l → l + 1 with probability p l+(N+n)
2 ,n

=
l + (N + n)
2 (N + n)

(15)

∆n = l → l − 1 with probability q l+(N+n)
2 ,n

= 1− p l+(N+n)
2 ,n

, (16)

inhomogeneous in time. Is there a limit law on the random walk ∆n? When is the
random walk ∆n transient in that: ∆n → ±∞? To answer these questions, we shall
consider a diffusion approximation of ∆n.
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Diffusion approximation of ∆n. Let ε = N−1 → 0. Suppose n1/N → x1 ∈
(0, 1) (N →∞). We shall consider

Yt = ε ·∆[t/ε], (17)

a scaled version of the process ∆n and look for its dynamics, of diffusion type. Then,
with δYt = Yt+ε − Yt and (ζt; t ∈ εZ) a standard iid Gaussian sequence, we wish to
identify the drift ft and variance g2

ε,t functions such that:

δYt = ft (Yt) ε +
√

εgε,t (Yt) ζt+ε.

Given Yt = y, using the transition probabilities of ∆n, we have from (15)-(16)

E (δYt) = εE
(
∆[t/ε]+1 −∆[t/ε]

)
= ε

(
2p y/ε+(N+t/ε)

2 ,t/ε
− 1
)

= εy/ (1 + t) .

Thus, the drift is ft (y) = y/ (1 + t) ≡ yat. Moreover, σ2 (δYt) = ε2 in such a way
that gε,t (y) =

√
ε. We conclude that Yt obeys a diffusion equation in the sense of Itô

with small additive noise:

dYt = Yt/ (1 + t) dt +
√

εdBt, Y0 = 2x1 − 1. (18)

Current distribution. Assume the initial composition N1
0 of the urn is random.

Let
σ2

0 ≡ σ2 (Y0) = 4ε2σ2
(
N1

0

)
be the variance of Y0. If Y0

d∼ N
(
y0, σ

2
0

)
is Gaussian or deterministic Y0

d∼ δy0 , the
law of Yt keeps Gaussian in time with density:

pt (y) =
1√

2πσt

e
− 1

2σ2
t
(y−yt)

2

, y ∈ R,

where yt = E (Yt) is the expected value of Yt and σ2
t ≡ vt its variance.

With at ≡ 1/ (1 + t) , the dynamics of Yt is linear of the form dYt = atYtdt +√
εdBt, the drift being linear and inhomogeneous in time. If Ψt (λ) = log E

(
eiλYt

)
is

the logarithm of the characteristic function of the law of Yt, we have

∂tΨt (λ) = atλ∂λΨt (λ)− ε

2
λ2

and Ψt (λ) = iλyt − λ2

2 vt. Identifying the real and imaginary parts of Ψt (λ) , we get
the dynamics of the mean and variance of Yt as:

·
yt = atyt, y0 = 2x1 − 1
·
vt = 2atvt + ε, v0 = σ2

0 .

Integrating, we find:
yt = y0 (1 + t) ∼

t large
y0t (19)

vt = v0 (1 + t)2 + ε

∫ t

0

(
1 + t

1 + s

)2

ds (20)
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= v0 (1 + t)2 + ε (1 + t)2
(
1− (1 + t)−1

)
∼ (v0 + ε) t2. (21)

We also have (asymptotic normality)

Yt − (2x1 − 1) t√
v0 + εt

→ N (0, 1) ,

that is to say, recalling Yt = ε ·∆[t/ε] = 1
N ∆n Nt = n

∆n − (2x1 − 1) n√
v0 + εn

→ N (0, 1)

where the fluctuations of ∆n turn out to be large (of the same order of magnitude
in time as the mean).

Temporal correlations. Let As,t ≡
∫ t

s
aτdτ = log

(
1+t
1+s

)
. The integral solution

to the SDE (18) for Yt is:

Yt = y0 +
∫ t

0

eAs,t
(
y0asds +

√
εdBs

)
.

The integral solution of yt = E (Yt) may be put under the form: yt = y0+
∫ t

0
eAs,ty0asds.

