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A Framework for Automatically Recovering Object Shape,
Reflectance and Light Sources from Calibrated Images

Abstract In this paper, we present a complete framework
for recovering an object shape, estimating its reflectance pro-
perties and light sources from a set of images. The whole
process is performed automatically. We use the shape from
silhouette approach proposed by R. Szeliski in [40] com-
bined with image pixels for reconstructing a triangular mesh
according to the marching cubes algorithm. A classification
process identifies regions of the object having the same ap-
pearance. For each region, a single point or directional light
source is detected. Therefore, we use specular lobes, lamber-
tian regions of the surface or specular highlights seen on im-
ages. An identification method jointly (i) decides what light
sources are actually significant and (ii) estimates diffuse and
specular coefficients for a surface represented by the modi-
fied Phong model [25]. In order to validate our algorithm ef-
ficiency, we present a case study with various objects, light
sources and surface properties. As shown in the results, our
system proves accurate even for real objects images obtained
with an inexpensive acquisition system.

Keywords shape from silhouette � marching cubes �
multiple light sources detection � reflectance properties
recovery � reshading

1 Introduction

Since the early years of computer vision, much effort has
been dedicated for automatically digitizing shape and reflec-
tance of real objects. For instance, Stanford Digital Michel-
angelo [24] project aims at digitizing large statues, Callet
et al. [3] reconstruct plaster statuettes covered with bronze.
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Hasenfratz et al. [13] detect and place a real actor in a vir-
tual environment so that shadows and lighting be properly
computed. In [36], Sato et al. propose to estimate shape as
well as reflectance parameters for real textured objects, us-
ing multiple range images. Relighting objects have also been
proposed using reflectance fields [7,14].

In most cases, the acquisition hardware plays a major
role for reconstructing objects from images and research ef-
forts have increased a lot during the last decade. Our concern
is about objects described only with a set of calibrated pho-
tographs.

Light sources estimation is also a key issue for many ap-
plications related to computer vision, image processing or
computer graphics. For example, segmentation algorithms
can be improved if the incoming light direction is known
[33]. Moreover, shape from shading approaches rely on some
information concerning light sources [46,22,2], as well as
augmented reality where virtual objects have to be lit with
real light sources. Today applications in computer graphics
are more and more concerned with this topic, especially with
image-based rendering approaches.

Our method can be applied to several calibrated images
of a single object and does not need any additional test pat-
tern or specific object (such as a metallic sphere for instance).
It rather relies on a preprocessing step aiming at recovering
a geometric description of the object seen. The basis of our
work is the voxel-based shape from silhouette technique pre-
sented by Szeliski in [40]. The marching cubes algorithm is
combined with image pixels for providing a triangular mesh
defining the object shape as well as the surface normal [29].

Based on this geometry representation, our method au-
tomatically and robustly recovers multiple light sources to-
gether with the surface reflectance parameters. The object
surface is assumed lambertian or glossy, without anisotropy,
off-specular reflections or hair for instance. First, our algo-
rithm classifies the object surface into regions according to
the appearance. Second, for each region, reflectance proper-
ties are estimated together with one light source (point or di-
rectional). Finally, reflectance parameters and light sources
are refined using an error estimate based on original image
pixels. When specular highlights are visible on the images,
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we also propose a method for improving the light sources
estimation accuracy. As shown in the results, our method
has been successfully applied to various synthetic and real
objects, with lambertian and glossy surfaces.

In this paper, our main contribution concerns the descrip-
tion of a complete framework for recovering geometry, nor-
mals, brdfs and light sources from a set of calibrated images.
This work relies on the geometric reconstruction method de-
scribed in [29] and extends/improves the brdf and light sour-
ces estimation presented in [28]. Here, we provide: (i) the
physical justifications of our approach, (ii) the use of spe-
cular highlights seen on the acquired images for improving
detection accuracy and (iii) new views of the objects with
varying lighting conditions. Our method has proven robust
even with images of real objects obtained with an inexpen-
sive acquisition system.

The remaining of this paper is organized as follows. Sec-
tion 2 describes work most related to shape, reflectance and
light sources estimation from images. Sections 3 and 4 pre-
sent our object acquisition and reconstruction systems. Sec-
tions 5 and 6 detail our light sources estimation and reflec-
tance properties identification. Section 7 presents the results
provided by our method.

2 Previous Work

2.1 Geometry Reconstruction

The literature concerning geometry reconstruction is vast
and this section only presents a quick run through the area
for the most closely related work.

Stereo vision [11,4] methods use two cameras located
close one to another so that images of the object be slightly
different. Internal and external camera parameters are used
to deduce depth with the help of textures, laser grids or struc-
tured light.

Shape from shading methods aim at recovering objects
shape with the assumption that surfaces are lambertian (or
almost lambertian) [38,17].

Shape from silhouette approaches [27,5] are more adap-
ted to our problem since we do not want to make any as-
sumption: objects can have lambertian or glossy surfaces,
with or without textures; we do not want to use active laser
grids or test patterns to reconstruct the object geometry. Most
shape from silhouette methods rely on a voxel-based datas-
tructure. The approach described by R. Szeliski [40] is often
used as a basis. However, with such methods, cavities cannot
always be reconstructed properly. For instance, a coffee cup
handle will be recovered since the hole can be deduced from
the visual hull on some images, but the inside will be filled-
up with material (unless there is no bottom). Improvements
have been proposed for solving this problem with voxel col-
oring [37], space carving [20] or gradient voxel flux [10]
with the assumption that objects surface is mostly lamber-
tian.

From voxels, the marching cubes algorithm can easily
generate a triangular mesh corresponding to the object sur-
face [39]. For example, Hasenfratz et al. use such a recon-
struction method for interactively integrating a real person
into a virtual environment [13]. As explained in [29], the
object shape accuracy can be improved with the help of im-
age pixels. Our global framework makes use of this latter
method, summed up in the following section.

2.2 BRDF Estimation

Various models have been proposed for surface reflectance
properties [19,15,42,31,21], providing reasonable approxi-
mations of many real materials, such as metals, plastics, ani-
sotropic surfaces, etc.

