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This synthetic paper deals with image and sequence segmentation when
looking at the segmentation task from a criterion optimization point of view.
Such a segmentation criterion involves so-called (boundary and region) de-
scriptors which, in the general case, may depend on their respective boundary
or region. This dependency must be taken into account when computing the
criterion derivative with respect to the unknown object domain (defined by
its boundary). If not, some correctional terms may be omitted. This article fo-
cuses computing the derivative of the segmentation criterion using a dynamic
scheme. The presented scheme is general enough to provide a framework for
a wide variety of applications in segmentation. It also provides a theoretical
meaning to the active contour philosophy. c© 2003 Optical Society of America

1. Introduction

This paper does the synthesis of several years of development in active contour seg-
mentation conducted at I3S (Informatique, Signaux et Systèmes de Sophia Antipolis)
and Dieudonné laboratories, CNRS (French National Research Center) and University
Of Nice-Sophia Antipolis, France.

The purpose of segmentation is to isolate an object (or several objects) of interest
in an image or a sequence. Given an initial contour (a closed curve), the active contour
technique consists in applying locally a force (or displacement, or velocity) such that
the initial contour evolves toward the contour of the object of interest. This force is
derived from a characterization of the object formally written as a criterion to be
optimized.

A. Boundary-Based Active Contours

In boundary-based active contour techniques, the object is characterized by properties
of its contour only. The original active contour developments were called snakes.1 Only
the convex hull of objects could be segmented because these techniques were based
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on a minimum length penalty. In order to be able to segment concave objects, a
balloon force was heuristically introduced. It was later theoretically justified as a
minimum area constraint2 balancing the minimum length constraint. The geodesic
active contour technique3 is the most general form of boundary-based techniques.
The criterion corresponding to this technique is

J(Γ) =

∫

Γ

k(x) dx (1)

where Γ is a contour, k is a positive function “describing” the object of interest, and
x is a point of the image. The active contour evolution equation3 is

∂Γ

∂τ
= (κk −∇k · N )N (2)

where τ is the evolution parameter (Γ(τ = 0) = Γ0, initial contour, and Γ(τ → ∞) →
segmentation), κ is the curvature of Γ, operator · represents the inner product, and
N is the inward normal. Actually, this equation should be written with κ(x), k(x),
and N (x) where x is a point of Γ(τ). The contour minimizing J can be interpreted as
the curve of minimum length in the metric defined by function k. If k is the constant
function equal to one, Eq. (2) is called the geometric heat equation by analogy with
the heat diffusion equation. Function k can also be a function of the gradient of the
image. For instance,

k(x) =
1

1 + |∇I(x)|
(3)

where I is the image and ∇ is the intensity gradient. In this case, the object contour
is simply characterized by a curve following high gradients. As a consequence, the
technique is effective only if the contrast between the object and the background
is high. Moreover, high gradients in an image may correspond to the boundaries of
objects that are not of interest. Regardless of function k, information on the boundary
is too local for segmentation of complex scenes. A global, more sophisticated object
characterization is needed.

B. Region-Based Active Contours

In order to better characterize an object and to be less sensitive to noise, region-based
active contour techniques were proposed.4,5 A region is represented by mathematical
expressions called “descriptors” in this paper. Two kinds of region are usually consid-
ered: The object of interest and the background. Note that region-based/boundary-
based hybrid techniques are common.6–9 In the general case, descriptors may depend
on their respective regions, for instance, statistical features such as mean intensity or
variance within the region.10 The general form of a criterion including both region-
based and boundary-based terms is

J(Ωin) =

∫

Ωin

kin(Ωin, x) dx + η

∫

Γ

kb(x) dx (4)
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where Ωin is the domain inside Γ and η is a positive constant. An example of descriptor
kin is

kin(Ωin, x) = (µ(Ωin) − I(x))2 (5)

where µ is the mean intensity

µ(Ωin) =

∫

Ωin

I(x) dx
∫

Ωin

dx
. (6)

Function (3) is an example of descriptor kb. Classically the integral on domain Ωin

in criterion (4) is reduced to an integral along Γ using the Green-Riemann theo-
rem6–8,11–13 or continuous media mechanics techniques.14,15 Two active contour ap-
proaches are possible to minimize the resulting criterion: (i) It is possible to determine
the evolution of an active contour from τ to τ +dτ without computing a velocity: The
displacement of a point of the contour is chosen among small random displacements
as the one leading to the locally optimal criterion value.6,11 However this implies to
compute the criterion value several times for each point; (ii) Alternatively, differen-
tiating the criterion with respect to τ allows to find an expression of the appropriate
displacement, or velocity, for each point.7,8, 12,13 In this case the region-dependency
of the descriptors must be taken into account. If not,7,8, 12–15 some correctional terms
in the expression of the velocity may be omitted.

