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3-D Discrete Analytical Ridgelet Transform

David Helbert, Philippe Carré, and Eric Andres,

Abstract

In this paper, we propose an implementation of the 3-D rielggbnsform: The 3-D Discrete Analytical Ridgelet Tramgfo
(3-D DART). This transform uses the Fourier strategy for teenputation of the associated 3-D discrete Radon transfohma
innovative step is the definition of a discrete 3-D transfamth the discrete analytical geometry theory by the cormsion of
3-D discrete analytical lines in the Fourier domain. We ps®two types of 3-D discrete lines: 3-D discrete radialdigeing
through the origin defined from their orthogonal projecsicend 3-D planes covered with 2-D discrete line segmentsselhe
discrete analytical lines have a parameter called aritiwadethickness, allowing us to define a 3-D DART adapted to ecijc
application. Indeed, the 3-D DART representation is nohagbnal, It is associated with a flexible redundancy factor.

The 3-D DART has a very simple forward/inverse algorithnt r@vides an exact reconstruction without any iterativéhoe.

In order to illustrate the potentiality of this new discrétansform, we apply the 3-D DART and its extension to the L-daRT
(with smooth windowing) to the denoising of 3-D image andocwol video. These experimental results show that the simple
thresholding of the 3-D DART coefficients is efficient.

Index Terms

3-D ridgelet transform, discrete analytical objects, dgsing, video, colour images

|. INTRODUCTION

team from University of Stanford has recently developedltraative system of multiresolution analysis, calledygtet

transform, specifically designed to efficiently represeaiges in images [1]. The ridgelet transform can be computed by
performing a wavelet analysis in the Radon domain. Howawest of the work done with ridgelets has been theoretical in
nature. To our knowledge, we can only find in literature threen implementations for the 2-D discrete ridgelet decositimm
[2]-[4]. This paper presents an extension to 3-D of our appihoproposed in [4] that aims at representing linear simgigis
with a discrete ridgelet transform based on discrete aicalybbjects: the 3-D Discrete Analytical ridgelet Tramsfo(3-D
DART). The idea behind the 3-D associated discrete Radarsfvem is to define each Radon projection by a 3-D discrete
analytical line in the Fourier domain. There are severabathges in using discrete analytical lines:

« They offer a theoretical framework for the definition of théd3discrete Radon projections.

o This solution allows us to have different ridgelet deconitpmss according to the arithmetical thickness of the 3-Bcdéte
lines (control of the representation redundancy factor).

o The 3-D DART has a very simple forward/inverse algorithmiglan important quality for the 3-D computation).

« The simple straightforward approach ensures an exact sgcation without any interpolation or iterative process.

In sectiorl, we will present the ridgelet transform. In sec[Il] we will define the 3-D discrete analytical Radonrtsform
with two geometrical approaches. In sectlad IV, we will messthe 3-D Discrete Analytical ridgelet Transform. In arde
illustrate the performances of the 3-D DART, we have apptiadtransform and its local extension to the denoising ofesom
3-D images in sectioflv and colour videos in secfiah VI.

1. THE RIDGELET TRANSFORM
A. The Continuous Ridgelet Transform

The 2-D continuous ridgelet theory is documented in the Pth&sis of Candeés [1]. The ridgelet transformfof L? (R3)E
is extended to 3-D case by [5]-[7]:

r (aa b7 97 ’7) = ~/]R'3 Ea,b,@,'y (X) f (X) dx (1)
with x = (21, 22, z3).
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The ridgelet 3-D function), ;. is defined from a wavelet 1-D function, b € R is the translation parameter,c R**
is the dilatation parameter arde [0, 27|, v € [0, [ are the direction parameters:

1/111,17,9,7 : R3 —R (2)

Va,b,0,y (T1,T2,73) = (3)
0 in 6 iny—>b

y (:101 cos 0 cosy + xo SH; cosy + w3 sin~y ) @

The functiony, ¢ - is oriented at the anglegsand~ and is constant along lines:
21 cos 6 cosy + wo cosfsiny + x38inf = cst. (5)

As for the 2-D case, a basic tool to calculate ridgelet caefiits is to view the ridgelet analysis as a wavelet analysis i
the Radon domain. The 3-D Radon transformfofioted R, is defined as:

0 (w1 cos b cosy + x cosOsiny + xzsinf — t) dx (6)
with ¢ is Dirac’s delta function defined by:
o(x)
[ o
The ridgelet coefficients; of f are given by the 1-D wavelet transforms on projections ofRlaeon transform?; where
the directiond), v are constant andis varying:

r(a,b,0,v) = /le_,b (t) Ry (t,0,~)dt (9)

The 3-D continuous Radon transform can be defined using lef@giions of a 3-D objecf where these projections are
obtained by integrating’ on a plane [8]. The 3-D continuous Radon transform of an ahecelated to its 3-D Fourier
transform via the central slice theorem:

Ry (t,0,7) = / f(ﬁ cos 0 cos vy, & cos O sin y, £ sin §) e7tde (10)
i

= 0 Vz#0 (7
1 (8)

with fthe 3-D Fourier transform of.

B. The Discrete ridgelet transform

As we have seen, a basic strategy to calculate the contimidgedet transform is first to compute the Radon transfétm
and secondly, to apply a 1-D wavelet transform to the sliBgs.,6,~). The discrete procedure uses the same principle.

The discrete wavelet decomposition is easy to implementwhdn associated with a filter bank [9], is stable and inla&ti
It can be associated with a discrete orthogonal representat

The discretization of the Radon transform is more difficaltachieve. The majority of methods proposed in literatuoe, f
the 2-D case, have been devised for computerized tomograply approximate to the continuous formula [10]-[18]. But,
none of them were specifically designed to be invertibledfenms for discrete images and cannot be used for the discret
ridgelet transform. Some articles have recently studiedithplementation of the digital 2-D ridgelet transform wgsitwo
different approaches to compute the discrete Radon transtbe spatial strategy (summations of image pixels ovezrgam
set of lines) and the Fourier strategy.