Sato et al. [36,35] recover reflectance properties from
multiple photographs of a textured object with known il-
lumination conditions. The object shape is reconstructed,
using 12 range images. Then, three terms of a simplified
Torrance-Sparrow reflection model are estimated with the
help of the reconstructed object shape and 120 color images.
Kay et al. [18] describe a method to recover the surface re-
flectance using the Torrance-Sparrow reflection model. For
this method, a depth map is required as well as 8 images
obtained with different point light sources.

Some approaches have also been proposed for estimat-
ing reflectance properties in real scenes (instead of single
objects). Boivin et al. [1] approximate the reflectance pro-
perties from a single photograph of a real scene containing
untextured surfaces and known light sources. Yu et al. [44]
use a geometric model of the scene and a set of calibrated
high dynamic range photographs (150) taken for recovering
diffuse and specular reflectance parameters (12 photographs
specifically to get specular highlights on surfaces) and con-
structing high-resolution diffuse albedo maps for each sur-
face. Specular reflectance for a surface is estimated only if
at least one highlight is visible on the images.

To our knowledge, all the existing methods make the as-
sumption that illumination conditions or some geometry in-
formation or both are known. In our case, geometry has to
be reconstructed from the initial set of images; with our me-
thod, in addition to reflectance properties, light sources are
automatically estimated.

2.3 Light Sources Detection

Starting with the pioneering work of Pentland [32], many
techniques have been developed to estimate light sources
properties from one single image. One single directional light
source can be estimated with the assumption that the viewed
scene represents a convex object with sharp contours [43,
41]. A directional light source can also be estimated with
the additional help of shadows [34,30]. Guillou presents a
method for estimating several point or directional light sour-
ces, with the help of depth and reflectance maps [12].
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Some authors have favored the use of several images for
estimating multiple directional light sources. For example,
Hougen et al. [16] solve a system of constraints while Zhou
et al. [47] use a pair of stereo images.

In [8], Debevec proposes a method for acquiring a ra-
diance map with photographs of a spherical surface mirror,
such as a polished steel ball. Powell et al. [33] have also used
specular spheres to estimate the position of several point
light sources from a set of images while lambertian spheres
are used in [45].

In our work, the object is only represented by a series
of calibrated images. We do not want to make any assump-
tion about the surface reflectance properties. Moreover, nei-
ther the position/direction nor the number of light sources is
known in advance.

3 Acquisition System

Our method applies to a set of images representing an ob-
ject without cavity. For each image, we make the assumption
that the camera position and orientation are known. In prac-
tice, we use as well synthesized images and photographs of
real objects. Virtual objects are convenient for validating the
method and providing good quality results since camera pa-
rameters and object geometry are precisely known. For real
objects, we devised the acquisition system described in Fig-
ure 3.1.

Object and light sources are fixed on a turntable: a cam-
era is located on a tripod with fixed focal length, aperture
and shutter speed. The acquisition process consists in turn-
ing the object and taking two photographs every 5 degrees.
The first one is overexposed with an additional light source
for separating the object from the background (a lambertian
black cloth) while the second one is used for acquiring the
actual object radiance (see images on Figure 3.2).

During one turn, the camera position does not change.
After one turn, the camera is raised of several centimeters.
In practice, only 1 turn (72 viewpoints) is necessary for re-
covering the object shape. This system has also been used
for acquiring complete image-based objects: several turns
are also used for estimating light sources position.

��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

Turntable

Diode

CameraLight sources

Fig. 3.1 Acquisition system: the camera is placed on a tripod and the
object/light sources are fixed on a turntable.

3.1 Image Preprocessing

a. b.

Fig. 3.2 a. Overexposed image using an additional light source for seg-
mentation; b. Image used for reflectance and light sources estimation.

We did not use any test pattern for estimating camera
parameters. Instead, the camera position is manually mea-
sured. It is placed on a tripod at about 1.5 meters of the ob-
ject.

The camera orientation is set to the rotation axis of the
turntable. Therefore, the object is placed on a cylindric base
at the center of the turntable; when the table is turning, the
base should remain at the same position on the camera screen
(up to a pixel). Since the camera is placed on a tripod, the
distance to the object remains the same and the focus does
not change. The red diode is used only in the first image for
estimating the camera elevation angle which remains fixed
for one turn.

A global coordinate system is defined: the turntable cen-
ter corresponds to the origin; the z axis represents the up
(vertical) vector; the camera is placed on the � 0yz � plane for
the first photograph, thus defining the y axis. The coordinate
system is associated with the turntable so that the camera is
in effect turning around the object.

Finally, the camera position is estimated in this coordi-
nate system: (i) the horizontal and vertical distances between
the turntable center and the camera are measured once and
for all (y and z values) and (ii) a rotation matrix is computed
every time the table is turned (every 5 degrees, using a mark
on the table).

Even though the center of projection is not perfectly mea-
sured, the camera does not move. Thus the error is only rela-
tive and only tends to modify the absolute object size of less
than 1 millimeter.

4 Geometry Reconstruction

4.1 Overview

Before estimating light sources and reflectance properties,
a preprocessing step recovers a voxel-based geometry of the
object, using a shape from silhouette approach. With the help
of image pixels, we adapt the marching cubes algorithm for
providing a polygonal surface. Then, a normal is estimated
for each voxel either with the marching cubes triangles or
with a method using only voxels. This section recalls the
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reconstruction approach proposed in [29] in order to set the
notations used in the following sections.

4.2 Shape From Silhouette

4.2.1 Octree Generation

As a first approximation of the object geometry, we used
the shape from silhouette approach proposed in [40]. With
this approach, all the images are used iteratively to hierar-
chically sculpt the object. The shape initially corresponds to
one voxel. It is recursively refined: for each viewpoint, the
voxels obtained so far are projected onto the image plane and
compared to image pixels. They can be seen inside/outside
the object or ambiguous i.e. containing the object surface
(Figure 4.1). Only ambiguous voxels are subdivided into 8
sub-voxels. The process is repeated until no ambiguous vox-
els exist or a minimum size criterion has been reached.

a. b. c.

Fig. 4.1 Voxel seen ; a. outside the object; b. inside the object; c. am-
biguous.