2. Accounting For Region Dependency

In this paper, the region-dependency of descriptors is taken into account in the deriva-
tion of the velocity. It is shown that it induces additional terms leading to a greater
accuracy of segmentation. The development is general enough to provide a framework
for region-based active contour. It is inspired by shape optimization techniques.16,17

A. Problem Statement

Let us consider an image composed of background and one object of interest, each of
which having unique properties represented by descriptors kout and kin, respectively.
The object boundary has also properties represented by descriptor kb. For a given
domain Ωin, let us define the following general criterion

J(Ωin) = α

∫

Ωin

kin(Ωin, x) dx + β

∫

Ωout

kout(Ωout, x) dx +

∫

Γ

kb(x) dx (7)

where α and β are positive constants, Ωin, Ωout, and Γ are such that






Ωin ∪ Γ ∪ Ωout = image domain D

Γ = ∂Ωin = ∂Ωout

Ωin = domain inside Γ
, (8)

and kin, kout, and kb are positive functions such that














kin is minimum in the object, e.g., function (5)
kout is minimum in the background, e.g., kout = 0,
meaning that no specific information is available for the background
kb is minimum on the object boundary, e.g., function (3)

. (9)
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Therefore, the minimum of criterion (7) is reached if Ωin segments the object of
interest. The proposed segmentation method is based on the active contour technique
(see Subsection 2.B below). Let us give the notations here. Domains Ωin and Ωout and
contour Γ are respectively replaced with dynamic versions depending on evolution
parameter τ . At τ equal to zero, an initial domain Ωin(τ = 0) = Ω0

in is defined, either
manually or automatically (equivalently, Ωout(τ = 0) = Ω0

out and Γ(τ = 0) = Γ0). The
active contour converges toward the object boundary as τ increases. It increases by
dτ at each iteration when discretizing the evolution equation for computer coding.

B. Differentiating the Criterion

The set of domains Ωin is not a vectorial space. Direct computation of the derivative
of criterion (7) with respect to Ωin is not possible. The proposed solution is to use
a dynamic scheme where Ωin becomes continuously dependent on an evolution pa-
rameter denoted by τ . As τ increases, Ωin(τ) must act as a minimizing sequence of
criterion (7). It is equivalent to finding a family of domain transforms Tτ such that T0

is the identity and Tτ (Ω
0
in) = Ωin(τ) where Ω0

in is an initial contour. As a consequence,
the active contour philosophy of the proposed method has a theoretical explanation
rather than being used as an implementation tool for an energy minimization problem.
Criterion (7) becomes

J(Ωin(τ)) = α

∫

Ωin(τ)

kin(Ωin(τ), x) dx + β

∫

Ωout(τ)

kout(Ωout(τ), x) dx +

∫

Γ(τ)

kb(x) dx

(10)
which can be rewritten

J(τ) = α

∫

Ωin(τ)

kin(τ, x) dx + β

∫

Ωout(τ)

kout(τ, x) dx +

∫

Γ(τ)

kb(x) dx . (11)

Criterion (11) is composed of two types of integrals:

J1(τ) =

∫

Ω(τ)

k(τ, x) dx (region integral) (12)

J2(τ) =

∫

Γ(τ)

kb(x) dx (contour integral) (13)

For simplicity, k(τ, x) will be written k and kb(x) will be written kb.

1. Region Integral

Theorem 1 16,17 Let D be the image domain (Ω(τ) ⊂ D). Let k be a smooth function
on R+ × D. Then

dJ1

dτ
(τ) = J ′

1(τ) =

∫

Ω(τ)

∂k

∂τ
dx −

∫

∂Ω(τ)

v · Nk dx (14)

where v (actually v(τ, x)) is the velocity of ∂Ω(τ) and N (actually N (τ, x)) is the
inward unit normal to ∂Ω(τ).
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J ′
1(τ) is called the Eulerian derivative of J1(Ω(τ)) in the direction of v at τ . It repre-

sents the variation of J1(τ) due to both the deformation of integration domain Ω(τ)
according to v and the variation of k. The variation of k is also due to the deformation
of domain Ω(τ).