Do and Vetterli proposed in [19], [20] an orthonormal ridgtetransform with the implementation of the finite Radon
transform. This Radon transform integrates over linest @na defined algebraically rather than geometrically) pitints that
can be rather arbitrarily spread out over the spatial donidie finite ridgelet transform is not redundBritut has constraints
on the size of images.

The Fourier strategy for digital Radon transform is basedhenprojection-slice formula suggesting that approxiniaeon
transforms for digital data can be based on Discrete Fotndmsforms. This is a widely used approach in the literatfre
medical imaging and synthetic aperture radar imaging. is strategy too, discrete lines must be defined. The two Stdisf
university algorithms [21], [22] consist in substitutingetsampled value of the Fourier transform obtained on tharsgattice
with sampled value of on a polar lattice. In [21], Averbuch et Al proposed the FdanBStack based on a chirp-Z transform
which requires an iterative approximation algorithm foe tinverse transform. In [22], Starck et al proposed to usarglsi
nearest-neighbor interpolation scheme.

2Redundancy of the transform is defined y= "“mgj;}f;{%?fri‘]’;gecgiiggie”‘s
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In [23] and [4], Carré and Andres proposed to define the disdines with discrete analytical geometry in the 2-D Fewri
domain. This solution allows them to have different ridgelecompositions according to the arithmetical thicknesghe
discrete lines. The transformation is redundant but thetiéan of information depends on the type of the discratediused
and can be adapted to the application. Moreover this methadsociated with a non-iterative inverse algorithm the¢gian
exact reconstruction. In this paper, we present the exiarafithe 2-D discrete strategy to the 3-D space to define asie
3-D discrete ridgelet transform. Preliminar results obthiudy are presented in [24], [25].

In the literature, some 3-D discrete Ridgelet transformmsassociated representations such as Curvelet and Bedralet,
been recently proposed:

o Querre, Starck, Donoho et al. proposed an extension of th8rstrategy [5]-[7]. In the Fourier domain, a cartesian-
to-spherical conversion is used: they define for this anrpai@tion scheme that substitute the sampled values on the
cartesian system with sampled values in a spherical sysSeroe the aim of these papers is to develop tools for analysis
of 3-D data (for example, Querre et al. have proposed a 3-Bnsidn of discrete ridgelet transform in [5] to present a
statistical tool to describe galaxy distribution) the npi@ation scheme is not presented and the inversion is sotidsed.

« Averbuch et al [8], [26] have recently proposed an extengibthe Fast Slant Stack to the 3-D case. They use the
same strategy than Starck, Donoho et al, but they define ang st very complete interpolation scheme in the Fourier
domain. As for the 2-D case, they use the fractional Fourarsform and they obtained the same properties than for the
2-D transform (algebraic exactness, geometric fidelity pachllels with continuum theory). However even though the
invertibility of the decomposition is shown, no reconstioe algorithm is given (it is not defined so far in 3-D).

All these decompositions are right now used for 3-D imageacstire analysis but not for video denoising because of the
difficult inversion problem.
Other 3-D discrete multiscale transforms have been recentiposed:

« Selesnick proposed an extension to the 3-D case of the deal domplex wavelet transform [27]. With this new
decomposition, a denoising strategy is defined and appleddeo. A (©Matlab toolbox for 3-D oriented transforms is
available on http://taco.poly.edu/WaveletSoftware/isT8D oriented transform isolates motion in different dtrens in
separate subbands and can also represent motion informatio

« Ying et al. have proposed very recently a 3-D discrete Cetweansform [28]. Contrary to the previous implementagion
of Curvelet that used the Ridgelet transform [22], they ps#ptwo direct implementations based on localizing windiows
the Fourier domain. The first strategy uses the unequisp@e@dwith an interpolation process) and requires an itegati
reconstruction algorithm. The second implementation gedaon the wrapping of Fourier samples. In this case, thesave
transform is computed as the adjoint of the forward tramsfor

o Lu and Do proposed a family of filter banks, named 3-D dirgwidfilter banks [29], that decomposes a 3-D signal
into directional subbands with a tree structured constuciThey also proposed an multiresolution transform, rcithe
surfacelet transform, by combining the 3-D directionakfilbanks with the Laplacian pyramid.

In this paper, the 3-D dual tree complex wavelet transforthtae 3-D undecimated wavelet transform are used as a referen
3-D transform to compare denoising results with the 3-D DARBection[\].

IIl. THE 3-D DISCRETEANALYTICAL RADON TRANSFORM
A. Principles of the 3-D Discrete Radon Transform
The discretization of the 3-D Radon transform is the extamsif the 2-D discrete Radon transform method:

1) Compute the 3-D Discrete Fourier Transform fof
2) Extract Fourier coefficients that belong to straight didg , going through the origin,
3) Compute the 1-D Discrete Fourier Transform on each lipe (defined for each value of the two angular parameters).

The idea (as proposed in [4], [23] in 2-D case) is to represanh direction with an analytical 3-D discrete straighélin
the Fourier domain.

For the 3-D discrete Radon transform, we need a discrete 8digkt line that has a central symmetry and forms a
"good” approximation of the corresponding Euclidian gitdiline (i.e. direction). Moreover, if our transform is te perfectly
invertible, the discrete 3-D straight lines need to covette Fourier domain (each point of the Fourier domain besotogat
least one discrete 3-D line).

Since none of the "classical” notions of discrete 3-D lings &ll of these conditions, we propose our own families of
discrete 3-D lines with help of the discrete analytical getm An important body of theory is available in [30], [31].

We propose two methods to define 3-D discrete lines covelingr@ cubic lattice:

1) Cover the 3-D cubic lattice with 3-D discrete radial liggsng through the origin defined from their orthogonal petins
[25].
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2) Cover the 3-D cubic lattice with a specific set of 3-D plafz4. Each discrete plane is then being covered with a set
of 2-D line segments.