4.2.2 Practical Aspects

In practice, we use ray tracing for projecting voxels onto
the image plane. Each pixel corresponds to a ray originating
from the image center-of-projection and going through the
pixel (Figure 4.2). These rays are used for (i) improving the
marching cubes reconstruction algorithm and (ii) estimat-
ing light sources and reflectance properties. They are called
pixel-rays from now on. Pixel-rays corresponding to the ob-
ject silhouette are called in-rays since they hit the object and
rays corresponding to background are called out-rays.

Background
(out−ray)

(in−ray)

Object

Fig. 4.2 Pixel-rays.

4.3 Pixel-rays for Marching Cubes

The set of resulting ambiguous voxels is called the discrete
surface. For marching cubes, this surface needs to be 6-
connected which is not ensured by the previous algorithm.
To achieve this goal, we propose to modify the discrete sur-
face with an additional process applied every time ambigu-
ous voxels are subdivided. A final operation reduces the sur-
face thickness while keeping a 6-connection. More details
can be found in [29].

4.3.1 Original Marching Cubes

For reconstructing a triangular mesh from a set of ambigu-
ous voxels, marching cubes [26] are well-suited. For each
voxel, vertices are classified as inside or outside the object
surface (Figure 4.3.a). When an edge has a vertex inside and
a vertex outside the object, it is intersected by the object sur-
face. In some cases, the intersection point can be estimated
and triangles are placed inside voxels using one of the 14
possible configurations. When the intersection points can-
not be estimated, the edge centers are used for generating
triangles. However, as explained in the following, we pro-
pose to use out-rays with marching cubes so that triangles fit
the model shape more precisely. Consequently, the surface
normal estimation is also more precise for recovering light
sources and reflectance properties.

in−vertex
out−vertex

voxels
intersected

triangle

out−rays

a. b.

Fig. 4.3 a. Mesh reconstruction using edge centers; b. out-rays can be
used for refining the mesh.

4.3.2 Refining the Method

When a out-ray intersects several ambiguous voxels, it is
used in all intersected voxels for helping the triangles con-
struction (see Figure 4.3.b).

intersection with face

actual object surface

out−ray

in−ray

Fig. 4.4 Out-rays should not touch the surface inside an ambiguous
voxel; in-rays are not used.

Our algorithm firstly computes the intersection points
between out-rays and voxel faces (Figure 4.4). Then, a line
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corresponding to the object surface is estimated on each face.
Finally, the intersection between this lines and the voxel ed-
ges defines the points used for marching cubes.

For two adjacent faces (resp. voxels), the corresponding
surface lines have to be connected as shown in Figure 4.5.a
(resp. 4.5.b).

a. b.

Fig. 4.5 Surface continuity.

4.4 Surface Normal

For estimating light sources properties and the object BRDF,
we need to define a normal for each surface voxel. This nor-
mal has also to be used for rendering new images of the ob-
ject.

Inside each ambiguous voxel, several triangles define the
object surface. Using triangles located in only one voxel
leads to bumpy normals, introducing artifacts for light sour-
ces estimation or during the rendering process. This is why
we propose to smooth normals according to neighbor voxels
triangles. In our application, a parameter called smoothing
distance is fixed by the user.

A normal estimated from the generated triangular mesh
is quite representative of the object surface. However, it is
also possible to define a normal in each voxel directly with
the discrete surface [29]. Particularly, if a surface mesh is
not needed, acceptable results can be obtained.

5 Light Sources Detection

5.1 Overview

We use the reconstructed geometry information for develop-
ing our light sources detection methods.

Each pixel of an image corresponds to the radiance emit-
ted from the object to the camera (from one voxel to the
camera). Each voxel is seen from several viewpoints; thus,
for each voxel it is possible to store the set of radiances as-
sociated with pixels (we use at least 60 per voxel).

We distinguish two types of light source (point and di-
rectional) and two types of surface (diffuse and glossy). The
broad lines of our light sources estimation algorithm are the
following:

– classify voxels into regions according to hue and orien-
tation;

– for each region, estimate the type of surface (diffuse or
glossy);

– for each region, search for a point light source;
– for each region, search for a directional light source;
– for each region, identify parameters for light sources ty-

pes and positions jointly with surface properties;
– use regions altogether to validate light sources positions

/ directions and surface properties with an error estimate.

With a glossy surface, when the error produced is greater
than a user-defined threshold, light directions can be found
using specular highlights seen on images.

For a single object, interreflections due to the environ-
ment are negligible (dark environment). However, diffuse or
specular self-interreflections sometimes disturb the BRDF
estimation. This paper does not solve the problem.

5.2 Notations and Assumptions

For real-world light sources, light bulbs can be very diffe-
rent according to geometry, wavelength range, power, etc. In
practice only a few types of light sources are commonly es-
timated from images or used for virtual environments: spots,
surface, directional or point light sources. In this paper we
are interested in recovering point light sources and direc-
tional light sources. A point light source is described by a
3D point and its power while a directional light source is
described by a 3D unit vector and its associated power.

For a surface element dA around a point x, the radiance
corresponds the power per unit projected area per unit solid
angle in a given direction �

�
ω :

L � x � �
�

ω ��� d2Φ
cosθrdAdω

where Φ corresponds to light flux, θr is the angle between
surface normal and outgoing direction, dω is the correspond-
ing solid angle.

Radiance also varies according to incoming light, sur-
face orientation and object intrinsic properties: its BRDF or
Bidirectional Reflectance Distribution Function. The BRDF
represents the ratio between the incoming and the outgoing
flux:

f � x � �
�

ωi � �
�

ωr ��� dLr � x � �
�
ωr �

Li � x ���
�
ωi � cosθidωi

where Li corresponds to radiance impinging on the surface
from the direction �

�

ωi and Lr is the radiance reflected in the
direction �

�
ωr. There is a wealth of literature concerning BRDF

models. Each model can be physically correct or not with
respect to energy conservation law, Helmholtz reciprocity or
Fresnel equation [25,6,42]. Various types of surfaces have
been represented: with specular aspect (Figure 5.1), aniso-
tropic effects, microfacets, etc.