Corollary 1 18 Let D be the image domain. Let Ωin(τ), Ωout(τ), and Γ(τ) be two
domains and a boundary as defined by Eqs. (8). Let kin, respectively kout, be a smooth
function on R+ × Ωin(τ), respectively R+ × Ωout(τ). Let J̃1(τ) be

J̃1(τ) =

∫

Ωin(τ)

kin(τ, x) dx +

∫

Ωout(τ)

kout(τ, x) dx . (15)

Then

dJ̃1

dτ
(τ) = J̃ ′

1(τ)

=

∫

D

∂K

∂τ
dx −

∫

Γ(τ)

v · N [[K]] dx −

∫

∂Ωout(τ)\Γ(τ)

w · NΩout
K dx

(16)

where K is the function equal to kin in Ωin(τ) and kout in Ωout(τ), [[K]] is the jump of
K across Γ(τ) and it is equal to kin − kout, ∂Ωout(τ)\Γ(τ) is the boundary of Ωout(τ)
excluding Γ(τ) (namely ∂D), w is the velocity of ∂Ωout(τ)\Γ(τ), and NΩout

is the
inward unit normal to ∂Ωout(τ)\Γ(τ).

Corollary 1 is obtained by applying theorem 1 with Ωin(τ), kin and D = Ωin(τ) for the
first integral of (15) and with Ωout(τ), kout and D = Ωout(τ) for the second integral
(see Appendix). Note that the image domain being fixed, velocity w is equal to zero
and so is the last integral of (16).

2. Contour Integral

The derivative of J2(τ) is classical.3

dJ2

dτ
(τ) = J ′

2(τ) =

∫

Γ(τ)

(∇kb · N − kbκ)v · N dx (17)

where κ (actually κ(τ, x)) is the curvature of Γ(τ).

3. Complete Criterion

Finally, the derivative of criterion (11) is

J ′(τ) = α

∫

Ωin(τ)

∂kin

∂τ
dx + β

∫

Ωout(τ)

∂kout

∂τ
dx +

∫

Γ(τ)

(βkout − αkin + ∇kb · N − kbκ)v · N dx . (18)
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The first two integrals in (18) can be reduced to a boundary integral:18

α

∫

Ωin(τ)

∂kin

∂τ
dx + β

∫

Ωout(τ)

∂kout

∂τ
dx =

∫

Γ(τ)

H(kin, kout)v · N dx (19)

where H(kin, kout) represents the additional terms mentioned at the beginning of
section 2. As a consequence, derivative (18) can be rewritten

J ′(τ) =

∫

Γ(τ)

ρv · N dx (20)

with
ρ = H(kin, kout) + βkout − αkin + ∇kb · N − kbκ . (21)

Velocity v is unknown. It must be chosen so that the value of (20) is negative in order
to make criterion (11) decrease. Note that this result can be obtained by a classical
calculus of variation approach although the development is tedious.19

C. Evolution Equation

A way to ensure negativity of derivative (20) is to chose v = −ρN . Derivative (20)
is then

J ′(τ) = −

∫

Γ(τ)

ρ2 dx . (22)

Since velocity v can also be written ∂Γ
∂τ

, the evolution equation of the active contour
is

{

Γ(0) = Γ0
∂Γ
∂τ

(τ, x) = −ρ(τ, x)N (τ, x) for all τ ≥ 0 and x ∈ Γ(τ)
. (23)

Equation (23) means that, starting from initial contour Γ0, active contour Γ evolves
until velocity amplitude ρ is equal to zero everywhere along the contour. In other
words, active contour Γ at τ + dτ is obtained by deforming active contour Γ at τ ac-
cording to local velocity −ρN , if it is not equal to zero. If region descriptors kin and
kout are region-independent (i.e., if they do not depend on Ωin(τ)), then H(kin, kout)
is equal to zero. However this is not a necessary condition. Note that Eq. (23) solves
the segmentation problem (the primary goal) and computes the parameters involved
in the descriptors simultaneously. These parameters could be used for indexing and
retrieval tasks. For example, if kin is defined to be minimum in regions with an ho-
mogeneous blue color, the corresponding parameter is the mean value of the blue
component within the region. If the segmentation method is applied to a set of RGB
images, the parameter values can be stored along with the blue region contours after
which the image database can be queried for images containing homogeneous regions
with a given blue component value.

D. Examples Of Descriptors18,20

1. Constant Intensity

An example of a region descriptor that is region-independent is

kin(τ, x) = φ(δ − I(x)) (24)
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where φ is a smooth, positive, even function increasing on R+. This descriptor can
be used to segment a region of known intensity δ. If kout is defined similarly, then
H(kin, kout) is equal to zero.

