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, to localize the numerical range of quasi-sectorial contractions semigroups. Our main theorem establishes a relation between the numerical range of quasi-sectorial contraction semigroups {exp(-tS)} t≥0 , and the maximal sectorial generators S. We also give a new prove of the rate O(1/n) for the operator-norm Euler formula approximation: exp(-tS) = lim n→∞ (I + tS/n) -n , t ≥ 0, for this class of semigroups.

Introduction

In what follows the Banach algebra of all bounded linear operators on a complex Hilbert space H is denoted by L(H). We denote by I H the identity operator in a Hilbert space H. The domain, the range, and the null-space of a linear operator T are denoted by dom T , ran T, and ker T , respectively. For T ∈ L(H) the operators Re T = (T + T * )/2 and Im T = (T -T * )/2i are said to be the real and the imaginary parts of T .

1.1. Numerical range and the Kato mapping theorem. Let H be a complex separable Hilbert space and let A be an (unbounded ) linear operator in H with domain dom A. According to the Hausdorff-Toeplitz theorem, the numerical range is a convex set. We recall also the following properties of the numerical range (see e.g. [START_REF] Kato | Perturbation theory for linear operators[END_REF]). Proposition 1.2. Let A be a closed operator in H. Then (a) for any complex number z / ∈ W (A) holds ker (A -zI H ) = {0} and ran (A -zI H ) is closed. Moreover, the defect

def(A -zI H ) := dim (H ⊖ ran (A -zI H )) is constant in each connected component of C \ W (A). (b) If z ∈ C \ W (A) then ||(A -zI H ) -1 f || ≤ 1 dist(z, W (A))
||f ||, f ∈ ran (A -zI H ).

(c) If dom A is dense in H and W (A) = C, then A is closable.

Corollary 1.3. For a bounded operator A ∈ L(H) the spectrum σ(A) is a subset of W (A).

For unbounded operator A the relation between spectrum and numerical range is more complicated. We would like to warn, that it may very well happen that σ(A) is not contained in W (A), but for a closed operator A the essential spectrum σ ess (A) is always a subset of W (A). The condition def(A -zI) = 0, z / ∈ W (A) in Proposition 1.2 serves to ensure that for those unbounded operators one gets (1.1) σ(T ) ⊂ W (A) ,

i.e., the same conclusion as in Corollary 1.3 for bounded operators.

In the sequel we need the following numerical range mapping theorem due to Kato [START_REF] Kato | Some mapping theorem for the numerical range[END_REF].

Proposition 1.4. [START_REF] Kato | Some mapping theorem for the numerical range[END_REF]. Let f (z) be a rational function on C, with f (∞) = ∞. Let for some compact and convex set E ′ ⊂ C the inverse function f -1 : E ′ → E ⊇ K, where K is a convex kernel of E, i.e., is a subset of E such that E is star-shaped with respect to any z ∈ K. If A is bounded operator with W (A) ⊆ K, then W (f (A)) ⊆ E ′ .

Notice that for a convex set E the maximal convex kernel K = E.

1.2. Sectorial operators and quasi-sectorial contractions.

Definition 1.5. [START_REF] Kato | Perturbation theory for linear operators[END_REF]. Let S be a linear operator in a Hilbert space H. If Re (Su, u) ≥ 0 for all u ∈ dom S, then S is called accretive.

So, the operator S is accretive if and only if its numerical range is contained in the closed right-half plane of the complex plane. An accretive operator S is called maximal accretive (m-accretive) if one of the equivalent conditions is satisfied:

• the operator S has no accretive extensions in H;

• the resolvent set ρ(S) is nonempty;

• the operator S is densely defined and closed, and S * is accretive operator. The resolvent set ρ(S) of m-accretive operator contains the open left half plane and

||(S -zI H ) -1 || ≤ 1 |Re z| , Re z < 0.
It is well known [START_REF] Kato | Perturbation theory for linear operators[END_REF] that if S is m-accretive operator, then the one-parameter semigroup T (t) = exp(-tS), t ≥ 0 is contractive. Conversely, if the family {T (t)} t≥0 is a strongly continuous semigroup of bounded operators in a Hilbert space H, with T (0) = I H (C 0 -semigroup) and T (t) is a contraction for each t, then the generator S of T (t):

Su := lim t→+0 (I H -T (t))u t , u ∈ dom S ,
where domain is defined by condition:

dom S = u ∈ H : lim t→+0 (I H -T (t))u t exists ,
is an m-accretive operator in H. Then the Euler formula approximation:

(1.2)

T (t) = s -lim n→∞ I H + t n S -n
, t ≥ 0 holds in the strong operator topology, see e.g. [START_REF] Kato | Perturbation theory for linear operators[END_REF].

Definition 1.6. [START_REF] Kato | Perturbation theory for linear operators[END_REF]. Let α ∈ [0, π/2) and let

S(α) := {z ∈ C : | arg z| ≤ α}
be a sector on the complex plane C with the vertex at the origin and the semi-angle α.

A linear operator S in a Hilbert space H is called sectorial with vertex at z = 0 and the semi-angle α if W (S) ⊆ S(α).

