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ABSTRACT

This paper presents a multisensor and multitarget tracking archi-
tecture with objects eclipses. The architecture is composed of
two sub-systems : a multitarget tracking for each sensor and a
multitarget and multisensor fusion center. The multitarget track-
ing uses the Dempster-Shafer theory with proposed distributions
of masses, that are functions of the distance between perceived
objects and known objects, the sensor reliability and the percep-
tion uncertainty. The multisensor fusion is based on the Covari-
ance Intersection algorithm.

1. INTRODUCTION

Information used here can result of sensors conceived to
detect during measures, human origin informations report-
ing the presence and characteristics of objects, and finally
data processed by human operators (for example, image
data). The objects of interest can disappear or reappear
or not be perceived by other sensors. Thus, we use the
Dempster-Shafer theory to formalize objects eclipses and
the association between the prediction and the perception.
The architecture is a parallel sensor topology and is com-
posed of two sub-systems : the multitarget tracking for
each of the sensors and a multisensor multitarget fusion
center (figure 1). We have a network of geographically
distributed sensors, each sensor

�����
	���
����
���
�����
tracks

perceived targets using a perception uncertainty and its
own sensor reliability. Then, the tracked targets are fused
in a fusion center which concludes on the objects pres-
ence, a position in the scene and on the associated proba-
bility. Because of this fusion center, the sensors are also
called sources of informations.

2. MULTI-OBJECTS ASSOCIATION

2.1. Generalities

A lot of technics are developped to associate and to track
targets (Maximum Likelihood, Nearest Neightbor method,
Joint Probabilistic Data Association Filter [1, 2], Multiple

Hypothesis Filter [3, 4, 5], Credibilistic Multisensor As-
sociation [6], ...).
The Joint Probabilistic Data Association Filter (JPDAF)
and the Probabilistic Multiple Hypothesis Tracking algo-
rithm (PMHT) are the most used filters. The JPDAF can
not initialize new tracks and the PMHT algorithm requires
to know, as an priori, the number of tracked targets and
have an important combinatorial complexity.
In our case, the system must have the ability to re-associate
the tracks for an object which has temporally disappeared
and initialize new tracks. Morever, the results of infor-
mation fusion must depend on the sensor reliabilities and
perception incertainties.

Figure 1: Multisensor multitarget tracking system

On account of contraints, we have chose the evidence the-
ory approach and semantic to model target associations
[7].
The principle of the system is to associate perceived ob-
jects with know objects predicted with a Kalman filter.

2.2. The Kalman-Bucy filter

The Kalman-Bucy filter is a near-optimal method devel-
opped in [8] to produce an accurate estimate of the state
of a system. In the general case, the representation of
the system in the state space consists in the two follow-



ing equations (state equation and measurement equation):��� ������
����! "�#�$� � �#�$���&%(' ���$���&)+* �#�$�, �#�$�-�!./���$� � ���$���&0 �#�$� (1)

with at the instant
�

:� �#�$�
: state vector describing the system,' �#�$�
: determinist input of state model,, �#�$�
: observation vector,0 �#�$�
: observation noise with 1325476 8:9<;<=?>A@2CBD6 8:9E;E6 F�8:9<;HGI>AJK8:9<;* ���$�
: plant noise with 1L254NM 8:9<;<=?>A@2CBOM 8:9E;EM F 8:9E;HGP>AQ+8:9E; "�#�$�

: state transition matrix,%R�#�$�
: command matrix,.&�#�$�
: observation matrix.

In these conditions, S� �#��T �$� being the estimate of
� ���$�

, the
Kalman filter predicts the future state of the system using
the process model :UV W�XZY ��[ X�\^] _`W�X�\ UV W�X [ X�\

(2)a?W�X�Y ��[ X�\^] _`W�X�\�a?W�X [ X�\#_ F W
X�\ZYcbdW�X�\ (3)

The Kalman gain matrix e �#�f�g
�� which minimizes the
mean square estimation error is given by :h"W
X�Y � \i]ja?W
X�Y ��[ X�\�klW
XZY � \ F W:mnW�XoY � \YfklW
XZY � \�a?W�XZY ��[ X�\�k F W�XpY � \�\rq�s (4)