In order to explain these two constructions, we first propgoseeview briefly the principle of 2-D discrete analyticaidis.

B. 2-D Discrete Lines

The 2-D discrete lines that are used in the DART applicatienrmt classical discrete lines (which do not provide a @ntr
symmetry in the Fourier domain). Central symmetry is easlitained by defining an analytical discrete lines from théesian
point O(0,0) to the cartesian poinP(p, ¢) [30]:

w wr,
Liyo = {(xvy) €z ’|qa¢ —py| < 7} (11)

with (p, q) € Z? the direction of the line and;, function ofp andg, is called the arithmetical thickness. It allows us to cohtr
the redundancy of the transform and the topological progeedf the discrete analytical lines (the discrete line exity). For
example, ifw;, < max (|p|,]|q|), the discrete line is not connected. Three different typeslased discrete lines have been
tested:

« closed naive discrete linesy, = max (|p|, |g|). These lines (figurEl1(a)) are the thinnest connected cldisedete lines.
They ares-connected

« closed Pythagorician lines:;, = /p2 + ¢2. These lines (figurEl1(b)) ar®connected and offer a medium redundancy,
between the naive and supercover lines.

« supercover lineswy, = |p| + |q|- These lines (figurBl1(c)) are the thickest connected cldgsaiete lines that have been
considered in our applications [31]. They are the thinn&stedl lines that aré-connected and that cover the Euclidean
line they approximate.

(=p, —q) (=p,—q)

(@) (b) (c)

Fig. 1. The analytical 2-D discrete lines: (a) closed naivg, (= max (|p|,|q|)), (b) closed pythagoricianw(, = +/p? + ¢2) and (c) supercover
(wr = Ip| + lal)-

C. Definition of 3-D Supercover Lines

First we propose to cover the 3-D cubic lattice with 3-D dierlines.

The supercover 3-D straight line is defined by the intersactif the extrusion of three orthogonal projections (figuye 2
In the cartesian domain, the supercover 3-D discrete lj@bﬁsm linking the cartesian point® (0,0,0) and @ (p,q,r) is
defined by: -

LT£7:iiwg = Towy(P, &, 7) N Toyz (P, ¢;7) N Toza (5 G, 7) (12)
with:
3 w1
Wowy(p7q,r):{(:v,y,z)€Z | |q$_py| S ?} (13)
w
Toye(pra:7) = { (2. 2) € 22 | Iry — g2 < 3} (14)
Tora (P 0,7) = { (2.9, 2) € 2 | |pz — 7] < 2} (15)

gz —py = 0 is the 2-D discrete line equation linkir(g, 0) and(p, ¢), result from the orthogonal projection 6fQ on the plane
Oxy. The analytical 3-D discrete line arithmetical thicknesshe directionOz, Oy and Oz is represented by, = |p| + |g],
wo = |q| + |r| andws = |r| + |p|. (p,q,7) € Z3 is the direction of the line (and corresponds to thiey) direction of Radon
projection of equatiofll6).

3Two pixels P(zp,yp) and Q(zq,yq) are 4-connected if and only ifrp, — x4 + |yp — yq| < 1. P and Q are 8-connected if and only if
max (|zp — xql, [yp — yql) < 1.
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)

Fig. 2. A 3-D supercover line with this three orthogonal pations [31].

At last, the set of discrete directioris, ¢, r) for a complete representation has to be determined. Thef diseosegments
must cover all the cubic lattice in the Fourier domain. Fas,tin the 2-D case we define the directions according to pairs
of symmetric points from the boundary of the 2-D discrete ri@uspectra. We know from [23] (this result is reviewed at
appendix I) that if a discrete Iinéfp{q) satisfiesw;, > max (|p|,|q|) then the set of all discrete analytical lines provides a
complete cover of the lattice.

We propose to generalize this strategy and the set of désdiegctions(p, ¢, ) for a complete representation is determined
according to pairs of central symmetric points from the ltarg of the 3-D Fourier domain.

Figure[3 shows how the 3-D discrete lines that cover the 3-DriEo domain are chosen. As this 3-D discrete analytical
lines is not always connected, the 3-D Fourier spectra isalvedys covered.

Q(p, g,

Fig. 3. Covering of the 3-D Fourier domain with 3-D discreteet: definition of different 3-D Euclidian lines according the central symmetry and
extremity coordinates.

If Towy (P q, 1), Toy=(p, q,7) @Ndm,..(p, g, ) are 2-D supercover lines, theﬁ‘f;’:j)"” is the supercover of the 3-D Euclidian
line OQ (figureld(c)), studied in discrete analytical geometry [#dwever, experience shows thatif < |p|+|q|, w2 < |g|+]|r]
andws < |r| + |p|, then the discrete 3-D analytical Iiné{;ﬁj;” is not necessary connected (figuies 4(a)[@dnd 4(b)) and thus
the 3-D Fourier domain is not always entirely covered. Tﬁb\f«ing proposition shows that the supercover lines alweysger
the cubic lattice.

Proposition 1 :
Let a cubic lattice be defined &3}, = [N, N] x [-N, N] x [-N, N].

=
The supercover 3-D IineE‘(le;‘T”)l"éYHT"‘T'Hp' provides a complete cover of the latti€s;.
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Proof :

Let's consider a pointd of the cubic latticeQ3,, andO(0,0,0) the center of2%,. We will demonstrate thatl is element of
a supercover line.

Let's suppose that the lin@ A intersects the border ¢#3; in a point B(z s, yp, N) with (z5,ys) € R? (all the others cases
are symetric).