If S is m-accretive and sectorial with vertex at z = 0 and the semi-angle α then it is called m-sectorial with vertex at the origin and with the semi-angle α. For short we call these operators m-α-sectorial. The resolvent set of m-α-sectorial operator S contains the set C \ S(α) and

||(S -zI H ) -1 || ≤ 1 dist (z, S(α)) , z ∈ C \ S(α).
It is well-known [START_REF] Kato | Perturbation theory for linear operators[END_REF] that The important relation between the one-parameter semigroups {T (t) := exp(-tS)} t≥0 generated by the m-α-sectorial operators S and the corresponding closed sesquilinear forms is established in [START_REF] Yu | Closed sectorial forms and one-parameter contraction semigroups[END_REF]:

• a C 0 -semigroup T (t) =
u ∈ D[S] = u ∈ H : d dt (T (t)u, u) t=+0 exits ,
and one has that

(1.3) d dt (T (t)u, u) t=+0 = -S[u, u] , u ∈ D[S] .
Notice that in this case of the Euler approximation (1.2) converges to the semigroup in the operator-norm topology [START_REF] Cachia | Euler's exponential formula for semigroups[END_REF], [START_REF] Cachia | Operator-norm approximation of semigroups by quasi-sectorial contractions[END_REF], [START_REF] Zagrebnov | Topics in the theory of Gibbs semigroups[END_REF]. Definition 1.7. [START_REF] Cachia | Operator-norm approximation of semigroups by quasi-sectorial contractions[END_REF]. For any α ∈ [0, π/2) we define in the complex plane C a closed domain:

(1.4) D α := {z ∈ C : |z| ≤ sin α} ∪ {z ∈ C : | arg(1 -z)| ≤ α and |z -1| ≤ cos α} .
This is a convex subset of the unit disc D = D α=π/2 , with the "angle" (in contrast to the "tangent") touching of the boundary ∂D at the only one point z = 1. It is evident that

D α ⊂ D β>α .
Definition 1.8. [START_REF] Cachia | Operator-norm approximation of semigroups by quasi-sectorial contractions[END_REF]. A contraction C on the Hilbert space H is called quasi-sectorial with semi-angle α ∈ [0, π/2), if its numerical range W (C) ⊆ D α .

It is evident that if operator C is a quasi-sectorial contraction, then I -C is an m-sectorial operator with vertex z = 0 and semi-angle α. The limits α = 0 and α = π/2 correspond, respectively, to non-negative (i.e. self-adjoint) and to some general contraction.

Remark 1.9. [START_REF] Cachia | Operator-norm approximation of semigroups by quasi-sectorial contractions[END_REF]. Notice that the resolvent family {(I H + t S) -1 } t≥0 of the m-α-sectorial operator S, gives the first non-trivial example of a quasi-sectorial contractions, if one considers the semi-angles α ∈ [0, π/3). Below (see Section 2) we show that it can be extended to α ∈ [0, π/2).

The definition of quasi-sectorial contractions was motivated in [START_REF] Cachia | Operator-norm approximation of semigroups by quasi-sectorial contractions[END_REF] by the lifting of the Trotter-Kato product formula and the Chernoff theory of semigroup approximation [START_REF] Chernoff | Product formulas, nonlinear semigroups, and addition of unbounded operators[END_REF] to the operator-norm topology.

Namely, using properties of quasi-sectorial contractions established in [START_REF] Cachia | Operator-norm approximation of semigroups by quasi-sectorial contractions[END_REF] for the case of m-α-sectorial generator, it was proved that there is operator-norm convergence of the Euler semigroup approximation (1.2) and of the Trotter product formula, see [START_REF] Cachia | Euler's exponential formula for semigroups[END_REF], [START_REF] Cachia | Operator-norm approximation of semigroups by quasi-sectorial contractions[END_REF], [START_REF] Paulauskas | On operator-norm approximation of some semigroups by quasi-sectorial operators[END_REF], [START_REF] Bentkus | Optimal error estimates in operator-norm approximations of semigroups[END_REF], [START_REF] Zagrebnov | Topics in the theory of Gibbs semigroups[END_REF]. Theorem 2.1 from [START_REF] Cachia | Operator-norm approximation of semigroups by quasi-sectorial contractions[END_REF] states that the operators T (t) = exp(-tS) are quasi-sectorial contractions with W (T (t)) ⊂ D α for all t ≥ 0 and α ∈ [0, π/2). Here operator S stands for m-α-sectorial generator. As it is indicated in [START_REF] Zagrebnov | Quasi-Sectorial Contractions[END_REF], the proof in [START_REF] Cachia | Operator-norm approximation of semigroups by quasi-sectorial contractions[END_REF] has a flaw. In [START_REF] Zagrebnov | Quasi-Sectorial Contractions[END_REF] it was corrected, but only for the semi-angles α ∈ [0, π/4].

Our main Theorem 3.4 establishes a quite accurate relation between m-α-sectorial generators and the numerical range of the corresponding one-parameter contraction semigroups. It improves the recent result [START_REF] Zagrebnov | Quasi-Sectorial Contractions[END_REF] from α ∈ [0, π/4] to α ∈ [0, π/2). To this end we use in the next section some nontrivial results due to [START_REF] Yu | A class of contractions in Hilbert space[END_REF]- [START_REF] Yu | On some semigroups on the complex plane[END_REF], concerning a class of operator contractions and of semigroups on the complex plane. Besides that we use recent results related to the generalizations of the famous von Neumann inequality [START_REF] Neumann | Eine spectraltheorie für allgemeine operatore eines unitären raumes[END_REF], obtained in [START_REF] Beckermann | A lenticular version of a von Neumann inequality[END_REF], [START_REF] Crouzeix | Numerical range and functional calculus in Hilbert space[END_REF], [START_REF] Crouzeix | Some estimates for analytic functions of the strip or a sectorial operators[END_REF], [START_REF] Delyon | Generalization of von Neumann's spectral sets and integral representation of operators[END_REF], in order to give a new prove that in fact the Euler formula (1.2) converges in the operator-norm with the rate O(1/n).