For a surface lit by a light source S from a given direction
�
�

ωi , the reflected radiance Lr � �
�

ωr � corresponds to the product
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� �
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� �
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a. b. c.

Fig. 5.1 Light flux reflected by a surface; S corresponds to a point light
source; a. with a specular surface; b. with a perfectly diffuse surface;
c. with a glossy surface.

f � �
�
ωi ���

�
ωr �
	 Li � �

�
ωi � cosθidωi. In our case, neither f nor Li are

known, the problem is ill-posed. However, if we restrict in-
cident radiance to directional and point light sources, it is
possible to estimate f and light source properties up to a
factor (actually corresponding to light source emittance, de-
noted by Ls in the following).

In this work, for f we choose the modified Phong model
proposed in [25] since it (i) is physically plausible, (ii) rep-
resents diffuse and glossy surfaces, (iii) requires only 3 co-
efficients. Using this model, a specular lobe is located in the
mirror direction of the incoming light. Thus, we do not deal
with anisotropic surfaces or off-specular peaks. With more
complex surface properties, it could be possible to fit the
parameters of another model such as [42,21]. However, the
number of samples has to be much denser and the fitting
is very sensitive in most cases. According to the modified
Phong model, reflected radiance (Figure 5.1.c) is expressed
as:

Lr �
LsKd

πr2
cosθ � � n � 2 � LsKs

2πr2
cosθ cosn φ

where Lr is the radiance reflected from P to �
�

R ; Ls is the
radiance emitted by a light source S, arriving at P; r is the
distance between S and P; Kd and Ks are respectively dif-
fuse and specular coefficients for reflection (between 0 and
1); n defines the specular lobe size; θ is the angle between
the normal �

�

N of the surface and the direction �
�

I of the light
source (incident direction); φ is the angle between �

�

Rm (mir-
ror reflection direction) and �

�

R .

5.3 Voxels Classification

The object description (geometry and reflectance properties)
as well as the high number of images make the problem dif-
ficult to solve in one go. Let us recall that our algorithm is
based on a geometry reconstruction producing a set of more
than a hundred thousand voxels. Ideally, when all the voxels
have the same reflectance properties and are lit by the same,
unique light source, the problem is easier to solve. In this
paper we do not make this assumption; the surface can be
made up with different types of materials and lit by several
light sources. Note that for one object, finding a high num-

ber of light sources (more than 5 or 6) does not make sense
since the object is almost uniformly lit.

To simplify the light sources detection, it is necessary
to group voxels according to reflected radiance and surface
orientation. This classification process is composed of two
parts. The first one identifies regions of voxels having the
same hue (chrominance) while during the second part, vox-
els of each region are classified according to their normal
orientation.

5.3.1 Reflectance-Based Classification

Let us recall that for a given voxel V , the set of radiance sam-
ples (denoted by L) corresponds to the set of pixels viewing
V . We use the radiosity value for discarding voxels in the
shade. For each voxel, we estimate the radiosity value (light
flux emitted per unit surface):

R �
dΦ
dA

�

�
Ω 
 2π

Lr � x � �
�

ω �
	 dω �
2π
NS

N

∑
j 
 0

L j

where � ∑N
j 
 0 L j ��� N is the average radiance emitted by the

surface inside a voxel, S is the surface area contained in a
voxel.

X

Z Saturation

Hue

a. b.

Fig. 5.2 Chrominance-based classification on for a real object pho-
tographs after having removed low radiance samples: a. with X-Z val-
ues (XYZ color-space), it is difficult separate colors; b. with Hue-
Saturation values (HSV color-space).

In practice, we suppose that S is constant for all the vox-
els. A low radiosity value indicates the corresponding voxel
is in the shade. However, acquired images are composed of
RGB values, unadapted to precisely estimate radiance, ra-
diosity and chrominance. This is why we choose to translate
the color of each pixel into two different color-spaces: HSV
(Hue, Saturation, Value) and xyz. Experimentally, compared
to other color-spaces, HSV provide better results for our test
objects: see Figure 5.2.

Hue and saturation express chrominance while y is used
for radiance. In the general case, hue can be assumed con-
stant whichever incoming flux power; the saturation value
indicates hue reliability. Voxels with low saturation and ra-
diosity values (lower than a given threshold) are then dis-
missed and the classification process is performed according
to the hue value in HSV space (see Figure 5.3).

This classification process allows:
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a. b. c. d.

Fig. 5.3 Images of the object: a. with RGB values; b. with Hue values;
c. with saturation values; d. first classification results. Voxels repre-
senting a white or dark surface are not classified (thus not used for
detecting light sources).

– to match voxels having the same hue
– to dismiss, for each voxel, some in-rays that does not

correspond to the voxel average hue.
– to identify bright in-rays that are used for detecting light

sources and estimating the specular component of the
surface.

5.3.2 Normal-Based Classification

For each class previously defined, voxels having the same
orientation are grouped so that they be likely lit by the same
light source. Before this processing, voxels with several spe-
cular lobes are ignored: we denote by Dmax the direction cor-
responding to the highest radiance sample Lmax; we account
for all the radiances L � 0 	 9 � Lmax which direction is de-
noted by D; if the angle between D and Dmax is greater than
30 degrees we consider that there is more than one specu-
lar lobe. Some voxels are ignored when (i) they contain less
than 10 radiance samples or (ii) the angle between Dmax and
the voxel normal is greater than 80 degrees. The classifi-
cation process provides voxels subclasses (or voxels subre-
gions) with similar normals (about 20 degrees).

5.4 Type of Surface Estimation

We propose two different methods for finding a light source
from a class of voxels. The first one applies to diffuse sur-
faces while the second one applies to glossy surfaces. The
type of surface, diffuse or glossy is estimated with the help
of a variation coefficient V class computed from radiance sam-
ples:

V class
�

���� ∑NbV
i 
 1 ∑NbLi

j 
 1 � Li � j � Lmoy
i

Lmoy
i � 2

∑NbV
i 
 1 NbLi

where NbV represents the number of voxels in the class, Vi is
the ith voxel, Li 	 j is the jth radiance sample of Vi, and Lmoy

i
is

the average radiance of Vi; NbLi corresponds to the number
of radiance samples in the voxel Vi.