The estimate S� �#�t�!
ZT �u�!
N� of
� ���v��
N�

comes from the
update of the prediction using the last measure :UV W
XZY ��[ X�\�wjxzy�V W
X�Y � \ [ U{ W�X�\ �<| W
X�Y � \ � U{ W�XpY ��[ X�\<}UV W
XZY ��[ X�\�]j_nW
X�\ UV W�X [ X�\pYc~?W
X�\ | W�XZY � \U � W
XZY ��[ X�\�]jklW
XZY � \ UV W
XZY ��[ X�\UV W
XZY ��[ X�Y � \�] UV W�XZY ��[ X�\pYch"W
X�Y � \rW:{ W
XZY � \�� U{ W
XZY � \�\a?W�X�Y ��[ X�Y � \i]�W:�f�(h"W
X�Y � \�klW
XZY � \�\#a?W�XpY ��[ X�\
As we want to estimate the position of an object, for this,
we define the state vector

� ���$�I������ �#�$���� ���$� � ���$�r�#� rep-
resenting the acceleration, the velocity and the position of
the object at instant

�
.

2.3. Theory of Evidence

2.3.1. Generalities

The Evidence theory has been introduced by Dempster [9]
[10] and resumed by Shafer under a more accomplished
mathematical formalism [11]. The principle of the Evi-
dence theory is to manipulate some beliefs on the hypo-
thesis space � , named frame of discernement, composed
of � exhausitive and exclusive hypotheses

.��
:� �g�N.�����.(�����
���
��.���� (5)

with : ���P��&	��n.����j.��I�¡ 
(6)

The definition referential ¢�£ is the power set formed by
the ¢ �(¤ 
 subsets of � , each of them being called a propo-
sition :¢ £ �¥�� K¦� ¨§ � �©�g�� "��.����7���
�
��.�����.��fªj.(�����
���
� � �

(7)
The function « �$� �

called the Basic Belief Assignment
(BBA), represents the repartition of a mass among ele-
ments of ¢�£ . Then, the BBA is a function verifying :«­¬+¢ £ ® � ¯��7
��

(8)« �° ±�²� ¯
(9)³´¶µ £ « �� ©�²� 


(10)

The modelisation of the belief assigned to each proposi-
tion is also called distribution of masses.

2.3.2. Belief measures

Three other belief measures are usually used to represent
informations :· The credibility function collects masses of all the

propositions
%

that imply
 

. It is defined in the
following way :%�¸�¹ £ ¬�¢ £ ® � ¯���
��%�¸�¹ £ �� K� ��º�»¶¼�» µ�´`½¾�¿ « £ ��%(� (11)· The plausibility function represents the amount of
belief that could potentially be placed in

 
. It is

defined in the following way :À ¹ £ ¬�¢�£ ® � ¯���
��À ¹ £ �� ©� � º »Á¼�»¶Â ´`½¾Ã¿ « £ ��%(� (12)· The pignistic probability is a measure of probability
which approximates the credibility and the plausi-
bility. The pignistic probability of a proposition

 
is the sum of the supposed equiprobabilities of all
non-single propositions including

 
[12] :%"¸N� À £ ¬�¢�£ ® � ¯��7
��%"¸N� À £ �° ©� � º »`Ä ��Å ¼ ´¶Æ »&Ç Å�È »ÃÉÊ » Ê (13)

where
T %jT

denotes the cardinality of
%

.

2.3.3. Distribution of masses

We construct a distribution of masses inspired by Rom-
baut’s studies [13] and by Gruyer’s studies [14]. To obtain
this distribution, we use a distance function between per-
ceived objects

, �
and objects

� �
. Our main hypothesis is

that a perceived object can not be at once associated and
not associated with a known object.
Then, the frame of discernement is composed of two hy-
potheses

.��
and

.��
:



· . � corresponds to the hypothesis Ë the perceived
object is the known object Ì :

.��P� , ��Í � �
,· .�� corresponds to the hypothesis Ë the perceived

object is not the known object Ì :
.(�K� , � Í � �

,

So, the set � is defined by the disjonction of this two hy-
potheses and corresponds to the proposition Ë I do not
know Ì : � �!.��fªR.�� .
We define Î �#Ï � as the Euclidian distance between a per-
ceived object