Thus, Y t ≡ Yt − yt is a centered martingale process with:

Y t =
√

ε

∫ t

0

eAs,tdBs =
√

ε (1 + t)
∫ t

0

(1 + s)−1
dBs.

Let τ > 0. It follows that

Cov (Yt, Yt+τ ) ≡ E
(
Y tY t+τ

)
= ε (1 + t) (1 + t + τ)

∫ t

0

(1 + s)−2
ds (22)

= εt (1 + t + τ) .

This auto-covariance is positive and does depend on both t, τ > 0 and not only on
the time lag τ because Yt is not a second order stationary Gaussian process, due to
the time inhomogeneity of its drift.

4 A model with a variable degree of persistence: from Pólya
to Friedman

We start with generalities on a model attributed to Friedman.

The Friedman model. Consider the (dual) discrete dynamics of Friedman
defined as follows ([8]):

N1
n+1 = N1

n + 1Un+1>Pn
,

for which, given N1
n = k ∈ {n1, .., n1 + n}

N1
n = k → k + 1 with probability pk,n = 1− k

N + n
=

1
2

(
1− 2k − (N + n)

N + n

)
(23)

N1
n = k → k with probability qk,n =

k

N + n
=

1
2

(
1 +

2k − (N + n)
N + n

)
. (24)

10



The transition probabilities again depend on time n but have been exchanged as
compared to the Pólya model (1)-(2): the Friedman model is dual to the Pólya
model in the sense of Wall duality ([3]). In this scheme, a ball is drawn at each
time within the urn and its type is recorded; before proceeding to the subsequent
drawing, replace the ball just drawn within the urn along with an additional ball
of the other type (a stabilizing effect). At time n, we have N + n balls as a whole
among which N1

n are of type 1. This scheme is again the one of a Markoff chain
inhomogeneous in time. It was proposed by Friedman as a model of safety campaign.
Quoting and rephrasing ([5]): Every time a ball of type 1 is drawn (an accident
occurs), the safety campaign is pushed harder lowering the chance of a subsequent
accident, whereas if no accident occurs, the campaign slackens and the probability of
an accident increases. We may also switch to a different image: suppose the types
are the religious or political beliefs of a group of persons undergoing a propaganda
campaign. It could be that in the process of convincing the unresolved people, these
switch to the opposite camp instead of joining the ideas of the promoter. This
adverse-campaign model is a Friedman urn process as well.

In the Friedman model, Pn = N1
n/ (N + n) → 1/2 a.s. and the proportion of type

1 balls goes to a non-random limit traducing the stable (antipersistent) character of
the Friedman urn process. The distribution of the Friedman’s urn composition is
ultimately concentrated on 1/2, regardless of its initial composition.

From Pólya to Friedman: the PF urn model. This duality suggests to
consider now the following urn dynamics: let |ρ| ≤ 1 be a persistence coefficient
determining the amplitude (or strength) of the reinforcement within the system.
Consider the PF urn model defined by:

N1
n = k → k + 1 with probability pk,n =

1
2

(
1 + ρ

2k − (N + n)
N + n

)
(25)

N1
n = k → k with probability qk,n =

1
2

(
1− ρ

2k − (N + n)
N + n

)
. (26)

interpolating the Pólya (ρ = 1) and the Friedman (ρ = −1) urn models. When
ρ > 0, a favorable situation at time n of gene 1 promotes the birth of a new gene
of the same type and its advantage is enhanced or reinforced in future issues. On
the contrary, when ρ < 0, if in favorable position, gene 1 will be inhibited which is a
stabilizing antipersistent feedback effect. A similar study involving simple transition
probabilities as in (25)-(26) can be found in ([9]), although with no reference at all to
the Pólya urn model and its relatives. Still, the relevance of the related concepts to
real-world data was convincingly enough demonstrated. To be more precise, the Au-
thors in ([9]) discuss the applicability of this model to coarse-grained DNA sequences,
written texts and financial data.