The supercover line of 3-D straight link noted notedS(L) can also be defined by [32]:

S(L) = {k €Z"|d>® (k,L) < %} (16)

- (L@IB%OO <%>) VA a7)

where is the Minkowski sumd> (z,y) = sup,<;<, [zi — yil, = {21, 22, ., an }, y = {y1, 92, ...y~ } andB>=(3) ball of
radius% for the distancel™ (a cube of side equal tb).

A supercover of the 3-D Euclidian lin&L) corresponds to the extrusion of a b&ft° (1), that is to say a cube of side equal
to 1, along the Euclidian lind..

There exists a poin€(z.,y., N) with (z¢,yc) € Z? such thatd>® (B, C) <
always true ford®).

From there, Thales tells us thdt° (A, OC) < 3 sinced>(OB,0C) <

% (it is easy to see from figuld 3 that this is

3 and thusA € S(OC). o

With the first 3-D line definition, only supercover lines cotlee cubic lattice (the proposition restricts the choic@a$sible
thicknesswy, ws andws). This is why we have proposed an other method based dis2fBtéines covering properties.

., Y

‘."'*-. h‘\

@) (b) (©)

Fig. 4. 3-D discrete lines: (a) closed naive; = max(p, ¢), w2 = max(q, r)w3 = max(r, p), (b) closed pythagoriciany; = v/p? + ¢2, w2 = /q? + 72,
ws = /72 + p? (c) supercoverw; = |p| + |q|, w2 = |q| + |7|, ws = |r| + |p|.

D. Method Based on the Extrusion of Discrete 2-D Analyticakek

This method has been first proposed in [24], [25]. The ideaisse covering properties that we have in 2-D to define
discrete 3-D lines preserving these properties: cover tbecBbic lattice with a specific set of 3-D planes and eachrdtsc
plane is then being covered with a set of 2-D line segments.

To compute a discrete planlé[‘:f;] for our application [33], we need to define the analytical ZiiScrete IineL‘[jf;] =
{(z,y) € Z?|Jrz + sy| < “£ } and the discrete plane is obtained by the extrusion of théyticel 2-D discrete line along
the z-axis (the central plane axis is chosen arbitrarily).

Then, the 3-D cubic lattice is covered with discrete anesftB-D planes defined by the following equation (fighke 5):
- w
P = {(‘”’y@ €L’ |[sz —ry+0- 2] < TP} (18)

where (r, s) € Z? are they direction of the plane andp, function of » and s, is the arithmetical thickness. These planes
have a central symmetry and are the analytical discretizadf the Euclidean planeB, : sz —ry + 0-z = 0 for a given
arithmetical thicknessp.

Each 2-D line gives a 1-D row and all the lines provides a 2-Dndm. This construction is illustrated in figuté 6.
We thus extract Fourier coefficients froﬂf;] and we cover this 2-D domain with discrete 2-D analyticaéﬁmf;fq] =

{(u,v) € Z* ||pu+ qv| < £ } where(p, q) are thed direction (this discrete 3-D line can be viewed as inteisacdf two
orthogonal discrete planes). The lines are covered in aalatay as illustred in figurEl6.
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(@) (b)

Fig. 5. (a) Choice of the discrete discrete Iinbﬁps], (b) cover of the 3-D Fourier domain with Euclidian planes.

Fig. 6. Fourier coefficients extraction along the discreatalyical line.

At last, the set of discrete directiofis, ¢| (associated with the lines) arid s| (associated with the planes) for a complete
representation has to be determined. The set of 3-D line segnmust cover all the cubic lattice in the Fourier domain.
It has been shown in [4] that 2-D lingpx + qy| < <+ chosen according to pairs of symmetric points from the baund
of the 2-D discrete Fourier spectra (as in figlle 5(a)) coker2-D Fourier domain when the arithmetical thickness \eifi
wr, > max (|p|, |q]) (appendix).

In order to cover all the cubic lattice in the Fourier domairg thus define the directions according to pairs of symmetric
points from the boundary of:

« the plane{z = 0} for the planesP "

1) H w [r,s]'
« the plane [TZ] for the IlnesL(pfq).

i

According to the 2-D domain, the 3-D Fourier domain is alwagsered by the analytical 3-D discrete linesuip >
max(|r|, |s|) andwy > max(|p|, |q]).

E. Computation of the 3-D discrete analytical Radon transfo

We have proposed two strategies to define 3-D discrete IMes, we can use the Fourier domain for the computation of
our discrete Radon transform. For this, Fourier coeffidaitf/ are extracted along the proposed 3-D discrete analytices li
and ordered in a natural way (as illustrated in figidre 6):

Q8 = QUi = Urez+ f (vh, 15, 15) (19)
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with (vF,v5,v5) € L2 for the 3-D construction or

(p,q,7)
i) = Ftiodod 20
@6 = Qp,qrs]—Ukez+f(v1,u2,u3) (20)

with (vf, v, %) € (L“L P“P for the plane-line construction and we take the 1-D inveiiserdte Fourier transform of
Q@ on each value of the d|rect|oé

The sampling of the extracted Fourier coefficients depemdthe 3-D discrete analytical lines used to compute the eliscr
Radon transform. The 1-D inverse Fourier transform is cdegbwn non-equispaced Fourier coefficients and we need an
approximation to the Fourier transform for non-equispadath or for the computation of the polar Fourier transfori®][1
[17], [18], [34], [35]. In 2-D, none of these methods wereafieally conceived to be invertible and the alternative rmagches
proposed [21], [26] use an iterative method. In this papenmant to define a 3-D discrete ridgelet transform that is &stple
and associated with an exact reconstruction. We considerttie 3-D discrete analytical lines are a good approximatio
the Euclidian lines for each line direction and we use a wabsliscrete Fourier transform defined for equispacedfwiefits
(for the 2-D case, a similar approach is used in [22] and [23])

Figure[T shows projections of an image of size X55x55) with one white voxel at coordinatég5, 35, 15).