This expression derives from the evaluation of a varia-
tion coefficient V for each voxel (V � σ � Lmoy with a vari-
ance σ 2 � ∑NbL

j 
 1 
 L j �
Lmoy � 2 � NbL).

For a perfectly diffuse surface, a given voxel emits the
same radiance in all directions (see Figure 5.1.b) so that vari-
ance equals zero as well as V class. V class increases according

to the specular aspect of the surface. Since we make the as-
sumption that a surface is defined by Kd , Ks and n, V class

is much sensitive to ratio Ks � Kd . Conversely, n has low in-
cidence on V class. Thus, V class is a good estimator for the
surface type. Experimentally:

– if V class � 0 	 15, the surface is considered as perfectly dif-
fuse,

– if V class � 0 	 30, the surface is estimated glossy,
– if 0 	 15 
 V class 
 0 	 30, we reach no decision about the

surface type. For such a class we apply algorithms for
both diffuse and glossy surfaces.

Later on, as described in Section 5.7, an identification
process estimates appropriate values for Kd , Ks and n.

For each subclass defined above, both a point light source
and a directional light source are estimated. The choice of
the best light source is determined, according to the error
between the initial radiance samples (corresponding to pixel
values) and recomputed radiances. Let us first describe our
method for estimating a point light source.

5.5 Point Source Detection

For each voxel Vi, the direction of incoming light is firstly
estimated; the final position of the point light source is de-
duced from all those directions if the point source is close
enough to the surface (Figure 5.4), else the algorithm con-
cludes it is a directional light source.

������������ ������������ ������������ �������������������� ���������������� ������������ ���������������� ������������
PSfrag replacements

X
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Fig. 5.4 The intersection of all the incident directions defines a posi-
tion X of the light source.

5.5.1 Diffuse Surfaces

The radiance emitted by a diffuse surface element is con-
stant whichever reflection direction. Since in practice this
radiance is not exactly constant, we use the average radiance
for all the voxel samples:

LV �
∑NbL

j 
 0 L j

NbL

N being the number of radiance samples for a voxel V . This
radiance corresponds to the product LsKd cosθV . For all the
voxels of a given class, Ls and Kd are assumed constant. The
emitted radiance only depends on θ , the angle between the
normal �

�

N of this voxel and the incident direction �
�

I .
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LV is maximal when θV = 0. For each class, the voxel
V re f having the highest radiance Lre f

V
is chosen as a refer-

ence for initializing our iterative process: its normal is used

as the incident direction �
�

Ire f
V , with θ re f

V
= 0 and Lre f

V
= LsKd .

Consequently, for each voxel V in the class, θV can be esti-
mated:

θV � arccos � LV � Lre f
V �

The estimation of θV does not directly provide the incident
direction but a cone of directions (Figure 5.5.a). For V , the
incident direction belongs to the plane defined by the centers

of V , V re f and the incidence direction �
�

Ire f
V (Figure 5.5.b). The

intersection between the cone of directions and this plane
gives 0, 1 or 2 incident directions.

������������������������������
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Fig. 5.5 a. Cone corresponding to incident directions (θV known); b.
intersection between the cone and the plane containing the point light
source and voxels.

These solutions are obtained by solving a system of three
equations with three unknowns:���

�
�

IV
���
� 1; �

�

IV 	 � �NV � LV � Lre f
V ; �

�

IV 	 � � � �Nplane � 0

Momentarily the algorithm ignores the voxels having two
possible incident directions. When a single incident direc-
tion is estimated for a voxel, the corresponding line is rep-
resented by the intersection of two orthogonal planes (given
by ax � by � cz � d � 0). The set of these equations is repre-
sented in the following matrix form:���

�
a1 b1 c1
a2 b2 c2
...

...
...

a2n b2n c2n

����
�

�� x
y
z

�� �

���
�
�

d1

�
d2
...

�
d2n

����
�

In this matrix system MX � D, X ideally corresponds to the
point light source coordinates: X � M � 1D. Unfortunately,
in most cases M is not invertible; instead of M � 1 we rather
estimate a pseudo-inverse matrix M pi.

For each previously dismissed voxels (having two cor-
rect incident directions), one of the two directions (the most
consistent with the estimation of X) is added to the matrix
system. A new estimation of M pi and X is evaluated.

However, the quality of this estimation highly depends
on the choice of V re f : the normal of V re f is rarely perfectly

aligned with the light source direction. Our iterative algo-
rithm refines the solution with the help of the following error
criterion:

Ed �

2m

∑
i 
 1

� MiX �
Di � 2

�

where Mi is the ith row of the matrix M, and X is the es-
timated position of the light source; m corresponds to the
number of incident directions (m lines are defined by 2m
equations of planes). Ed provides the final result significance.
Selecting a different voxel for estimating the product LsKd
can reduce Ed (experimentally, from the voxel class barycen-
ter, the incoming light direction De is correct but the light
source position is too close). We choose Ve the voxel lo-
cated on De (see Figure 5.6); the value of its radiance is
Le � LsKdcos � θe � , where θe is known.
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Fig. 5.6 Choice of a new voxel Ve for estimating point light source.

To improve the estimation of LsKd , this process is re-
peated as long as the estimated error Ed decreases. This last
process significantly reduces Ed. Finally, with this method,
light source estimation is precise at about one centimeter
when the distance between the object and the light source
is lower than or equal to 9 meters with a 1-meter diameter
object.

5.5.2 Glossy Surfaces

For non-lambertian surfaces, the specular lobe can be used
to estimate more precisely the light source position; the inci-
dent flux Ls is reflected by the surface in the mirror direction
�
�

Rm. We propose to estimate �
�

Rm for each voxel and deduce
the light source direction.