In the PF urn process, the proportion process Pn = N1
n/ (N + n) is not a mar-

tingale. It satisfies

E (Pn+1 | Pn = x) = x +
1− ρ

2 (N + n + 1)
(1− 2x) .
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The PF population gap process. Let ∆n ≡ 2N1
n − (N + n) be the excess

population process related to the PF process. We now have the random walk:

∆n = l → l + 1 with probability p l+(N+n)
2 ,n

=
1
2

(
1 + ρ

l

N + n

)
(27)

∆n = l → l − 1 with probability q l+(N+n)
2 ,n

=
1
2

(
1− ρ

l

N + n

)
. (28)

When ρ = 0, ∆n coincides with the usual fair random walk. As before, with ε = N−1,
we consider the scaling:

Yt = ε ·∆[t/ε].

Given Yt = y, we now get

E (δYt) = εE
(
∆[t/ε]+1 −∆[t/ε]

)
= ε

(
2p y/ε+(N+t/ε)

2 ,t/ε
− 1
)

= ερ
y

1 + t

The drift is: ft (y) = ρ y
1+t . Moreover, σ2 (δYt) = ε2 in such a way that gε,t (y) =

√
ε

(small diffusion). Therefore Yt obeys the SDE with linear drift and additive (small)
Wiener noise:

dYt = ρYt/ (1 + t) dt +
√

εdBt, Y0 = 2x1 − 1. (29)

The solution for yt = E (Yt) now is

yt = y0 (1 + t)ρ ∼
t large

y0t
ρ.

In antipersistent situations (ρ < 0), yt → 0 and the gap between type 0 and 1 balls
concentrations shrink to 0 : type 0 and 1 balls tend to equilibrate. In persistent
situations (ρ > 0), yt → ±∞ depending on the sign of 2x1 − 1.

Starting from a Gaussian distribution, the law of Yt remains Gaussian over time:

pt (y) =
1√

2πσt

e
− 1

2σ2
t
(y−yt)

2

, y ∈ R,

where σ2
t ≡ vt is the variance of Yt. The dynamics of vt is given by the Riccati

equation

·
vt= 2ρvt/ (1 + t) + ε, v0,

leading if ρ 6= 1/2 to

vt = v0 +
∫ t

0

(
1 + t

1 + s

)2ρ( 2ρ

1 + s
v0 + ε

)
ds = v0 (1 + t)2ρ + ε

∫ t

0

(
1 + t

1 + s

)2ρ

ds (30)

= v0 (1 + t)2ρ +
ε

1− 2ρ
(1 + t)2ρ

(
(1 + t)1−2ρ − 1

)
. (31)

If ρ = 1/2, we are led to

vt = v0 +
∫ t

0

(
1 + t

1 + s

)(
1

1 + s
v0 + ε

)
ds = v0 (1 + t) + ε (1 + t) log (1 + t) .
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To summarize the temporal behavior of the mean goes like yt ∼ y0t
ρ, whereas for

the variance:
vt ∼

ε

1− 2ρ
t if ρ < 1/2 (32)

vt ∼
(

v0 +
ε

2ρ− 1

)
t2ρ if ρ > 1/2, (33)

vt ∼ εt log (t) if ρ = 1/2. (34)

Equations (32)-(33)-(34) are not a novelty; they were first derived in ([9], Equation
(7)). With σt ≡ v

1/2
t , the following additional property is an immediate consequence

of our computations:
Yt − yt

σt

d→ N (0, 1) ,

so that a central limit theorem holds.
The variance vt undergoes a qualitative change at ρ = 1/2. Indeed, there are two

variance regimes depending on the position of ρ with respect to 1/2 corresponding
to a critical regime. First, if ρ ≤ 1/2 there is no influence of v0 in the long run and
the variance is of order ε. Second, ρ < 1/2 is a diffusive regime. Finally, if ρ > 1/2,
we observe a super-diffusive regime.