It only represents part of the Discrete Analytical Radon domtomposed of 11664 projections. We can see that the 3-D
Radon transform follows a broken "line” as in the 2-D tramsfo

3D Image projections

5 10 15 20 25 3 3 40 4 50 55
Spatial parameters

Fig. 7. Image projectiong?(.,.,v) issued of the 3-D discrete analytical Radon transform fancof spatial parameters of an imagéz, y, z).

F. Reconstruction of the 3-D Discrete Radon Transform
Our analytical reconstruction procedure works as follows:
1) Compute the 1-D Fourier transform for each &1, ©,);
2) Substitute the sampled value ﬁfon the lattice where the points fall on 3-D discrete lineshviite sampled value qf

on the cubic lattice;
3) Apply the 3-D inverse Fourier transform.

Due to the redundancy, some Fourier coefficients belong teertfan one discrete line. In this case, the Fourier value is
defined by the mean average. The number of times a pixel beltm@ discrete line depends of the frequency (it is more
important at low frequencies) and depends of the type ofrelisdines.

The 3-D DART followed by its inverse is a one-to-one transfott provides an exact reconstruction properties if theo$et
directions of lines provides a complete cover of the cubiickx

o With the discrete Radon transform defined with 3-D discratesl method, the 3-D discrete Radon transform is thus
perfectly invertible if the 3-D analytical discrete lineeea3-D supercover lines;

o With the discrete Radon transform defined with discrete ggaand 2-D discrete lines, the 3-D Fourier domain is always
covered by the analytical 3-D discrete lines for all the preed thicknessw((p, ¢) > max (|p|, |g|)). This transform is
thus always perfectly revertible.
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IV. THE 3-D DISCRETEANALYTICAL RIDGELET TRANSFORM
A. Definition of the 3-D DART

For the ridgelet transform, we must take a 1-D wavelet tamnsfalong the radial variable in Radon space. The choice of
a discrete one-dimensional wavelet transform is discufsethe 2-D case by Starck et al. in [22]. The choice of the tgpe
1-D wavelet transform depends on the goal of the transfoims Wavelet transform can be decimated (DWT) or undecimated
(UDWT) and the wavelet base can be adapted according to ffieaton, as with the classical wavelet decompositiorthis
article, we illustrate the 3-D ridgelet transform with désiog applications. We thus propose to use an undecimated|eta
transform.

Because of decimation after filtering, the Mallat’s decosifion is completely time-variant. A way to obtain a timexmiant
system is to compute all the integer shifts of the signalc&ithe decomposition is not decimated, filters are dilatealdxn
each projection. This algorithm presents many advantggasicularly a knowledge of all wavelets’ coefficients: fiméents
removed during the downsampling are not necessary for &@eadconstruction, but they may contain useful informafior
denoising.

B. Redundancy of the 3-D Discrete Analytical Ridgelet Tiaims

The redundancy factor of 3-D DART representation dependher8-D discrete analytical lines used to define the Discrete
Radon transform and the type of wavelet transform.

As stated, the thickness parameters allow us to controleberdancy factor of the transform and to adapt it to a given
application. Tabldll shows the different redundancy factomputed by experimentation, in function of the discreteléh
transform strategies and the object thicknesses.

TABLE |
DISCRETERADON TRANSFORM REDUNDANCY TABLE

Discrete objets thick-|| naive | pythagorician | supercover
nesses

3-D discrete planeg| 3.9 4.9 9.7
and 2-D discrete lineg

3-D discrete analyti-|| 2.6 3.3 6.2
cal lines

As for the two discrete Radon transform strategies, the Igozevering low frequencies in the Fourier domain belong to
more discrete lines than those covering the higher frequétte redundancy is concentrated mainly in low frequencies

We can introduce additional redundancy with the wavelebdgmsition by using a Undecimated Discrete Wavelet Transfo
We increase the factor by the scale number of the UDWT. Thangaincy factor of the 3-D DART depends on the wavelet
decomposition choice and the scale number (TEble Il). Thstingportant 3-D DART redundancy factor is obtained with 3-D
discrete planes, 2-D discrete lines and an UDWT. For exantipie factor is close to 50 with a undecimated wavelet scale 4
decomposition.

TABLE Il
DISCRETE RIDGELET TRANSFORM REDUNDANCY TABLEL IS THE NUMBER OF SCALE

Discrete objets thicknesses || Naive | Pythagorean | Supercover |
Wavelet scalel. decomposition DWT UDWT DWT UbwT DWT UDWT
3-D discrete planes and 2-D discrete lings 3.9 | 3.9x(L + 1) 49 | 49x(L+1) 9.7 | 9.7x(L+1)
3-D discrete analytical lines 26 | 26x(L+1) 33 | 33 (L+1) 6.2 | 6.2x(L+1)

C. Complexity of the 3-D Discrete Analytical Ridgelet Tramns

Let us compute the algorithmic complexity of performing ®Piscrete Analytical Ridgelet Transform. We review briefly
the algorithm: first, a 3-D discrete Fourier transform is pated on a 3-D image of sizéM x M x M). 3-D Fourier
coefficients are then extracted on each 3-D discrete analyines and a 1-D inverse discrete Fourier transform aneptded
along resulting coefficients to obtain Radon projectiorisalfy, a wavelet decomposition are computed on each ptiojec

« The complexity of the 1-D direct/inverse discrete Fouriansform isO(n?). The computation of the first step requires

O(M®") operations.
In order to cover a 1-D discrete analytical lines we hé&@/) step, because the size of the IineMg—1 and the algorithm
of coefficient extraction is linear.
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« With the method based on 3-D discrete analytical lines, sggan paragradh1l[dC, the 3-D spectra negtls—1)(3M —1)
3-D supercover lines to be covered. The complexity of thép ss (M — 1)(3M — 1)O(M), namelyO(M?3).