2. Mean Intensity

The mean intensity within Ωin(τ) is

µ(τ) =

∫

Ωin(τ)
I(x) dx

∫

Ωin(τ)
dx

. (25)

If descriptor kin is φ(µ(τ) − I(x)) and kout is equal to zero, then

H(kin, kout)(τ, x) = −
µ(τ) − I(x)
∫

Ωin(τ)
dy

∫

Ωin(τ)

φ′(µ(τ) − I(y)) dy (26)

If φ is the square function, then H(kin, kout) is equal to zero.13,14 This descriptor can
be used to segment an homogeneous region of unknown intensity.

3. Variance

The variance within Ωin(τ) is

σ2(τ) =

∫

Ωin(τ)
(µ(τ) − I(x))2 dx
∫

Ωin(τ)
dx

(27)

where µ(τ) is defined as in (25). If descriptor kin is φ(σ2(τ)) and kout is equal to zero,
then

H(kin, kout)(τ, x) = φ′(σ2(τ))[σ2(τ) − (µ(τ) − I(x))2] (28)

Note that H(kin, kout) depends on x whereas the descriptor (hence, the criterion) does
not. This descriptor can be used to segment a region with low noise or low intensity
variation.

4. Shape Of Reference

When segmenting a region using appropriate descriptors, it can be useful to constrain
the active contour to stay close to a shape of reference. This can be done using the
following criterion20

J2(τ) =

∫

Γ(τ)

kb(τ, x) dx =

∫

Γ(τ)

φ(d(x, Γref)) dx (29)

where d(x, Γref) is the signed distance to Γref at x, i.e.,

d(x, Γref) =

{

+|x − y(x)| if x is outside Γref

−|x − y(x)| otherwise
(30)

where y(x) is the closest point to x belonging to Γref , and φ is a smooth, positive, even
function increasing on R+. In criterion (13), boundary descriptor kb does not depend
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on τ , i.e., on the boundary. Computation of the derivative of boundary-dependent
descriptor (29) is different from the developments mentioned in Subsection 2.B. It
can be shown20 that the derivative is

J ′
2(τ) = −

∫

Γ(τ)

(φ′(d)N ref · N + φ(d)κ)v · N dx (31)

where d is a short notation for d(x, Γref) and N ref is the inward unit normal to Γref at
y(x). The deformation between the shape of reference and the segmentation contour
is a free-form deformation (i.e., deformation with unlimited degrees of freedom) as
opposed to a parametric transform21,22 (i.e., global deformation with few degrees of
freedom, e.g., a combination of a translation, a rotation, and a scaling). Although
the derivatives of the criteria may be similar in both cases, the parametric transform
approach tends to turn the segmentation problem into an iterative best fit search
among the set of contours obtained by parametric transform.

3. Active Contour Implementation

A. From Parametric To Implicit

The first implementations of the active contour technique were based on a parametric,
or explicit, description of the contour.1 It corresponds to a Lagrangian approach.
However, management of the evolution, particularly topology changes and sampling
density along the contour, is not simple.23 Instead, an Eulerian approach known as
the level set technique24,25 can be used. In two dimensions, the contour is implicitly
represented as the intersection of a surface u = f(x), where x ∈ D and elevation f is a
continuous function with positive and negative values, with the plane of elevation zero.
The contour can also be seen as the isocontour of level zero on the surface. In three
dimensions, the contour is the isosurface of level zero in a volume. In n dimensions, the
contour is the hyperplane of level zero with the space filled in with the values of a real,
continuous function. Note that the contour can actually be composed of several closed
contours without intersections with each other. By a continuous change of function
f , a contour can appear or disappear without explicit handling. Unfortunately, even
with the narrow band implementation,26,27 the level set technique has a rather high
computational cost and extension of the velocity to levels other than the zero level
is not straightforward28,29 while it is theoretically necessary. Moreover, a curvature
term (minimum length penalty) is usually added to the velocity expression in order
to decrease the influence of image noise on the evolution. However, the curvature
being a second derivative term, its numerical approximation is usually not accurate.
Similarly, the level set gradient (equivalent to the isocontour normal) is numerically
approximated. The fast marching technique30 is another Eulerian approach to the
active contour representation. It could be seen as the limit case where the narrow
band is one grid element thick. This technique is much faster than the level set
technique. However it can be applied only if one can guarantee that the velocity
expression keeps the same sign during evolution.
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B. Splines: Back To The Parametric Approach