In many cases, it can be useful to compare the process mean with its variance.
For some point processes, the number of points variance within a time lag may grow
typically like the number mean, as time gets large: if this property holds, the point
process is called ‘essentially Poissonian’ as this is one of the Poisson characteristic
feature. Anomalous (non-Poissonian) fluctuations for the random number of points
may also arise. There are two cases: point processes can be ‘super-homogeneous’ if
the number variance grows slower than the number mean and even ‘hyper-uniform’
(when variance growth saturates). This expresses some degree of regularity of the
model under study. On the other hand, point processes can be ‘sub-homogeneous’ or
critical (in the sense that the number variance grows faster than the number mean).
Such point processes exhibit large fluctuations; see ([2]) for background. This last
situation corresponds to our point process ∆n because from (32), vt/yt → ∞ what-
ever the value of ρ.

Temporal correlations. Assume ρ ∈ [−1, 1] with ρ 6= 1/2. Let As,t ≡∫ t

s
aτdτ = log

(
1+t
1+s

)ρ

. The integral solution of the centered martingale process

Y t ≡ Yt − yt now is

Y t =
√

ε

∫ t

0

eAs,tdBs =
√

ε (1 + t)ρ
∫ t

0

(1 + s)−ρ
dBs.

Let τ > 0. Then

Cov (Yt, Yt+τ ) = E
(
Y tY t+τ

)
= ε (1 + t)ρ (1 + t + τ)ρ

∫ t

0

(1 + s)−2ρ
ds (35)

=
ε

1− 2ρ
(1 + t + τ)ρ (1 + t)ρ

[
(1 + t)1−2ρ − 1

]
. (36)

This covariance kernel do again depend on both t, τ > 0 and not only on the time
lag τ .
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- When ρ ∈ (1/2, 1] , this covariance is a positive function of the variables t,
τ > 0 and so Yt is positively self-correlated. For large t � τ , we have: Cov(Yt, Yt+τ )
∼ ε

2ρ−1 (t + τ)ρ
tρ. For large τ � t, we have: Cov(Yt, Yt+τ ) ∼ ε

2ρ−1 (1 + t)ρ
τρ.

- When ρ ∈ [−1, 1/2) this covariance still is a positive function of t, τ > 0. Yt is
again positively correlated. For large t, we now have: Cov(Yt, Yt+τ )∼ ε

1−2ρ (t + τ)ρ
t1−ρ

whereas for large τ � t: Cov(Yt, Yt+τ ) ∼ ε
1−2ρ (1 + t)1−ρ

τρ. In both cases, covari-
ances are long-ranged and there is a qualitative change in the correlation structure
at critical ρ = 1/2. The autocorrelation function requires normalizing. It is

Corr (Yt, Yt+τ ) ≡ Cov (Yt, Yt+τ )
σ (Yt) σ (Yt+τ )

.

It can be computed using the expressions from (32) of the standard deviations
σ (Yt) ≡

√
vt and σ (Yt+τ ) ≡ √

vt+τ .
- When ρ = 0, Yt is Brownian motion

√
εBt with well-known covariance εt ∧

(t + τ) = εt.
- When ρ = 1/2 (critical case)

Cov (Yt, Yt+τ ) = ε (1 + t)1/2 (1 + t + τ)1/2 log (1 + t) ∼
t large

(t (t + τ))1/2 log t.

It exhibits a logarithmic dependence on t.

Diffusion approximations of the PF urn proportion model. In this Sec-
tion, we briefly address the problem of the diffusion approximations of the full PF
urn proportion model, following the path used to get a Wright-Fisher approximation
for the Pólya process.

Let Xt = N1
[tN ]/ (N + [tN ]) = P[tN ]. We still have

δXt =
δN1

[tN ] −Xt

N + [tN ] + 1

Given Xt = x, using the transition probabilities of the PF process, the law of δN1
[tN ]

now is

1 with probability
1− ρ

2
+ ρx

0 with probability
1 + ρ

2
− ρx.