Operators of the class C H (α)

A fundamental for us will be the class of contractions introduced for the first time in [START_REF] Yu | A class of contractions in Hilbert space[END_REF] and studied in

[1]-[2]: Definition 2.1. [1]. Let α ∈ (0, π/2). We say that a bounded operator T ∈ L(H) belongs to the class C H (α) if (2.1) ||T sin α ± iI H cos α|| ≤ 1.
It is clear, that the class C H (α) is a convex and closed (with respect to the strong operator topology) set, which is intersection of two closed operator balls corresponding to ±. Moreover, by virtue of (2.1) one immediately concludes that:

T ∈ C H (α) ⇐⇒ -T ∈ C H (α) ⇐⇒ T * ∈ C H (α),
and that condition (2.1) is equivalent to the following criterium:

(2.2) tan α (||f || 2 -||T f || 2 ) ≥ 2|Im (T f, f )|, f ∈ H.
This inequality implies that the operator T is a contraction. Together with Definition 1.1, it also proves that T ∈ C H (α) is equivalent to the statement that (I -T * )(I + T ) is a bounded m-α-sectorial operator.

According to (2.2) it is natural to identify C H (α = 0) with the set of all self-adjoint contractions whereas C H (α = π/2) is the set of general contractions on H.

Now following [START_REF] Yu | On some semigroups on the complex plane[END_REF] we define for α ∈ (0, π/2) the family of subsets of the complex plane C:

(2.3) C(α) = {z ∈ C : |z sin α ± i cos α| ≤ 1} = z ∈ C : (1 -|z| 2 ) tan α ≥ 2|Im z| ,
cf. definitions (2.1), (2.2). Then, similar to (2.1), each set C(α) is the intersection of two closed disks of the complex plane which is contained in the closed unit disk

D = {z ∈ C : |z| ≤ 1}. From (2.3) it is clear that C(α = 0) = [-1, 1].
Remark 2.2. By virtue of definitions (2.1), (2.2) and (2.3) one gets that T ∈ C H (α) implies for the numerical range: W (T ) ⊆ C(α). Then one has:

(2.4) ||Im T || ≤ tan(α/2) .
Notice that C(α) \ D α = ∅, i.e. in general the operator T is not quasi-sectorial.

Besides, the operator class C H (α) has several interesting properties. In particular the following one [1]: Proposition 2.3. [START_REF] Yu | A class of contractions in Hilbert space[END_REF]. Let T 1 and T 2 belong to the class C H (α). Then the operator

(T 1 T 2 + T 2 T 1 )/2
belongs to the class C H (α). In particular, if T 1 and T 2 are two commuting operators from the class C H (α), then the product T = T 1 T 2 also belongs to C H (α).

Remark 2.4. Notice that the set C(α) inherits a similar property: for each α ∈ (0, π/2) it forms a multiplicative semigroup of complex numbers in the plane C . Detailed properties of these semigroups have been studied in [START_REF] Yu | On some semigroups on the complex plane[END_REF]. Now we are in position to establish a connection between set of contractions C H (α) and m-α-sectorial operators.

Proposition 2.5. [1]. If S is m-α-sectorial operator, then T = (I H -S)(I H + S) -1
belongs to the class C H (α) and conversely, if T ∈ C H (α), and ker (I

H + T ) = {0}, then S = (I H -T )(I H + T ) -1 is m-α-sectorial operator.
Now let S be m-α-sectorial operator and let λ > 0. Then λS is also m-α-sectorial. By Proposition 2.5 the operator

U(λ) = (I H -λS)(I H + λS) -1 belongs to the class C H (α). Let us put (2.5) F (λ) := (I H + λS) -1 = 1 2 (U(λ) + I H ).
Since the operators U(λ) and I H belong to the class C H (α) and since it is a convex set, the operator F (λ) is also in the class C H (α). Hence, by Remark 2.2 one obtains W (F (λ)) ⊆ C(α).

Remark 2.6. Following the arguments of [START_REF] Cachia | Operator-norm approximation of semigroups by quasi-sectorial contractions[END_REF], [START_REF] Zagrebnov | Quasi-Sectorial Contractions[END_REF] we can localize the numerical range W (F (λ)) even more accurate, cf. Remark 1.9. Since for any u ∈ H we have:

(u, F (λ)u) = (v λ , v λ ) + λ(Sv λ , v λ ) ∈ S(α) ,
where v λ := F (λ)u, it follows that

W (F (λ)) ⊆ S(α) ∩ C(α) ,
for λ > 0 and α ∈ [0, π/2). Moreover, since U(λ) = 2F (λ) -I H ∈ C H (α), see (2.5), we find that

(2.6) (F (λ) -I H /2) sin α ± iI H (cos α)/2 ≤ 1/2 .
For the numerical range this implies:

(2.7) W (F (λ)) ⊆ L(α) := {ζ ∈ C : |(ζ -1/2) sin α ± (i cos α)/2| ≤ 1/2} , for λ > 0 .
Notice that L(α) ⊂ S(α) ∩ C(α), see Figure 1.