A cubic B-spline has several interesting properties: It is a C2 curve,31 it is an inter-
polation curve that minimizes a term close to the square curvature,32 and it has an
analytical equation (depending on control points) between each pair of consecutive
sampling points (pi, pi+1). It minimizes the following criterion with the constraint that
it passes through the sampling points

JCubicS(Γ) =

∫

Γ

Γ”(x)2 dx (32)

where Γ” is the second derivative of Γ with respect to the arc length parameter. Note
that the sampling points correspond to the ends, or knots, of the spline segments. The
velocity has to be computed at the sampling points only. If the sampling is regular,
the normal and the curvature can be computed using an exact, fast, recursive filter-
ing algorithm applied to the control points. Therefore, the spline implementation is
much less time consuming than the level set technique.33,34 Moreover, the minimum
curvature-type term property helps in decreasing the influence of noise without the
need to add a curvature term to the velocity. Nevertheless, noise in the image still
implies noise in the velocity which, if sampling is fine, usually leads to an irregular
contour because, despite the smooth curvature property, a cubic B-spline is an in-
terpolation curve. Finally, let us recall that, unlike with level sets, management of
topology changes has to be performed explicitly and is not an easy task. Also note that
the number of sampling points is a parameter. Less sampling points implies a curve
more rigid, or smoother, preventing from segmenting regions with a high curvature.

C. Smoothing Splines

A smoothing spline is an approximation curve controlled by a parameter balancing the
trade-off between interpolation error and smoothness.35,36 It minimizes the following
criterion

JSmoothS(Γ) = λ

∫

Γ

Γ”(x)2 dx +
∑

i

(pi − Γi)
2 (33)

where λ is a parameter, pi is a sampling point, and Γi is a knot. Note that knots do
not correspond to sampling points anymore. The smoothing spline is only constrained
to be confined to a “band” surrounding the sampling points. The smaller parameter
λ, the narrower the band. When λ is equal to zero, the smoothing spline is a classical
interpolation spline. Thus, if sampling is fine and noise is high, the smoothing spline
can still be smooth. As with cubic B-splines, normal and curvature can be computed
exactly and efficiently.

4. Examples Of Applications

The following results were obtained using the level set technique except otherwise
noted.
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A. Image Segmentation

1. Region Competition

Image “X-ray” is a 512 × 512, greyscale image. Descriptor kin and kout were both
variance descriptors (see Subsection 2.D.3). This type of segmentation is called a re-
gion competition. To give a brief comparison in terms of computation time between
the level set technique and the smoothing spline implementation, the image was seg-
mented using both algorithms. See Fig. 1. The segmentation using level sets was

Fig. 1. Segmentation of “X-ray”: Segmentation using a smoothing spline with
128 sampling points (top left), with 256 sampling points (top middle), and
with 512 sampling points (top right) and λ equal to 0.005; Segmentation using
level sets (bottom).

performed roughly 15 times slower than the segmentation using a smoothing spline
with 256 sampling points. With 128 sampling points the ratio increases to 22 times.
However the segmentation contour is less accurate because it is too smooth compared
to the shape of the object of interest. With 512 sampling points the ratio decreases
to 6.5 times and the segmentation contour is not smooth enough. The influence of
parameter λ can be seen on Fig. 2. The segmentation contour is smoother with a
higher λ.
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Fig. 2. Segmentation of “X-ray”: Segmentation using a smoothing spline with
256 sampling points and λ equal to: 0.005 (left) and 0.025 (right).

2. Shape Of Reference

Image “Phone” is a 352 × 288, color image. Two descriptors were used for the seg-
mentation: A variance descriptor (see Subsection 2.D.3) for the face (kin/statistical
descriptor) and a shape of reference descriptor (see Subsection 2.D.4) as a constraint
(kb/geometrical descriptor). Descriptor kout was taken equal to zero. Combination of
these descriptors implies a competition between the shape prior and the statistical
information of the object to be segmented. If the shape of reference constraint is omit-
ted, the face segmentation includes part of the hand of the character and does not
include the lips. A shape of reference was heuristically defined allowing to segment
accurately the face. See Fig. 3.