, �
and a known object

� �
, and ÎpÐ�Ñ��Ï � as the

distance between the known object position and the per-
ceived object position and its uncertainty ellipsoid com-
puted for some Ò�Ó .
The distribution of masses comes from the association
between an object

� �
perceived by the sensor

� Ð and a
known object

, �
(figure 2). This distribution depends on

the Euclidian distance value, so we distinguish three cases
: ¯�Ô Î ��Ï �+Õ ÎZÖ Ñ�#Ï � (14)Î Ö Ñ��Ï � Ô Î �#Ï �+Õ Î Ç Ñ��Ï � (15)Î �#Ï �+× Î Ç Ñ��Ï � (16)

Finally, the masses distribution definition is given by :ØKÙNÚÛ W
V?Ü�ÝP{�Þ7\i]�ßà á¥â Úã!ä � Y�å<æ�çtè7é�êìë íé�î7ïêìë íIð if (14)ñ
otherwise

Ø Ù ÚÛóò VdÜ ÝI{7Þ�ôÃ] ßõõõà õõõá
ñ

if (14)â Úã¥ö � Y(å<æ�ç è�÷:é�êìë í q é�ø ïê#ë ívùã�ú ÷#é ø ïê#ë í q é�î7ïêìë í ùpû if (15)üoý if (16)

Ø Ù7ÚÛ W:þÁÜ#ÿ Þ7\i] ßõõõõà õõõõá
� � â Úã!ä � Y(å<æ�çtè7é�ê#ë íé�îNïê#ë íKð if (14)� � â Úã¥ö � Y(å<æ�ç è�÷ìé ê#ë í q é ø ïêìë íuùã�ú ÷#é ø ïêìë í q é�î7ïêìë í ù û if (15)� � ü ý if (16)

with � Ð � � ¯��7
��
quantifying the sensor reliability and� ��� , « ��� with � Õ « .

2.4. Multiobject association

For any sources
� Ç , the association system have to con-

sider three kinds of objects :· the ��� ø� objects
, � ø�	� �#�$�

perceived by the source� Ç ,· the � � ø
 known objects
� � ø�	� �#��T � ¤ 
N� , issued of the

tracked object state prediction,· the ��� ø� propaged objects 
 � ø�	� ����T � ¤ 
N� issued of
the propagation in the time of disappeared objects.
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Figure 2: distribution of masses

The association consists in the discrimination of beliefs
constructed between the perceived objects and the known
objects « � ø
�� �<� � and between the perceived objects and the
propaged objects « � ø
�� �<� � . The decision rule comes from
the maximisation of belief :� W � � { Ù øÞ � \i]�������Þ � y Ø Ù øÛ �"!$# V Ù øÞ � W
X [ X�� � \#ÝP{ Ù øÞ � W�X�\&% }

(17)� W � � { Ù øÞ � \i]'�����HÞ � y)( Ù ø*,+ } (18)

With the proposed distribution of masses, this decision
criterion also corresponds to the maximum of credibility.

So, the following rules are applied for the decision:· If - Ù øÛ �.!0/21 Þ � Ù ø 8:9�3 954$6�;87:9 Ù øÞ 8:9E;<;�= @ , then� � ø�>� �#��T � ¤ 
�� and
, � ø� � are associated like a tracked

object. We estimate the tracked object state and the
covariance of estimation error using the perceived
parameters.· If - Ù øÛ �"! / 1 Ù øÞ � 8:9�3 954$6�; 7:9 Ù øÞ 8:9E; ;:?>@6 and ?>A@ then� ÖBA ø� ����T � ¤ 
��

and
, ÖBA ø� are associated like an ob-

ject propaged in time because of the incertitude on
its trajectory. We estimate the propaged object state
and the covariance of estimation error using the per-
ceived parameters.· If - Ù øÛ �.!0/21 Ù øÞ � 8:9�3 954$6�; 7:9 Ù øÞ 8:9E;<;`>C6 then� � øÖ � �#��T � ¤ 
��

and
, � øÖ � are not associated. We

considerate that the object has disappeared, so we
propage its previous estimation parameters in the
time.