Now, we follow essentially the line of reasoning of [START_REF] Yu | A class of contractions in Hilbert space[END_REF] to establish the one-to-one correspondence between m-α-sectorial generators and contraction semigroups of the class C H (α), cf. Remark 2.2 about relation to quasi-sectorial contractions.

Theorem 2.7. If S is m-α-sectorial operator in a Hilbert space H, then the corresponding semigroup T (t) = exp(-tS) ∈ C H (α), for all t ≥ 0. Conversely, let T (t) = exp(-tS) for t ≥ 0 be a C 0 -semigroup of contractions on a Hilbert space H. If T (t) ∈ C H (α) for non-negatives t in neighborhood of t = 0, then the generator S is an m-α-sectorial operator.

Proof. Let S be a m-α-sectorial operator and let λ ≥ 0. By (2.5) the operator F (λ) = (I H + λS) -1 belongs to the class C H (α). Therefore, by Proposition 2.3 for each t ≥ 0 and any natural number n the operator

F n t n = I H + t n S -n
belongs to the class C H (α). Taking in account that the set C H (α) is closed with respect to the strong operator topology, from the Euler formula (1.2) we get that strong limit T (t) = exp(-tS) also belongs to the class C H (α). Now suppose that semigroup T (t) = exp(-tS) ∈ C H (α) for t ∈ [0, δ), where δ > 0. Define operator family:

B ± (t) := T (t) sin α ± i cos αI H , t ≥ 0. Since B ± (0) = (sin α ± i cos α)I H and T (t) ∈ C H (α) for t ∈ [0, δ), we get ||B ± (t)f || 2 ≤ ||f || 2 = ||B ± (0)||f || 2 , t ∈ [0, δ), f ∈ H. Since ||B ± (t)f || 2 = sin 2 α||T (t)f || 2 + cos 2 α||f || 2 ± 2 sin α cos α Im (T (t)f, f ), f ∈ H,
for all f ∈ dom S we have:

d dt ||B ± (t)f || 2 t=+0 = -2 sin 2 α Re (Sf, f ) ± 2 sin α cos α Im (Sf, f ) ≤ 0.
Thus, W (S) ⊆ S(α). But since operator S is m-accretive, it is m-α-sectorial [START_REF] Kato | Perturbation theory for linear operators[END_REF].

Numerical range for contractive holomorphic semigroups

From Theorem 2.7 it follows, in particular, that for m-α-sectorial generator S the numerical range of the corresponding contraction semigroup W (exp(-tS)) ⊆ C(α) for all t ≥ 0 .

But as we warranted in Remark 2.2 it does not imply that this semigroup is quasi-sectorial contraction. It was discovered in [START_REF] Cachia | Operator-norm approximation of semigroups by quasi-sectorial contractions[END_REF] that the conformal mapping : z → z 2 , together with the Kato numerical range theorem (Proposition 1.4) play a special rôle in the theory of quasi-sectorial contractions. Definition 3.1. Let α ∈ [0, π/2). We define a domain:

(3.1) Ω(α) := z 2 : z ∈ C(α) . So, if f (z) = z 2 , then Ω(α) = f (C(α))
. Since (see Remark 2.4) C(α) is a multiplicative semigroup, we obtain that Ω(α) ⊆ C(α), and that the subset Ω(α) is in turn a multiplicative semigroup [START_REF] Yu | On some semigroups on the complex plane[END_REF].

From (2.3) and Proposition 2.3 it follows then that for any α ∈ (0, π/2) the set (3.1) has representation:

(3.2) Ω(α) = z ∈ C : | √ z sin α ± i cos α| ≤ 1 = z ∈ C : 2|Im √ z| ≤ (1 -|z|) tan α ,
with the limiting cases: Ω(α = 0) = [0, 1] and Ω(α = π/2) = D.

Lemma 3.2. The set Ω(α) (3.1) is convex and

Ω(α) ⊆ D α . Proof. Let C + (α) := {z ∈ C(α) : Im z ≥ 0}. Then clearly, Ω(α) = f (C + (α)), where f (z) = z 2 . Denote Γ(α) = ∂C + (α) \ (-1, 1). Then ∂Ω(α) = f (Γ(α)). Since Γ(α) = z : z = e it -i cos α sin α , t ∈ π 2 -α, π 2 + α ,
the boundary ∂Ω(α) can be parameterized as follows: 3 . Further, by explicit calculations we get:

(3.3) ∂Ω(α) = z = ζ(t) = (e it -i cos α) 2 sin 2 α , t ∈ π 2 -α, π 2 + α . Put x = x(t) := Re ζ(t), y = y(t) := Im ζ(t). Then, since d 2 y dx 2 = y ′′ (t)x ′ (t) -y ′ (t)x ′′ (t) (x ′ (t)) 3 , we obtain d 2 y dx 2 = - Im (ζ ′ (t)ζ ′′ (t)) (Re ζ ′ (t))
ζ ′ (t) = 2ie it (e it -i cos α) sin 2 α , ζ ′′ (t) = 2ie it (2ie it + cos α) sin 2 α , -Im (ζ ′ (t)ζ ′′ (t)) = 4(2 + cos 2 α -3 cos α sin t) sin 4 α , Re ζ ′ (t) = 2 cos t(cos α -2 sin t) sin 2 α . For t ∈ [π/2 -α, π/2 + α], by the estimates cos 2 α -3 cos α sin t + 2 ≥ 2 cos 2 -3 cos α + 2 = (2 -cos α)(1 -cos α) > 0, we obtain -Im (ζ ′ (t)ζ ′′ (t)) > 0.
Since cos α -2 sin t ≤cos α < 0, then for t ∈ [π/2α, π/2 + α], we get that

d 2 y dx 2 < 0 for t ∈ π 2 -α, π 2 , d 2 y dx 2 > 0 for t ∈ π 2 , π 2 + α ,
which implies that the set Ω(α) is convex. Since the mapping: z → z 2 is conformal and Ω(α) is convex, the proof of the second part of the lemma follows from the estimate

(3.4) -(tan α/2) 2 ≤ Re ζ(t) ,
where (tan α/2) 2 ≤ sin α for α ∈ (0, π/2), see (1.4) and (3.3).

Notice that in view of relation:

y(t) = sin 2t -2 cos α cos t sin 2 α , one obtains (3.5) max z∈Ω(α)
|Im z| = sin 2γ -2 cos α sin γ sin 2 α , where

(3.6) sin γ = cos α + √ cos 2 α + 8 4 , γ ∈ (0, π/2) .
Since Ω(α) ⊂ C(α), the number in the right-hand side of (3.5) is less than tan(α/2).

Lemma 3.3. Let α ∈ [0, π/2) and let T ∈ C H (α). Then W (T 2n ) ⊆ Ω(α) for all natural numbers n.

Proof. We apply the Kato numerical range mapping theorem (Proposition 1.4) for f (z) = z 2 with E ′ = Ω(α). Then by Definition 3.1 we have E := f -1 (Ω(α)) = C(α). Since C(α) is a convex set, its maximal convex kernel K coincides with C(α). By virtue of Proposition 2.3 from T ∈ C H (α) it follows that for all natural n one gets T n ∈ C H (α). Then by Remark 2.2 we obtain W (T n ) ⊆ C(α) = K. Applying now the Kato mapping theorem for f (z) = z 2 we obtain W (T 2n ) ⊆ Ω(α). Now we are in position to proof the main theorem of the present paper.

Theorem 3.4. (1) Let S be m-α-sectorial operator. Then

(3.7) W (exp(-tS)) ⊆ Ω(α) , t ≥ 0.
In particular, {exp(-tS)} t≥0 is the quasi-sectorial contraction semigroup.

(2) The inverse is also true. Let {T (t) := exp(-tS)} t≥0 be a C 0 -semigroup on a Hilbert space H. If in some neighborhood of t = 0 the numerical range: W (T (t ≥ 0)) ⊆ Ω(α) for some α ∈ [0, π/2), then the generator S is an m-α-sectorial operator.

Proof. (1) By Theorem 2.7 the operators T (t) = exp(-tS) belong to the class C H (α) for all t ≥ 0, but T (t) = T 2 (t/2), then by Lemma 3.3 we obtain W (T (t)) ⊆ Ω(α). Since Lemma 3.2 implies Ω(α) ⊂ D α , the operators T (t) are quasi-sectorial contractions.

(2) Fix u ∈ dom S, ||u|| = 1. For t ∈ [0, δ] we define two functions:

G ± (t) := | sin α (T (t)u, u) ± i cos α| 2 . Then G ± (0) = 1. The condition W (T (t)) ⊆ Ω(α) yields (see (3.2)) that G ± (t) ≤ G ± (0), t ∈ [0, δ], which implies: d dt (G ± (t)) t=+0 ≤ 0 .
Therefore we get that

(3.8) lim t→+0 1 -G ± (t) t ≥ 0.
Further we use the following identities:

1 -G ± (t) = sin 2 α(1 -|(T (t)u, u)|) ∓ 2 sin α cos α Im (T (t)u, u) = = sin 2 α 1 -(T (t)u, u) + (T (t)u, u)(1 -(T (t)u, u)) 1 + |(T (t)u, u| ∓ 2 sin α cos α Im (T (t)u, u), 1 -G ± (t) t = sin 2 α 1 -(T (t)u, u) + (T (t)u, u)(1 -(T (t)u, u)) t(1 + |(T (t)u, u|) ∓ ∓2 sin α cos α Im (T (t)u, u) -1 t( (T (t)u, u) + 1
) .

Since by (1.3) one has:

lim t→+0 1 -(T (t)u, u) t = (Su, u) ,
and by (3.8) we get

lim t→+0 1 -G ± (t) t = sin 2 α Re (Su, u) ± sin α cos α Im (Su, u) ≥ 0 .
The last estimate implies that W (S) ⊆ S(α), i.e., S is m-α-sectorial operator.