Unfortunately, the assumption that �
�

Rm is defined by the
highest radiance sample � �

�

Rmax cannot be made (see Figure
5.7.a). The specular lobe (around the mirror direction �

�

Rm)
is defined by several radiance samples. We propose to rep-
resent the lobe as a curved surface. The corresponding co-
efficients are identified according to radiance samples. The
most obvious solution is to use the cosine function appearing
in the modified Phong model. However, depending on the
coefficients, cosine oscillations could introduce bias in the
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estimation. With equivalent results for �
�

Rm, a parabolic sur-
face facilitates the estimation. The equation of such a surface
is:

Lα 	 β � a � α
�

δα � 2 � b � β
�

δβ � 2 � c

¿From this equation, the mirror direction �
�

Rm is defined by
� δα � δβ � (see Figure 5.7.b).
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Fig. 5.7 a. Radiance samples for a voxel, the grey tint contains radi-
ance samples of the specular lobe; b. radiance emitted by a surface
point according to the angles α and β (polar coordinates of the re-
flected direction).

Coefficients a, b, c, δα and δβ are identified using a set
of radiance samples. Therefore, the algorithm picks the sam-
ples around � �

�

Rmax with a maximum of 20o (Figure 5.7.a). All
the coefficients are then estimated with a gradient descent
method on an error corresponding to the square difference
between (i) each radiance sample and (ii) the recomputed
radiance for the same direction.

This process is applied to each voxel, providing the light
source direction. As in Section 5.5.1, these directions are
stored in a matrix system and the light source position is
estimated with a pseudo-inverse matrix.

5.6 Directional Source Detection

In this analysis, we also distinguish diffuse surfaces from
glossy surfaces, with the assumption that the incident direc-
tion is the same for all the voxels in a subclass.

5.6.1 Diffuse Surfaces

The radiance emitted by a voxel V is the same for all emit-
ting directions, it is expressed as:

LV � LsKd cos � θV ��� LsKd � �
�

I 	 � �NV �

where �
�

NV is the surface normal inside V and �
�

I is the sear-
ched incident direction. In this equation, Ls, Kd , and �

�

I are
the same for all the voxels of a class. Again, this system can
be described in a matrix form MX = D, where X represents
the product LsKd

�
�

I , D is a vector containing LV values and
M corresponds to the set of vectors �

�

NV . As above, it is solved
with a pseudo-inverse matrix.

5.6.2 Glossy Surfaces

As for point sources detection, specular lobes can be used.
Once a direction has been estimated for each voxel (for a
given class), the light source direction is defined as the aver-
age of all estimated directions.

5.7 Joint Identification

Each light sources estimation algorithm is independently ap-
plied for each voxel subclass, providing one point light sour-
ce and one directional light source (let us recall that when a
surface could not be surely classified as diffuse or glossy,
four analysis are performed). For each analysis, we estimate
an error Ea:

NbV

∑
i 
 1

NbLi

∑
j 
 1

� � LsKd

πr2
cosθi � � n � 2 � LsKs

2πr2
cosθi cosn φi 	 j � � Li 	 j � 2

where Li 	 j corresponds to the radiance sample j of the voxel
Vi; the parameters LsKd , LsKs and n are unknown. We ap-
ply an identification algorithm with the help of a gradient
descent method in order to both ameliorate the parameters
estimation and reduce Ea. The parameters actually chosen
for the light source and surface properties are those leading
to the lowest value of Ea.

For each class, this analysis finally defines (i) the type of
light source (point or directional), (ii) its position or direc-
tion, (iii) the type of surface (diffuse or glossy), and (iv) the
surface reflectance parameters (diffuse and specular reflec-
tion parameters). Note that this parameter fitting does not
modify the surface normal.

A final step groups the detected light sources according
to their types and position/orientation, so as to keep the error
Ea as low as possible.

5.8 Glossy Surfaces and Highlights

Our light sources estimation method is more accurate with
diffuse surfaces than with glossy objects. For instance the
light sources used for the glossy clown shown in Figure
7.4 were recovered with an error of about 16 degrees. Con-
versely, for the (close to diffuse) wood flower, the error is
less than 11 degrees (Table 7.6, rows general method). This
problem is essentially due to the lack of radiance samples for
each voxel. When only 4 or 5 radiance samples are used for
estimating the specular lobe direction, the incoming direc-
tion is not reliable. Cumulated with the normal estimation
error due to the reconstruction process, the light source di-
rection estimated for each voxel is not always very accurate.

Instead of using only the object-space for estimating light
sources direction, we propose to use additionally the image-
space information. With images, specular highlights corre-
spond to gloss reflected by several voxels. Thus, a more re-
liable information can be used additionnally. This global ap-
proach allows: (i) to use voxels lit by several light sources
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and (ii) to estimate a light source direction only for relevant
groups of voxels.

We propose to estimate a set of directional light sources
with the help of highlights seen on all the images. Highlights
are defined by overexposed pixels, with very high saturation.

For each detected specular highlight, the corresponding
4 or 5 pixels are projected onto the voxel geometry. For each
intersected surface voxel, the light source (mirror) direction
is expressed in spherical coordinates, see Figure 5.8.a. All
the images provide a set of directions, corresponding to one
or several directional light sources. These directions can be
grouped in classes for determining a list of final light sources
with their parameters. Therefore we apply a K-means algo-
rithm on the set of directions with the angle difference as a
distance criterion. Unfortunately the number of light sources
is not known in advance.
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Fig. 5.8 a. Spherical coordinates: a direction is represented by 2 angles
θ � 0 ��� 2π � and φ � 0 ��� π � ; b. set of directions represented on a cylindrical
image with θ and φ axes: 2 directions appear. In order to have a homo-
geneous repartition of directions in the image, a weight is associated
with each pixel according to solid angle.

For automatically estimating this number, we store the
set of directions in an image where axes correspond to θ
and φ angles (see Figure 5.8.b). A segmentation algorithm
provides the light sources number and a first estimation of
their directions used as a seed for the K-means algorithm.

6 Final Reflectance Properties Estimation

From the set of light sources obtained so far, the object re-
flectance properties are further refined. Voxels lit by the same
unique light source are grouped according to reflectance pro-
perties. A final identification algorithm provides the BRDF
coefficients, using the error Ea. For reducing noise and graz-
ing angles imprecisions, we use only radiance samples cor-
responding to a small incidence angle (θ 
 45o, see Figure
6.1).