If no prediction can be associated with a perception, then
the perceived object becomes a new tracked object.



3. MULTI-SENSORS FUSION

3.1. Masses aggregation

We fuse the independant sources using the Dempster’s
combination rule, an orthogonal sum with associative and
commutative properties. For two sources

� �
and

� �
, the

combination is defined by :« £ �° ©�n� « �ED£GF « �IH£ (19)« £ �� ©�`� 

 ¤ Ò £ ³´ ê Âp» í ¾ ´ « � D£ �° � � « � H£ ��% � �
(20)

Ò £ � ³´ ê Âp» í ¾Ã¿ « �BD£ �� � � « �IH£ ��% � �
(21)

Here, the coefficient Ò £ represents the existing conflict
between the sources

�¶�
and

�t�
. For Ò £ � 


, the two in-
formation sources are totally in conflict and for Ò £ � ¯

,
the two information sources are totally in agreement.

Our aim is to aggregate objects tracked by sensors
� Ç

in relation with the predicted object present in the scene.
These predictions are issued of the Covariance Intersec-
tion algorithm between estimates of the same objects tracked
by different sensors at the previous instant.

3.2. The Covariance Intersection algorithm

The Covariance Intersection Algorithm [15] is a data fu-
sion algorithm with a convex combination of the mean and
covariance estimates.
Let’s consider two objects J and K with means and asso-
ciated covariance estimates

�ML��� +�
and

��N���%c�
. The esti-

mated means of
L

and
N

are
L

and
N

and the error estimates
are O L(�PL ¤ L

and O Nd�PN ¤ N
. The mean squared error and

the cross correlation are :ÀRQSQ � TVU O L O L �XW (22)À:Y<Y � TPZ O N O N �\[ (23)ÀRQ Y � T Z O L O N �X[ (24)ÀRQ]Q
and

À Y<Y
may be not known but consistent estimates

are known : À^QSQ × ÀRQSQ � À Y<Y × À Y<Y
(25)

The cross correlation
À_Q Y

between two estimates is also
unknown [16].
The combination of J �ML��� +� and K ��N���%c� to yield a new
estimate ` ��aO��b"� is defined by :bdc � �fehg` :c � �¡�<
 ¤ gl�o%ic �Sj

(26)aP�Vbkehg` :c � L �!�$
 ¤ gl�o%lc � N j
(27)

This Covariance Intersection (CI) algorithm can be easily
extended to � estimates :bg�nm Ö³ � ¾ � g �  c ��ko c �

(28)

aP�pbqm Ö³ � ¾ � g �  c �� L � o
(29)

where
L �

are the statistical means and
 �

the covariance
of the

�<rhs
estimate J � , and

º Ö� ¾ � g � �g
 .
3.3. Decision

For each sensor « , we search among the tracked objectsJ � ø� ���$�
for the ones which are in relation with the predic-

tion of fused object, noted ` r Ê r c � using Dempster’s rule
combination :

« £ e ` r Ê r c � Í J � j �utvÇ ¾ � « � ø£xw ` r Ê r c � Í J � ø�zy
(30)

Objects tracked by the { sensors associated to its predic-
tion in the scene is obtained by a decision rule :Î � ` �#��T � ¤ 
������ �n�C|i}�~� U « £ e ` r Ê r c � Í J � j W (31)

The weights
gÁ�

, associated to a tracked object by sensor
�
,

are calculated using masses of objects tracked by « sen-
sors

� « ��
����
��� { �
issued of the decision rule. These

masses come from tracking sub-systems after decision,
thus

gÁ�
depends on sensors reliabilities and the credibil-

ities associated to tracked objects :g � � « � ê£ e ` r Ê r c � Í J � ê jº tÇ ¾ � « � ø£ e ` r Ê r c � Í J � ø j (32)

With all the selected objects, we fuse their state vectors
and their covariances with the CI algorithm to calculate
the covariance of the estimation error

b r Ê r and the state
vector

a r Ê r of the fused object.