Thus

ft (x) ε = E (δXt) =
(1− x)

N + [tN ] + 1

(
1− ρ

2
+ ρx

)
− x

N + [tN ] + 1

(
1 + ρ

2
− ρx

)
=

1− ρ

2
1− 2x

N + [tN ] + 1

εg2
ε (x) = σ2 (δXt) =

(1− x)2
(

1−ρ
2 + ρx

)
+ x2

(
1+ρ
2 − ρx

)
(N + [tN ] + 1)2

− E (δXt)
2

=
1−ρ
2

[
x2 + (1− x)2 − 1−ρ

2 (1− 2x)2
]

+ ρx (1− x)

(N + [tN ] + 1)2
.
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As a result, defining the quadratic function qρ (x) ≡ x2 + (1− x)2 − 1−ρ
2 (1− 2x)2 :

ft (x) ∼ 1− ρ

2
1− 2x

1 + t
and gε,t (x) ∼

√
ε

1 + t

√
1− ρ

2
qρ (x) + ρx (1− x)

are the new drift and local standard deviation entering in the full PF diffusion process.
Note that both the drift and variance terms depend on t. Note also the symmetry
property: qρ (1− x) = qρ (x) .

After the same time change (10) as the one used for the Pólya process, we are led
to a time-inhomogeneous diffusion on [0, 1] for Xτ ≡ Xtτ , τ ∈ [0, 1) :

dXτ =
1− ρ

2
1− 2Xτ

1− τ
dτ +

√
ε

√
1− ρ

2
qρ (Xτ ) + ρXτ (1−Xτ )dBτ . (37)

The new drift of the time-changed process is fτ (x) = 1−ρ
2 (1− 2x) / (1− τ) . When

ρ 6= 1, this drift is positive when x < 1/2, negative when x > 1/2. Therefore, 1/2 is
a stable point of the noiseless dynamics (ε = 0), say X ∗

τ , whose integral solution can
easily be obtained under the form

X ∗
τ =

1
2

[
1− (1− 2X ∗

0 ) (1− τ)1−ρ
]
→

τ↗1

1
2
. (38)

Equation (37) should be regarded as a small diffusive perturbation of Equation (38).
Up to the coefficient ε, the volatility coefficient of the time-changed process in

(37) is

g2 (x) ≡ 1− ρ

2
qρ (x) + ρx (1− x) .

The quadratic function x → g2 (x) is always symmetric with respect to 1/2 with
g2 (1/2) = 1/4, g2 (0) = g2 (1) = 1−ρ2

4 ≥ 0. When ρ 6= 0, with x ∈ [0, 1], we easily
obtain the factorized expression:

g2 (x) = ρ2 (x− x−) (x+ − x) where x± =
1
2

(
1± 1

|ρ|

)
, (39)

with x− ≤ 0 and x+ ≥ 1. Note that the function ρ → g2 (x) is invariant under the
transformation ρ → −ρ.

In sharp contrast to the much studied Wright-Fisher diffusions (ρ = 1), we are not
aware of any working paper considering such generalized diffusion processes as in (37).

Special cases include:

- If ρ = 1/2

fτ (x) =
1
4

1− 2x

1− τ
and g2 (x) =

1
4

(
x +

1
2

)(
3
2
− x

)
.

- If ρ = −1/2

fτ (x) =
3
4

1− 2x

1− τ
and g2 (x) =

1
4

(
x +

1
2

)(
3
2
− x

)
.
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- If ρ = −1 (Friedman urn), fτ (x) = 1−2x
1−τ and g2 (x) = x (1− x) . We have to

consider the Friedman diffusion which is dual to the one of Wright-Fisher, namely:

dXτ =
1− 2Xτ

1− τ
dτ +

√
ε
√
Xτ (1−Xτ )dBτ .

- If ρ = 0, g2 (x) = 1/4 and the diffusion reduces to an Ornstein-Uhlenbeck like
one

dXτ =
1
2

1− 2Xτ

1− τ
dτ +

√
ε

4
dBτ .

5 Conclusion

We investigated a parametric urn process called the Pólya-Friedman urn model, in-
volving a persistence effect. The study includes the diffusion approximations of both
the discrete Pólya-Friedman proportion process and the population gap random walk.
We have shown that the structure of the former is a generalized time-inhomogeneous
Wright-Fisher diffusion. The structure of the latter is a stochastic differential equa-
tion involving a linear time-inhomogeneous drift with an additive (small) Wiener
term; the correlation structure of the latter was shown to present a ‘dramatic’ change
at a critical value of the persistence parameter.
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