Fig. 3. Segmentation of “Phone”: Segmentation without shape of refer-
ence (left); Shape of reference (middle); Segmentation with the shape of ref-
erence constraint (right).
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B. Sequence Segmentation

Sequence “Akiyo” is composed of three hundred 352 × 288, color images. Descriptor
kin was taken equal to a constant penalty. Descriptor kout was defined as the difference
between the current image and a robust estimate of the background image computed
using the nb previous images37 (nb = 20), or less for the first nb images. This descriptor
takes advantage of the temporal information of the sequence: It is a motion detector.
In case of a moving background due to camera motion, a mosaicking technique can
be used to estimate the background image.38 Descriptor kout was taken equal to zero.
The first image of the sequence was not segmented since no previous images were
available to estimate the background. See Fig. 4 and 5.

Fig. 4. Segmentation of Akiyo: Image 2, evolution from the initial contour until
convergence.

C. Tracking

Sequence “Erik” is composed of fifty 256 × 256, color images. Given a segmentation
of Erik’s face in the first image, the purpose was to track the face throughout the
sequence using the segmentation of the previous image to constrain the segmentation
of the current frame.20 See Fig. 6. Two descriptors were used: A variance descriptor
(see Subsection 2.D.3) for the face (kin/statistical descriptor) and a shape of refer-
ence descriptor (see Subsection 2.D.4) as a constraint (kb/geometrical descriptor).
Descriptor kout was taken equal to zero. The shape of reference in the current image
was defined as an affine transform (i.e., a combination of a translation, a rotation,
and a scaling) of the segmentation contour in the previous image. This transform can
be interpreted as the global motion of the object of interest between the previous and
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Fig. 5. Segmentation of Akiyo: Images 5, 15, 25, 40, 55, and 70 out of 300.

the current image. It was estimated by a block matching method with the Zero-mean
Normalized Sum of Squared Differences (ZNSSD) criterion applied to the points of
the segmentation contour in the previous image in order to find their corresponding
points in the current image. The resulting contour was used both as the shape of
reference and the initial contour of the active contour process for segmentation of the
current image. As a consequence, the segmentation contour is a free-form deforma-
tion of the contour resulting from the global motion estimation. Other choices can be
made for separation of the overall motion from the deformation.39
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Appendix

Applying theorem 1 with Ωin(τ), kin and D = Ωin(τ) for the first integral of (15) and
with Ωout(τ), kout and D = Ωout(τ) for the second integral, we have

J̃ ′
1(τ) =

∫

Ωin(τ)

∂kin

∂τ
dx −

∫

Γ(τ)

v · Nkin dx +

∫

Ωout(τ)

∂kout

∂τ
dx −

∫

∂Ωout(τ)

w · NΩout
kout dx . (34)

Boundary ∂Ωout(τ) is the union of ∂D and Γ(τ). Note that the velocity of Γ(τ) is
identical whether it is seen from Ωin(τ) or Ωout(τ). On the other hand, the normal is
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Fig. 6. Tracking of Erik’s face: Images 1, 10, 27, 40, and 50 out of 50.

opposite. Therefore

J̃ ′
1(τ) =

∫

Ωin(τ)

∂kin

∂τ
dx −

∫

Γ(τ)

v · Nkin dx +

∫

Ωout(τ)

∂kout

∂τ
dx −

∫

Γ(τ)

v · (−N )kout dx −

∫

∂Ωout(τ)\Γ(τ)

w · NΩout
kout dx (35)

=

∫

Ωin(τ)

∂kin

∂τ
dx −

∫

Γ(τ)

v · N (kin − kout) dx +

∫

Ωout(τ)

∂kout

∂τ
dx −

∫

∂Ωout(τ)\Γ(τ)

w · NΩout
kout dx . (36)
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Let K be the function equal to kin in Ωin(τ) and kout in Ωout(τ) and let [[K]] be the
jump of K across Γ(τ): [[K]](x) = kin(x) − kout(x) for x ∈ Γ(τ). Finally

J̃ ′
1(τ) =

∫

Ωin(τ)

∂kin

∂τ
dx +

∫

Ωout(τ)

∂kout

∂τ
dx −

∫

Γ(τ)

v · N (kin − kout) dx −

∫

∂Ωout(τ)\Γ(τ)

w · NΩout
kout dx (37)

=

∫

Ωin(τ)

∂K

∂τ
dx +

∫

Ωout(τ)

∂K

∂τ
dx −

∫

Γ(τ)

v · N [[K]] dx −

∫

∂Ωout(τ)\Γ(τ)

w · NΩout
K dx (38)

=

∫

D

∂K

∂τ
dx −

∫

Γ(τ)

v · N [[K]] dx −

∫

∂Ωout(τ)\Γ(τ)

w · NΩout
K dx .(39)
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