If a tracked object is fused but is not associated to the pre-
dicted object, then « � ê£ e ` r Ê r c � Í J � ê j is close to 1 and
the associated weight

g �
is close to 0. Thus, this object do

not occur in the fusion of estimates.
If no object ` �#��T � ¤ 
�� can be fused with the object issued
of the prediction, then we considerate that the object ` has
disappeared.
If no objects J � ø� can be associated with the objects is-
sued of the prediction ` r Ê r c � , then we considerate it like an
appearance. To manage appearances, with CI algorithm,
we fuse non-associated objects tracked by sensors.



The distribution of masses of the fused objects J � ø� is-
sued of sensors are aggregated with the Dempster’s com-
bination rule to produce a credibility on the presence of
objects in the scene. A mass « £ � ` ����T � ¤ 
��ZÍ J �#�$��� is-
sued of this combination allows to know the credibility, at
instant

�
, of the association between the prediction and the

objects tracked by all sensors.

4. SOME RESULTS

The parameters of the masses distribution are � ���
and« �P�

in the equations 14, 15 and 16.
We have made some experiments with a system composed
of two sensors. The sensor 0 perceives three objets (figure
3a) with a reliability ��� �¡¯�� ��¯ . The object positions un-
certainty is 10%. The sensor 1 perceives two objets (figure
3b) with a reliability � �I�¡¯�� �Z¯ . The object positions un-
certainty is 20%. The objects are perceived by the two
sensors but can be hidden.
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Figure 3: Positions perceived by two sensors

Each sensor tracks correctly the perceived objects ( � for
the first object, � for the second and � for the third).
On sensor 0, the system reassociates the hidden object
(figure 4) after the temporal propagation ( � ).
On sensor 1, the system tracks perfectly the two objects
in spite of the uncertainty on the positions and reassociate
the hidden object (figure 6) after the temporal propagation
( � ).
The credibility associated with object 0, perceived by sen-
sor 0, corresponds to a correct association.
The credibility associated with object 0, perceived by sen-
sor 1, corresponds to an association after two propagations
because of the bad perception of the position.
The position prediction of the different objects based on
the Covariance Intersection Algorithm allows to track the
objets perceived by only one of the sensors (figure 8).
The proposed fusion between a predicted object position
and the object tracked by each sensor allows the Covari-
ance Intersection to be a function of the distribution of
masses by using the credibility on the tracking.
The credibility resulting of fused objects (9) gives the con-
fidence about the presence of an object in the scene.
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Figure 4: Results of the tracking algorithm (sensor 0)
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5. CONCLUSION AND PERSPECTIVES

We have presented a multisensor and multitarget fusion
architecture using the Covariance Intersection Algorithm



PSfrag replacements

ø A D � � A Dê������ ��� Dh� � ! A DíV��� ���
ø A D � � A Dê������ ��� Dh��� ! A D� ��� � �
ø A D � Å �

Figure 7: Distribution of masses issued of the multiobject
association for object 0 in sensor 1

0

50

100

150

200

0

10

20

30

40

50

60
0

10

20

30

40

50

60

70

Figure 8: Results of the multisensor fusion ( � for the first
object, � for the second and � for the third)

0 5 10 15 20 25 30 35 40 45 50
0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

Figure 9: Credibility about the presence of the object 0 in
the scene

and the Dempster-Shafer theory. The proposed belief struc-
ture allows to associate a perceived objetct with a known
object using the sensor reliability, the distance between
their positions and the perception uncertainty. We de-
tect correctly the objects in the scene and their trajectory
even with a large perception uncertainty. Morever the re-
sults show that we can reassociate a perceived object to a
propaged disappeared object trajectory.
Currently, we are working on the application of this ar-
chitecture to the tracking of sportsmen articulations in the
aim of 3D reconstruction for integration of mecanic mod-
els.
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[15] Simon J. Julier and Jeffrey K. Uhlmann, “Non-
divergence estimation algorithm in the presence of
unknown correlations,” in The American Control
conference, Piscataway, USA, 1997, IEEE, vol. 4,
pp. 2369–2373.

[16] Simon J. Julier and Jeffrey K. Uhlmann, “A non-
divergent estimation algorithm in the presence of un-
know correlation,” in The American Control Confer-
ence, june 1997.