« With the method based on discrete analytical planes and Z&&ede analytical lines, exposed in paragrBphlll-D, the
3-D spectra needs)M — 1 discrete planes to be covered and each plane ofisizens requiresn; +no. — 1 2-D discrete
lines to be covered. The size of a plane is equivalentftox M. The complexity of this step is thu@M — 1)20(M),
namelyO(M?3).

« For each discrete line, we compute a 1-D inverse transforami&oof complexityO(n?). The complexity of this step is
thus (M — 1)(3M — 1)O(M?), namelyO(M*?).

The discrete Radon transform then requieds\/®) + O(M3) + O(M*) — O(MS) operations for the first method and
O(M®) + O(M?3) + O(M*) — O(M?®) for the second, that is to sa9(M©) for both of them.

» The complexity of a decimated wavelet decompositio®?{&). The complexity of this step is thyd/ —1)(3M —1)O(M),
namelyO(M?3). Notice that if the wavelet decomposition is undecimatedlcomplexity is equal t@(n logn).

The 3-D discrete analytical ridgelet transform therefokeg a total ofO (M) operations. IfN = M x M x M is the
number of samples of the video then the complexity our algoriis O(N?).

The computation of the 3-D DART can also use the fast Fouramsform of complexityO(nlogn). Consequently, the
total complexity become® (M °log M) or O(N?log N) with N the number of samples. We can remark that the complexity
of our algorithm depends on the complexity of the Fouriengfarm.

Algorithms have been developped withMatlab software on a AMD AthloH" 64 2800+ single processor and a GNU/Linux
system. The 3-D DART, using naive planes, 2-D naive discliats and an undecimated wavelet scale 4 decomposition, is
computed in 32 seconds for a 3-D image of s{@8 x 63 x 63) and uses 33.4 Mega-octets with 64-bit data. It is computed
in 342 seconds for a 3-D image of siz&27 x 127 x 127) and uses 276 Mega-octets with 64-bit data.

D. Definition of the 3-D Local-DART

The ridgelet transform can be easily extended to a locaktoam by a smooth partitioning: in 2-D, the image is smoothly
windowed into squares and we analyse each square by thdetidigansform. The local ridgelet transform is used to idtroe
redundancy in 2-D image restorations and to process lo2allyimage contours. For this decomposition, the analysietter
localized in the spatial domain. This property eliminates parasitic lines present in the ridgelet reconstructioa tb the
selection of an important contour in an area of the image.[22]

The 3-D DART can be easily extended to a local transform bystheoth partitioning windowed into cubes. Each cube is
analysed by the DART.

To define the smooth partitioning, we have adapted the metietdiled in [22] to our discrete transform. In 1-D, the
interpolation of a point valug (7) from its two 1-D block values3; (i), B2 (i2) of sizel = ”Tl with 4, >l andiy =i, —1+1
(figureld) is defined by:

Fli) =0 <172> By (i) + Q <1 - 172) By (i) 21)

with Q () = cos? (%) and respect the symmetry propefty(z) + Q (1 — z) = 1.

@ (1) @ (1)

0.6 -

0.2 -

L L L L L L L L L L
2 4 6 8 10 12 14 16 18 20 22 24

B (7)

Fig. 8. 1-D smooth windowing.

The 3-D voxel calculation is the simple extension of the lebnfulation in the 3-D space.
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We calculate a voxel valug(i, j, k) from its eight 3-D block values of siZe<!x [ with [ = HTl: B (i1,71, k1), Ba(i1, j1, k2),
B3(i13j27k1)1 B4(7;17j27 k2)1 B5(i27j17k1), BG(iQ,jl, k2), B7(7;2,j2,k51), Bg(iQ,jQ, kQ) W|th il,jl, kl Z l and’LQ — 7;1 —l+ 1'
jo=7j1 —1l+1, ks =k, —1+1 such as:

o= <%> By (i1, 51, k1) (22)
+ Q <1 - %) By (i1, j1, k2) (23)
wherea andb are the block numbersd, b) = (2n + 1,2n + 2),—0...3) and:
fir = 9 (‘772) Rl (1 - 372) ' (24)
fia = Q (372) 20+ Q (1 - ‘772) i (25)
fG,4k) = Q(%) fj,1+9(1—i72) fiz2 (26)

The local-DART also introduces redundancy. This 3-D piarting with cubic block increases the redundancy:

3
Isn\> 2L — 1 +1
= =\ 7, 27
) (L) ( = ) 27)

where L is the 3-D image sizd, the block size anad the block number.

V. DENOISING APPLICATIONS
A. Principles

In order to illustrate the 3-D DART potentiality, we preseyynthetic image and video denoising with a classic dengisin
process.

The denoising procedure by ridgelet transform simply cstesin thresholding the ridgelet coefficients and computirey
inverse ridgelet transform. The thresholding is performatth the help of an undecimated method (UDWT) developped for
the Daubechies D8 wavelet scale 4 decomposition [36].7.ebe the noisy undecimated ridgelet coefficients, we use the
following hard-thresholding:

' | r#(a,b,0) if |rf(a,b,©) > ao
rs(a,b,0) = { 0 otherwise (28)
a can be defined as = /2log(N) or asa = 3, and the variance is estimated using the absolute median of the wavelet

decomposition’s first scale of each radial projection [37].

In order to study precisely the result of the denoising atgor with different types of discrete analytical lines wevha
generated an artificial 3-D object and added important widise. With a more redundant decomposition (based on soygrc
discrete lines and planes) the denoising result is bettar tbr a less redundant decomposition (naive 2-D lines aades)):
in general the edge is reconstructed more precisely andriliermn areas are smoother. As in the wavelet decomposition,
overcompletness provides advantages for denoising. Tabikustrates this phenomena: we present the mean SNR ef fiv
denoised videos with the three types of discrete analylicas. We remarks that the more important thickness isgbéiie
quality of denoising is in term of SNR that confirms the visoahstatation.