7 Results

Some images and videos can be found on the web pages ded-
icated to our project:
www.sic.sp2mi.univ-poitiers.fr/ibr-integration/index en.html
www.sic.sp2mi.univ-poitiers.fr/ibr-integration/ijcv.html
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Fig. 6.1 Estimated BRDF together with actual radiance samples, using
radiance samples with θ � 45o.

7.1 Geometry Reconstruction

7.1.1 Object Shape

Before actually using our method with real objects, valida-
tion has been done with known objects (a sphere and a cube).
As shown in Table 7.1 and Figure 7.1, using image pixels
with marching cubes (MC in the Table) improves substan-
tially the shape accuracy.

a. b.

Fig. 7.1 Rendering using triangles; a. with edge centers marching
cubes; b. with pixel-rays marching cubes.

When the hierarchy depth increases, the two methods
tend to provide the same results because the number of pixel-
rays becomes lower in each voxel. Our method will obvi-
ously be more accurate with a low-depth hierarchy.

Table 7.1 Average distance between the reconstructed triangles and
the object surface (used images resolution: 256x256).

For a 1-meter diameter Sphere
Octree depth 5 6 7

Edge center MC 10.8 mm 9.3 mm 8.9 mm
Pixel-rays MC 6.4 mm 6.7 mm 6.7 mm

For a 1-meter width Cube
Octree depth 5 6 7

Edge center MC 26.4 mm 19.4 mm 16.7 mm
Pixel-rays MC 21.2 mm 19.1 mm 18.6 mm

Note that the cube is the worst case for the type of re-
construction. Faces are always difficult to reconstruct with a
shape from silhouette approach (as any flat surface) since the
camera viewpoint is never perfectly located on the polygon
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plane. For the last row and last column in table 7.1, the trian-
gles generated with the edge centers method are aligned ”by
chance” with the actual cube. Consequently, the generated
triangles have a more suitable normal.

a. b.

c. d. e.

Fig. 7.2 Images of reconstructed objects: triangle color corresponds
to the average radiance for each voxel; a. for a virtual quad; b. for a
real clown (toy); c. for a real wood-flower; d. actual photograph; e.
relighting with lambertian model and modified lighting.

7.1.2 Normal Estimation

For estimating normal quality, we have compared the esti-
mated normal with the actual (known) surface normal (Table
7.2)

Table 7.2 Average angles difference (degrees) between the estimated
normal and the object normal.

For a 1-meter diameter Sphere
Octree depth 5 7

Smoothing distance 1 1 3
Discrete normal 11.1o 12.1o 2.3o

Edge center MC 5.7o 6.3o 2.1o

Pixel-rays MC 3.3o 4.9o 1.8o

A surface normal obtained with the help of pixel-rays
is sensibly more precise (20-25%) than with edge centers
marching cubes or a discrete surface. Our method generates
an error of less than 5 degrees even without any smooth-
ing. When smoothing, normal precision is about one degree
(with a smoothing distance of 5 voxels). Note that with a dis-
crete surface, the smoothing distance should not be less than

3 voxels. New views of virtual and real objects are presented
in Figure 7.2.

7.2 Light Sources Detection

7.2.1 From Randomly-Generated Samples

For validating our method, a set of voxels lit by only one
light source have been randomly placed. Radiance samples
directions and a normal have also been randomly generated
for each voxel with the known light source and surface pro-
perties (Ls, Kd , Ks and n). Then we have applied our light
sources detection algorithms with the assumption that light
source and surface properties are unknown, only geometry
and radiance samples are used. As shown in Table 7.3, our
point light source detection method is more precise for dif-
fuse surfaces. Nevertheless it fits any surface type and auto-
matically estimates a directional light source when the point
light source is too far away. Moreover, the estimation of Ed
(see Section 5.5.1) has actually been used to reject inac-
curate point source detection (for a glossy surface). Ed in-
creases with the distance between light source and object.
Note that in the case of a directional light source, direction
and surface coefficients (LsKd , LsKs and n) are always very
precise.

Table 7.3 Point light source detection with a 1-meter diameter object.

Surface
type

Object-
source

distance

Estimated
final

source

Error on
source LsKd npos/dir LsKs

diffuse 0
�

9m point � 1cm 1% �� 9m directional � 1o

glossy
0
�

2m point � 15cm
1% 5%6m none 1m� 6m directional � 1o

7.2.2 From a Series of Images

Before applying light sources detection methods, we have to
estimate the object geometry from images. For virtual ob-
jects, the results presented below have been obtained with a
series of more than 300 images stored as lightfields (see [23]
for more details). Each object is lit by two directional light
sources and one point light source placed at 35cm from the
object.

Virtual Objects with Known Reflectance Properties
We applied our detection method on a sphere for different
surface reflectance properties. Images have been generated
with our ray tracing algorithm, so that we can compare the
recovered light sources with the actual ones (Table 7.4).

Light sources detection is very sensitive to geometry re-
construction. Nevertheless, our method has proven robust:
multiple directional light sources have been recovered with
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Table 7.4 Multiple light sources detection with a 1-meter diameter
sphere (point light source - object distance: 35 cm; 7-depth octree;
smoothing distance: 3 voxels).

Surface
type

Error on
light light LsKd nposition direction LsKs

diffuse / glossy � 4mm � 1o � 10% � 20%

an 1-degree inaccuracy whereas the surface normal is esti-
mated with an 1.8-degrees inaccuracy (see Table 7.2).

Virtual Objects with more Complex Properties
We haved also used objects with a more complex geome-
try and composed of several surface types with textures (see
Figure 7.3). Images have been generated with the PovRay
software in order to use various reflectance properties diffe-
rent from Phong’s illumination model.

a. b. c.

Fig. 7.3 Images of some virtual objects we used (resolution: 256x256);
b. quad lit by only one point light source (and an ambient term); c. quad
lit by one point and two directional light sources.

The results written in Table 7.5 have been obtained with
objects lit by three light sources (as in Figure 7.3.c).

Table 7.5 Multiple light sources detection with 1-meter width virtual
objects (point light source - object distance: 35 cm).