Thus, the two equivalent conditions: exp(-tS) ∈ C H (α) (see Theorem 2.7) and W (exp(-tS)) ⊆ Ω(α) completely characterize m-α-sectorial operators S. Since (3.7) yields W (exp(-tS)) ⊂ D α , the statement in Theorem 3.4(1) is extension of Theorem 2.1 (proven in [START_REF] Zagrebnov | Quasi-Sectorial Contractions[END_REF] for α ∈ [0, π/4)) to the whole class of the m-α-sectorial generators: α ∈ [0, π/2).

Notice that taking into account the multiplicative semigroup property of the set Ω(α) and Theorem 3.4 we get by consequence the following inequalities:

sin α n k=1 (exp(-t k S k )u k , u k )) 1/2 ± i cos α ≤ 1
for arbitrary m-α-sectorial operators S 1 , . . . S n , any non-negative numbers t 1 , . . . , t n , and arbitrary normalized vectors u 1 , . . . , u n from H. By semi-group property: exp(-t 1 S) exp(-t 2 S) = exp(-(t 1 + t 2 )S). Hence we also get

| sin α (exp(-t 1 S)u, exp(-t 2 S * )u) ± i cos α| ≤ 1 for any t 1 , t 2 ≥ 0 and any u ∈ H, ||u|| = 1.
Remark that since Re z ≥tan 2 (α/2) for all z ∈ Ω(α) and W (exp(-tS)) ⊆ Ω(α), we obtain:

Re exp(-tS) ≥tan 2 (α/2) I H , t ≥ 0 . The inclusion W (exp(-tS)) ⊆ Ω(α) also implies (see (3.5)) that

||Im exp(-tS)|| ≤ sin 2γ -2 cos α sin γ sin 2 α < tan(α/2) , t ≥ 0 ,
where γ satisfies (3.6). By virtue of relation Re T 2 = (Re T ) 2 -(Im T ) 2 (valid for any bounded operator T ) and since one has that Re exp(-tS) = (Re exp(-tS/2)) 2 -(Im exp(-tS/2)) 2 , we obtain:

Re exp(-tS) ≥ - sin 2γ -2 cos α sin γ sin 2 α 2 I H > -tan 2 (α/2) I H , t ≥ 0 .
Now it is useful to define also the following subset of C(α):

(3.9) Q(α) := {z ∈ C(α) : |z sin α -cos α| ≤ 1} = = {z ∈ C : 2|Im z| ≤ (1 -|z| 2 ) tan α} ∩ {z ∈ C : -2Re z ≤ (1 -|z| 2 ) tan α} .
So, Q(α) is the intersection of three closed disks, cf. (2.3).

Proposition 3.5. The set Q(α) is a multiplicative semigroup on C.

Proof. First we note that Q(α) contains the set C + (α) := {z ∈ C(α) : Re z ≥ 0}. Moreover, since Re iz = -Im z, by (3.9) we obtain also that the set

B(α) := {z ∈ C(α) : iz ∈ C(α)} ,
has a non-empty intersection with Q(α), such that

(3.10) B(α) ∩ Q(α) = B(α) and Q(α) \ B(α) ⊂ C + (α) .
In [START_REF] Yu | On some semigroups on the complex plane[END_REF] it is shown that the set B(α) is the ideal of the multiplicative semigroup C(α), i.e., z ξ ∈ B(α) for all z ∈ B(α) and all ξ ∈ C(α). Let z, ξ ∈ Q(α) \ B(α). Since B(α) has the properties (3.10), then arg z, arg ξ ∈ (-π/4, π/4).

Finally, since z ξ ∈ C(α) and arg(z ξ) ∈ (-π/2, π/2), we obtain z ξ ∈ Q(α).

Notice that in particular Proposition 3.5 yields:

z ∈ Q(α) ⇒ z n ∈ Q(α).
Moreover, if ϕ n (z) = z n , then the set ϕ n (Q(α)) is also a multiplicative semigroup and

ϕ n (Q(α)) ⊂ Q(α).
Since by (2.3) and (3.9) one gets that

C(α) = Q(α) ∪ {-Q(α)},
where {-Q(α)} := {z : -z ∈ Q(α)}, by (3.1) and (3.10) we have

Ω(α) = f (Q(α))
when f (z) = z 2 . Thus, we obtain: 

(3.11) Ω(α) ⊂ Q(α).
-2Re ξ = -2(Re z) 2 + 2(Im z) 2 ≤ 2|Im z| ≤ tan α(1 -|z| 2 ) = = tan α(1 -|ξ|) ≤ tan α(1 -|ξ| 2 ) ,
which means by (3.9) that Ω(α) ⊂ Q(α).

Remark 3.7. Let D α be the set (1.4) introduced in [START_REF] Cachia | Operator-norm approximation of semigroups by quasi-sectorial contractions[END_REF]. From definition (3.9) one deduces that Q(α) ⊂ D α , as well as that D α is not a subset of C(α), i.e., D α ∩ C(α) = D α . In addition, by virtue of (2.7) and (3.2) we obtain: L(α) ⊂ Ω(α), where L(α) is defined by (2.7). So, for all α ∈ [0, π/2) and F (λ) = (I H + λS) -1 , λ > 0 we have the following inclusions (see Figure 1): C n -C n+1 ≤ K n + 1 for all n ∈ N and for some K > 0 depending on α, and the second one is