TABLE Il
MEAN SIGNAL TO NOISERATES FOR DENOISINGS WITHDART DEFINED WITH DIFFERENT DISCRETE ANALYTICAL OBJECT THICKNEBS(IN DB).

Noise | Naive | Pythagorean| Supercover
| SNR| 634 | 1084 1090 11.35

In order to obtain the 3-D images and videos denoising reguisented in this paper, we propose to use the discretelRado
transform defined with naive planes and 2-D discrete nanesli This choice indeed corresponds to the faster algowthoar
proposed methods. Moreover, it corresponds to the lesshdeahl reconstructible decomposition and is associatedfésior
performance since the overcompletness provides advanfagéeenoising.

We compare the denoising of different 3-D images by thratihglof the 3-D DART and of the 3-D undecimated wavelet
decomposition. We use the Signal to Noise Ez(@\lR) and the visual analysis to measure the performance.

4The SNR computation is extracted from Vetterli and Kovacefs book [38]. It is available in the Minh Do's FRIT©Matlab Toolbox,
http://www.ifp.uiuc.edu~minhdo/software/frittoolbox.tar.gz
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B. Denoising of a synthetic image

The image is a synthetic cube of si@8 x 63 x 63) with 256 levels of grey (figured 9a). A white Gaussian noisadded
to this 3-D imagB (figure[@b) with as the Signal to Noise Ratio equal to 9.62 dB.

The SNR of the 3-D image denoised by the 3-D DART strategy28.8B) is higher than that of the 3-D image denoised
by an undecimated wavelet decomposition (13.45 dB). We ean(fguredB(c) anfl 9(d)) that the edge is more precisely
reconstructed and that the uniform areas are smoother é0DART than for the UDWT.

(b)

(©) (d)

Fig. 9. Slices and 3-D views: (a) original image, (b) noisyage, (c) denoised image with 3-D wavelet transform and (dpided image with a 3-D DART.

VI. COLOURVIDEO DENOISING
A. Principle

Carré and Andres have studied colour image denoising we2tD DART [39], [40]. We propose to extend our 3-D DART
strategiesO to colour video denoising using the 3-D locaRDAFor this, we consider the video as a spatio-temporalmelu
and we apply the same denoising processing by the 3-D DARTagrevious 3-D image denoising [41].

The video is a sequence of 279 images of <289 x 279) with their three-colour components (figurel 12 (a)). It comes
from the Video Quality Experts Groﬂp(\/.Q.E.G.) .

A Gaussian noise is added to the three-colour componentseofitieo. The colour video is decomposed into three videos
corresponding to the three-colour components. We indep@hyddenoise every component with the associated 3-D local
Discrete Analytical Ridgelet Transform and we reconstithet video with the inverse 3-D local-DART. The local denoggsi
processing is applied to blocks of sizél x 71 x 71).

Setting the size of the blocks is a difficult problem. The m&+ blocks, the more the 3-D DART redundancy increases (and
thus the better the denoising results are). However theadibéock must not be too small to compute a wavelet decomiposit
on each projection with a satisfactory number of level anddnserve an algebraic exactness, a geometric fidelity. thes
same problem for all the windowed or local transforms (asspgram, Malvar Wavelet ...).

B. Comparison with other 3-D transforms

First, the 3-D DART is compared to two reference transfornith \& noisy video ¢ = 42) in RGB colour representation
(figure[TO(H)):

o a 3-D undecimated Daubechies D8 wavelet scale 4 transfo2in [43],

o a 3-D dual tree complex wavelet scale 4 transform [27].

Denoising results are evaluated with a soft thresholdilgise as proposed in [27] and the same threshold is used for eac
subband of the three type of transforms (figlirk 10).

53-D views constructed with 3-D Slicer: http://www.sliag/
Shttp://www.its.bldrdoc.gov/vgeg/index.php
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TABLE IV
SIGNAL TO NOISERATES APPLIED ON EACH DENOISED COLOR COMPONENT OF A FRAMEN DB).

Noisy 3-D UDWT
SNRy SNR, SNR; SNR,
Red 5.88 27.42 10.84 32.09
Green 5.97 26.05 11.32 30.63
Blue 5.07 20.64 10.42 25.30
3-D dual tree transform 3-D DART
SNRy SNR, SNR; SNR,
Red 11.69 31.81 12.44 32.44
Green 12.17 30.39 13.09 31.18
Blue 11.78 25.54 13.22 26.70

(c) Extract from the video denoised with a 3-D (d) Extract from the video denoised with a 3-D (e) Extract from the video denoised with the 3-D
undecimated wavelet transform dual tree complex wavelet transform naive DART

Fig. 10. Images extracted from noisy and denoised videos

Denoising result with the 3-D dual tree complex wavelet (f&flio(d)) is perceptually better than with the 3-D undecéedat
wavelet decomposition (figufe_I0|(c)). Artefacts are preseroth 3-D transforms due to wavelet coefficient with impoit
information thresholding. These artefacts are not pressetite denoising result with the 3-D DART (figufe_I{(e)).

In order to make a more complete comparison, we study the SE&mcomputed after the denoising of five color videos.
Moreover, we use two numerical definitions for the SNR meastlre first SNR computation, noted SNRs extracted from
Vetterli and Kovacenic’s book [38] and the second SNR cormpor, noted SNR is a part ofwWaveLall. Table[I¥ illustrates
these measures.

The SNR calculations show that the 3-D DART is better than3He undecimated wavelet transform and the 3-D dual

tree complex wavelet transform. This simple experimeataiilustrates the fact that the 3-D DART is competitive fodeo
denoising.

C. Color denoising

We have studied the colour video denoising with the DART ivesal classical colour spaces :
o Red, Green and Blue : the most used in colour image procebsicguse of material dependance,

“Wavelab is a©Matlab toolbox available in http://www-stat.stanforcuédwavelab/
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(a) AFE2000 between an original image and a noisy (b) AFE2000 (c) AFE2p00 between an original image and a de-
image extracted of sequences. scale. noised image extracted of sequences.