Surface
type

Error on Unexpected
light light light

position direction sources
diffuse / glossy � 5cm � 5o 0 - 1 directional

The results are correct even though surfaces are textured
(glossy wood) and some objects edges are curved and cham-
fered. Directional light sources are accurate to within 5 de-
grees but reflectance properties are less precisely estimated:
values can be up to twice higher/lower than actual values.
For removing useless light sources, the radiance of voxels
is re-estimated for every light source. When the estimated
radiance is not coherent with the radiance samples, the asso-
ciated light source is automatically discarded.

Real Objects with Small Cavities
We used our acquisition system (see Section 3) for gener-
ating calibrated images of real objects: Figure 7.4. For the
clown, 72 photographs have been acquired with one com-
plete turn of the acquisition table. Our detection method has
been applied to these 72 images. We have chosen to restrict

the geometry reconstruction to a 7-depth octree in order to
have enough radiance samples in the voxels. For the wood
flower, we used 504 photographs acquired with seven com-
plete turns of the acquisition table. We used an octree depth
equal to 8 for the shape from silhouette reconstruction.

a. b.

Fig. 7.4 Photographs of real objects lit by two spots (object-sources
distance: 1 m); a. clown (height: 8 cm; images resolution: 256x256); b.
flower (height: 12 cm; images resolution: 512x512).

For these two real objects, light sources detection results
are presented in Table 7.6.

Table 7.6 Two light sources detection with real objects (spot light
sources - object distance: 1 m).

Object Detection
algorithm

Error on sources
direction

Unexpected
light

sources
Clown general method 12o&16o 2 directional
(glossy specular 7o&11o 0plastic) highlights
Flower general method 6o&11o 1 directional
(diffuse specular 11o&17o 0wood) highlights

According to the objects size and the light sources po-
sition, each light source can be seen as a spot emitting in
a 7 degrees cone. Thus, light directions can only vary of 7
degrees on the object surface. This is why light sources are
considered as directional by our algorithm.

For both the clown and the flower, we obtained an esti-
mation of each directional light source with an error of less
than 11 degrees. These results have been obtained despite
small unreconstructed cavities. The general method provides
better results for the flower since the surface is nearly dif-
fuse. For the clown, indirect lighting also corrupts radiance
estimation. However, the method using specular highlights
has provided correct results.

7.3 First Relighting Results

Geometry, surface reflectance, light sources and photographs
are combined for each voxel. Such information can be used
for relighting objects as realistically as possible.

Figure 7.5.b shows that an image of the clown (re)shaded
by the set of detected light sources is close to the photograph
(figure 7.5.a), except for the silhouette. Some specularity in-
formation has also been lost, essentially due to saturation
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of radiance values on the original photographs. Figure 7.5.c
represents the same reshaded image with an octree depth
equal to 8. Note that the specular highlights are sharper but
some noise appears in the classification process due to the
low number of radiance samples in voxels. High dynamic
range images with higher resolution, could also provide bet-
ter highlights at the expense of a higher acquisition time and
disk space. If we reduce one light source radiance (see figure
7.5.d) or add a new light source (see figure 7.5.e and 7.5.f),
the new synthesized images remain realistic.

a.

b. c.

d. e.

f. g.

Fig. 7.5 Relighting of a real object, using an octree depth equal to
7; a. photograph; b. reshading using the two detected light sources; c.
same image with a 8-depth octree, note that the specular highlights are
sharper but some noise appears around the hair; d. reshading with only
one light source; e. reshading with an additional white light source;
f. reshading with an additional cyan light source; g. reshading with-
out any powerful light source facing the object, note that the specular
highlights on the right feet and bow tie have disappeared.

Visual artefacts can appear in some cases: for example,
some light sources can be estimated for regions actually in
the shade. Then, when relighting the object, incoherencies
between regions can appear on the image for some view-
points.

7.4 Computing time

We used a Dual Intel Xeon 2.4GHz processors with 1GB of
RAM. Table 7.7 shows computing time and memory cost for
the use of 72 images representing the clown. Acquiring the
72 images required about 30 minutes.

Table 7.7 Computing time and memory cost for all the process with a
series of 72 photographs representing the clown.

Clown reconstruction
Octree depth 7 8

Precomputation
time

Geometry reconstruction
(octree, mesh, normals) 14’30” 27’00”

Light sources and BRDF
estimation 32’30” 6’30”

Relighting
time

with one light source
(im. resolution: 256x256) 3” 6”

for each additional light
(im. resolution: 256x256) +1.5” +3”

Number of voxels 13 500 54 900
Number of triangles 27 000 110 000
Number of randiance samples per voxel 90 23

According to our experiments, an additional level in the
octree multiplies the computing time by two even though the
number of voxels is four times higher. This is due to a reg-
ular grid used for tracing rays through the octree. Note also
that the time required for estimating light sources and sur-
face properties decreases according to the octree depth since
the number of voxels is higher and the number of radiance
samples in each voxel is much lower.

8 Limitations

For distinguishing two light sources, our detection method
requires an angle difference of at least 30 degrees. We also
made the assumption that all the light sources are white.
However, since the problem is ill-posed, no automatic me-
thod could properly estimate both reflectance and light sour-
ces emittance properties.

Objects composed of a high variety of textures can be
difficult to process. When the number of voxels in each class
is too low, reflectance and light sources properties cannot be
precisely recovered.

For recovering reflectance properties, diffuse inter-reflec-
tions are ignored. Consequently, some artifacts can affect the
object (re)shading.
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9 Conclusion

This paper presents a method for estimating geometry, re-
flectance properties and light sources position from images
of an object. Our method has been validated with virtual and
real objects using an inexpensive acquisition system. De-
spite unreconstructed small cavities, multiple light sources
have been recovered with an inaccuracy of about ten de-
grees. Specular highlights seen on images provide an addi-
tional information used for estimating directional light sour-
ces. They could also be matched and used for refining point
light sources detection.

In the future, we aim at combining the reconstructed in-
formation for relighting image-based objects with diffuse
and specular inter-reflections. High dynamic range images
[9] would also provide a more precise estimation of radi-
ance samples reflected by the object. The acquisition process
would thus require several photographs with various shut-
ting speeds.
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