L(α) ⊂ Ω(α) ⊂ Q(α) ⊂ D α , W (F (λ)) ⊆ L(α) , W (F n (λ)) ⊆ C(α) and W (F 2n (λ)) ⊆ Ω(α) for all n ∈ N ,
(4.3) C n -exp (n(C -I H )) = O 1/n 1/3 .
Then application of (4.2) and (4.3) for the particular case of the operator C = (I H + tS/n) -1 leads to (4.1). Later the estimate (4.1) was improved in [START_REF] Paulauskas | On operator-norm approximation of some semigroups by quasi-sectorial operators[END_REF] to

(4.4) C n -exp (n(C -I H )) = O (ln n/n) 1/2 ,
and in [START_REF] Bentkus | Optimal error estimates in operator-norm approximations of semigroups[END_REF] to

(4.5) C n -exp (n(C -I H )) = O 1/n 1/2 .
In [START_REF] Paulauskas | On operator-norm approximation of some semigroups by quasi-sectorial operators[END_REF] the following bound is proved for the operator-norm convergence rate:

(4.6) (I H + tS/n) -n -exp(-tS) ≤ c/n,
where c is a constant depending on the operator S. The bounds (4.3), (4.4), (4.5), and (4.6) are obtained in [START_REF] Paulauskas | On operator-norm approximation of some semigroups by quasi-sectorial operators[END_REF] and [START_REF] Bentkus | Optimal error estimates in operator-norm approximations of semigroups[END_REF] by means of the probability theory methods (the Poisson distribution and the Central Limit Theorem) that improves the estimate (4.3).

Here, using the results obtained in [START_REF] Delyon | Generalization of von Neumann's spectral sets and integral representation of operators[END_REF], [START_REF] Beckermann | A lenticular version of a von Neumann inequality[END_REF], [START_REF] Crouzeix | Some estimates for analytic functions of the strip or a sectorial operators[END_REF], and [START_REF] Crouzeix | Numerical range and functional calculus in Hilbert space[END_REF], and generalizations of some von Neumann inequality [START_REF] Neumann | Eine spectraltheorie für allgemeine operatore eines unitären raumes[END_REF], we prove the theorem, which makes more explicit the right-hand side of the estimate (4.6).

Theorem 4.1. Let S be an m-α-sectorial operator in a Hilbert space H. Then

(I H + tS/n) -n -exp(-tS) ≤ K(α)/(n cos 2 α) , t ≥ 0 , where (π sin α)/2α ≤ K(α) ≤ min 2 + 2/ √ 3 , (π -α)/α .

4.2.

The von Neumann inequality and its generalizations. The spectral sets theory was introduced by von Neumann [START_REF] Neumann | Eine spectraltheorie für allgemeine operatore eines unitären raumes[END_REF] in order to extend the functional calculus to the case of non-normal operators in Hilbert spaces. for all rational functions u(z) without pole in the spectrum of A.

Let D k := {|z -a k | < r k }, k = 1, 2 be two disks such that D k ∩ D 2 = {ξ 1 , ξ 2 }. Let L := D 1 ∩ D 2 .
The set L is said to be a convex lens-shaped domain [START_REF] Beckermann | A lenticular version of a von Neumann inequality[END_REF]. Denote by 2α ∈ (0, π) the angle of the lens L at the vertices. The operator A ∈ L(H) is called of the lenticular L-type [START_REF] Beckermann | A lenticular version of a von Neumann inequality[END_REF] if

||A -a 1 I H || ≤ r 1 and ||A -a 2 I H || ≤ r 2 .
The next Proposition is established in [START_REF] Beckermann | A lenticular version of a von Neumann inequality[END_REF].

Proposition 4.5. Let L be a convex lens-shaped domain of the complex plane with angle 2α. There exists a best positive constant K(α) such that the inequality

(4.7) ||p(A)|| ≤ K(α) sup z∈L |p(z)|,
holds for all polynomials p(z), for all operators A ∈ L(H) of L-type, and for all Hilbert spaces H. The constant K(α) depends only on α and satisfies the inequality

π 2α sin α ≤ K(α) ≤ min 2 + 2 √ 3 , π -α α .
Notice that by the Mergelyan Theorem [START_REF] Rudin | Real and complex analysis[END_REF], the inequality (4.7) remains valid if p is holomorphic in L and continuous in L. 

Proof.

Let

D 1 = z ∈ C : z - 1 2 - i 2 cot α < 1 2 sin α , D 2 = z ∈ C : z - 1 2 + i 2 cot α < 1 2 sin α . Then (see (2.7)) L = L(α) \ ∂L(α), i.e. interior of the set L(α). Fix t ≥ 0 and let C = F (t) := (I H + tS) -1 .
Then from (2.6) it follows that the operator

C is of L-type. Since F (t/n) = F (t){(n -1)F (t)/n + I H /n} -1 , n ∈ N ,
we get also that

F n (t/n) = C n {(n -1)C/n + I H /n} -n . Put h n (z) := exp(1 -1/z) -z n {(n -1)z/n + 1/n} -n , z ∈ L .
Because Re z > 0 for all z ∈ L, the function h n (z) is holomorphic in L and continuous in L = L(α). Moreover, since exp(-tS) = exp(I H -C -1 ) ,

we obtain that exp(-tS) -(I H + tS/n) -n = h n (C) .