Fig. 11. S-CIELABA FE5poo calculations.

« Hue, Saturation and Value : colour representation with isépd components more subjective,

o Y (luminance), Cb (blue chrominance) and Cr (red chromieandnternational standard dedicated image digital coding
o XYZ : correct some RGB defaults, the Y component is considex® the luminance of the incident spectra,

o Principle Components Analysis : projection of the voxelotolon the factoriel axis.

First studies have showed that RGB and YCbCr spaces are tteapbour representation for video denoising with the 3-D
DART. Similar conclusions are obtained in the 2-D case.

We illustrate two examples of denoising:

« Restoration of the less noisy video= 42 in RGB colour representation (figufel12).

« Restoration of the very noisy video= 264 in YcrCb colour representation (figuE€l13).

First, we can see in figulel2 that the quality of colours anddr forms perception are very encouraging for the colour
video denoising: colours in the video after the denoising ot debased. The rectilinear contours, those of the tnatheo
green hedge for example, are maintained and not destortlderfiore, we correctly restore zones containing smabaibj
for example the numbers on the calendar. The 3-D DART allawgrbcess the temporal evolution like contours.

Now, we propose to evaluate the robustness of our method veith noisy data (figur€&13(ayr = 264). The denoising
results (figurd—I3(b)) are correct with regard to the noigjewi colours and contours of the different animals are ctyre
restored. But with this level of noise, the calendar numiagesdifficult to read.

In order to evaluate the preserving of the original colouwirtyithe denoising process, we propose to use a perceptioalrco
measure. We have compared results using the S-CIELAB [¥B}yo calculations [45]-[47], a perceptual colour fidelity
metric. A highAEsqo between an original image and a processed image correspgmadsimportant colorimetric difference.

We have extracted a noisy image of less noisy video (fijuleah®)the corresponding denoised image by local-DART to
measure how accurate the reproduction of a colour is cordpgarene the original when viewed by a human observer. The
presented measures are calculated for an observer viggaimages at 47 cm away from a monitor displaying 72 dots per
inch.

In figure[TI({d), theA E4p00 between the original and the noisy image shows an imporeneeptual colour difference mainly
on colours close to white and on detailed zones like the dalen

The AE50 is better on denoised homogeneous coloured zones (figurg) likewise on colours close to white. The
calendar is more perceptually correctly restored. Howélverrestored calendar numbers are of low perceptual quality

The house roof on the calendar, composed of straights, isarogctly restored. The rectilinear forms correspond tmeo
discrete analytical ridgelet coefficients a part of whicls baen thresholded.

These perceptual colour difference results show that wedagpthe human observer perception of videos denoised with
the 3-D DART.

VII. CONCLUSION

So far, the development of the 2-D discrete ridgelet tramsfbas been investigated by three teams in previous works. In
this paper, we have proposed an implementation of the 3-@eléd transform. Our innovative choice is to extend theeldy
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transform to 3-D by using the formalism of the discrete atiedy geometry theory in the Fourier domain. We thus define a
3-D discrete ridgelet transform: the 3-D Discrete AnalgtiRidgelet Transform (3-D DART). In this paper, we have megd
two strategies to implement the 3-D Discrete Analyticaldrilgt Transform: 3-D discrete radial lines going through ehigin
defined from their orthogonal projections and 3-D planeseoed with 2-D line segments. The two 3-D DART algorithms are
easy to implement. It provides an exact reconstruction gntgpthe 3-D DART followed by a reverse 3-D DART is a one-
to-one transform. Our experiments have shown that our @gpres based on a geometrically faithful notion of ridgeléte
associated 3-D discrete Radon decomposition of an arrayiodmg a single nonzero entry follows a broken line. Morenby
using the analytical formalisation, we define a flexible &gy transform: we can define different 3-D DART decomposi
according to the arithmetical thickness of the analytidatikte lines.

We have illustrated the performances of the DART for demgigiroblems with Gaussian noise. This study indicates that
the DART and the Local-DART thresholding are outstandinghie 3-D image denoising and enable an effective denoising of
a colour video, even with very noisy videos.

This work can be extended to several directions. One of ther#iical questions in discrete geometry is the problem of
defining an arithmetical thickness 3-D function that pregda smaller redundancy and a cover of the Fourier cube. $his i
still an open and difficult arithmetical problem. One of theshimportant interests of the discrete analytical apgidadhe
possibility to easily extend our work to n-D (we are inveatigg the application of a 4-D DART to the denoising procelss o
animated 3-D images). We propose to extract the Fourieffictgfts along a n-D discrete analytical line going throulgé t
origin. The principle of the n-D method is the same as in tHe Gse with the same properties (exact reconstructionditgpi
flexible definition). The choice of colour basis for the desiog problematic remains an opened problem through.

APPENDIX |
2-D DISCRETEFOURIER SPECTRA COVERING WITH2-D DISCRETE ANALYTICAL LINES

Proposition 2 :

Let a square lattice be defined &%, = [N, N] x [-M, M]. Let us consider the set of directiorg,,, ¢.,) with, for
0<m<2N, (Pm,qm) = (N,m — N) and for2N + 1 < m < 4N — 2, (pm,qm) = (m —3N + 1, N). The set of all the
closed lines defined bBy,, f1 + gm f2| < wm/2 With w,, > sup(|pwl, lgm|) provides a complete cover of the latti€; .

Proof :

The proof of this proposition is obvious because of a wellinaesult in discrete analytical geometry that states thdosed
discrete line of directior{p, ¢) is connected if and only ifo > sup(|p|, |¢|) [30]. For thinner (non connected) discrete lines,
with values ofw < sup(|pl, |¢|), it is possible but not certain that we also achieve a coraglever of the latticé3, depending
on the value ofv compared taV. However, for our applications, we preferred working witthoected discrete lines.
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