The fractional-linear conformal transformation w → z = 1/(1 + w) maps the sector S(α) onto L(α). So, let g n (w) := h n ((1 + w) -1 ) = exp(-w) -(1 + w/n) -n , w ∈ (S(α) \ ∂S(α)) . To this end we use the representation:

g n (x exp(iα)) = - 

Conclusion

Now several remarks are in order: (a) Theorem 2.1 from [START_REF] Cachia | Operator-norm approximation of semigroups by quasi-sectorial contractions[END_REF] states that for quasi-sectorial contractions one has:

(5.1) W (exp(-tS)) ⊆ D α , α ∈ [0, π/2),

Here S stands for m-α-sectorial generator of contraction. As it is indicated in [START_REF] Zagrebnov | Quasi-Sectorial Contractions[END_REF], the proof in [START_REF] Cachia | Operator-norm approximation of semigroups by quasi-sectorial contractions[END_REF] has a flaw. In [START_REF] Zagrebnov | Quasi-Sectorial Contractions[END_REF] it was corrected but only for the range α ∈ [0, π/4]. Because Ω(α) ⊂ Q(α) ⊂ D α , our main Theorem 3.4 shows that the original claim (5.1) in [START_REF] Cachia | Operator-norm approximation of semigroups by quasi-sectorial contractions[END_REF] is indeed correct for all α ∈ [0, π/2). (b) Since in Theorem 3.4 we proved in fact that W (exp(-tS)) ⊆ Ω(α), this means we give in the present papers more precise localization of W (exp(-tS)) than it was claimed in [START_REF] Cachia | Operator-norm approximation of semigroups by quasi-sectorial contractions[END_REF].

(c) The inclusion (5.1) plays an important rôle for the operator-norm error estimates of the norm convergence in the Euler formula (1.2), see the recent paper [START_REF] Zagrebnov | Quasi-Sectorial Contractions[END_REF], the references quoted there and in particular [START_REF] Cachia | Euler's exponential formula for semigroups[END_REF]. In the present paper we give a new proof of the operatornorm convergent Euler formula for the optimal error estimate with explicit indication of its α-dependence (4.8) for m-α-sectorial generators.
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 11 The set of complex numbersW (A) := {(Au, u) ∈ C : u ∈ dom A, ||u|| = 1}is called the numerical range of A, or its field of values.

  exp(-tS), t ≥ 0 has contractive and holomorphic continuation into the sector S(π/2α) if and only if the generator S is m-α-sectorial operator, • the sesquilinear form: (Su, v) , u, v ∈ dom S is closable. Denote by S[•, •] the closure of the form (Su, v) and by D[S] its domain. By the first representation theorem [14] the operator S is uniquely associated with the form S[•, •] in the following sense: (Su, v) = S[u, v] for all u ∈ dom S and for all v ∈ D[S].
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 36 Another way to check (3.11) is the following argument. Let ξ = z 2 , where z ∈ C(α). Then ξ ∈ Ω(α), see (3.1). Since Re ξ = (Re z) 2 -(Im z) 2 and (Im z) 2 ≤ |Im z|, we also get
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 4244 [START_REF] Neumann | Eine spectraltheorie für allgemeine operatore eines unitären raumes[END_REF]. A set σ ⊂ C is a spectral set of the operator A in a Hilbert space H if it is closed and if for any bounded rational function u(z) on σ one has ||u(A)|| ≤ sup z∈σ |u(z)|. Proposition 4.3. [15]. A necessary and sufficient condition for one of the domains |z -a| ≤ r, |z -a| ≥ r, Re (az) ≥ b to be a spectral set of A in H is that ||A -aI H || ≤ r, ||(A -aI H ) -1 || ≤ 1 r , Re (aT ) ≥ b. Let D be an open convex subset of the complex plane (D = ∅, D = C) and let A be a linear operator in a Hilbert space H with W (A) ⊂ D. The set D is called K-spectral set for the operator A, if ||u(A)|| ≤ K sup z∈D |u(z)|
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 3 Proof of the Theorem 4.1.

  α)\∂S(α)) |g n (w)| = sup w∈∂S(α) |g n (w)| . Since ∂S(α) = {x exp(-iα), x ∈ R + } ∪ {x exp(iα), x ∈ R + } , we have to estimate the value of sup x∈R + |g n (x exp(±iα)| .

( 1 +

 1 se iα /n) -n exp(-(xs)e iα ) ds ,where d ds (1 + se iα /n) -n exp(-(xs)e iα ) = se iα n (1 + se iα /n) -(n+1) exp(-(xs)e iα ) .By elementary inequalities:|1 + se iα /n| n+1 = (1 + s 2 /n 2 + 2s cos α/n) (n+1)/2 ≥ (1 + (s cos α)/n) n+1 ≥ ≤ 1 + ((n + 1)s cos α)/n ≥ 1 + s cos α,we obtain s |1 + (s cos α)/n| -(n+1) ≤ s/(1 + s cos α) ≤ 1/cos α . Therefore, we obtain as an upper bound:|g n (x exp(iα))| ≤ x 0 exp(-(xs) cos α) n cos α ds ≤ 1 n cos 2 α (1exp(-x cos α)) ≤ 1 n cos 2 α .Similarly one obtains the estimate:|g n (x exp(-iα))| ≤ 1 n cos 2 α . tS) -(I H + tS/n) -n = ||h n (C)|| ≤ K(α) n cos 2 α , t ≥ 0 ,which completes the proof.
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