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In section II, we will present the ridgelet transform. In section III, we will define the 3-D discrete analytical Radon transform with two geometrical approaches. In section IV, we will present the 3-D Discrete Analytical ridgelet Transform. In order to illustrate the performances of the 3-D DART, we have applied our transform and its local extension to the denoising of some 3-D images in section V and colour videos in section VI.

II. THE RIDGELET TRANSFORM

A. The Continuous Ridgelet Transform

The 2-D continuous ridgelet theory is documented in the Ph.D. thesis of Candès [START_REF] Candès | Ridgelets : Theory and applications[END_REF]. The ridgelet transform of f ∈ L 2 R 3 1 is extended to 3-D case by [START_REF] Querre | Analysis of the galaxy distribution using multiscale methods[END_REF]- [START_REF] Donoho | Fast X-ray and beamlet transforms for three-dimensional data[END_REF]:

r (a, b, θ, γ) = R 3 ψ a,b,θ,γ (x) f (x) dx (1) 
with x = (x 1 , x 2 , x 3 ).
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The ridgelet 3-D function ψ a,b,θ,γ is defined from a wavelet 1-D function ψ, b ∈ R is the translation parameter, a ∈ R * + is the dilatation parameter and θ ∈ [0, 2π[, γ ∈ [0, π[ are the direction parameters: ψ a,b,θ,γ : R 3 → R

(2) ψ a,b,θ,γ (x 1 , x 2 , x 3 ) =

(3)

ψ x 1 cos θ cos γ + x 2 sin θ cos γ + x 3 sin γ -b a (4) 
The function ψ a,b,θ,γ is oriented at the angles θ and γ and is constant along lines:

x 1 cos θ cos γ + x 2 cos θ sin γ + x 3 sin θ = cst.

(

) 5 
As for the 2-D case, a basic tool to calculate ridgelet coefficients is to view the ridgelet analysis as a wavelet analysis in the Radon domain. The 3-D Radon transform of f noted R f is defined as:

R f (t, θ, γ) = R 3 f (x)
δ (x 1 cos θ cos γ + x 2 cos θ sin γ + x 3 sin θ -t) dx [START_REF] Starck | Analysis of the spatial distribution of galaxies by multiscale methods[END_REF] with δ is Dirac's delta function defined by:

δ(x) = 0 ∀x = 0 (7) ∞ -∞ δ(x) = 1 (8) 
The ridgelet coefficients r f of f are given by the 1-D wavelet transforms on projections of the Radon transform R f where the directions θ, γ are constant and t is varying:

r(a, b, θ, γ) = R ψ a,b (t) R f (t, θ, γ) dt (9) 
The 3-D continuous Radon transform can be defined using 1-D projections of a 3-D object f where these projections are obtained by integrating f on a plane [START_REF] Averbuch | 3D Fourier based discrete Radon transform[END_REF]. The 3-D continuous Radon transform of an object is related to its 3-D Fourier transform via the central slice theorem: R f (t, θ, γ) = R f (ξ cos θ cos γ, ξ cos θ sin γ, ξ sin θ) e jξt dξ [START_REF] Matus | Image representation via a finite Radon transform[END_REF] with f the 3-D Fourier transform of f .

B. The Discrete ridgelet transform

As we have seen, a basic strategy to calculate the continuous ridgelet transform is first to compute the Radon transform R f and secondly, to apply a 1-D wavelet transform to the slices R f (., θ, γ). The discrete procedure uses the same principle.

The discrete wavelet decomposition is easy to implement and, when associated with a filter bank [START_REF] Mallat | A theory for multiresolution signal decomposition : the wavelet transform[END_REF], is stable and invertible. It can be associated with a discrete orthogonal representation.

The discretization of the Radon transform is more difficult to achieve. The majority of methods proposed in literature, for the 2-D case, have been devised for computerized tomography or to approximate to the continuous formula [START_REF] Matus | Image representation via a finite Radon transform[END_REF]- [START_REF] Bronstein | Reconstruction in diffraction ultrasound tomography using non-uniform FFT[END_REF]. But, none of them were specifically designed to be invertible transforms for discrete images and cannot be used for the discrete ridgelet transform. Some articles have recently studied the implementation of the digital 2-D ridgelet transform using two different approaches to compute the discrete Radon transform: the spatial strategy (summations of image pixels over a certain set of lines) and the Fourier strategy.

Do and Vetterli proposed in [START_REF] Do | Image denoising using orthonormal finite ridgelet transform[END_REF], [START_REF]The finite ridgelet transforms for image representation[END_REF] an orthonormal ridgelet transform with the implementation of the finite Radon transform. This Radon transform integrates over lines (that are defined algebraically rather than geometrically) with points that can be rather arbitrarily spread out over the spatial domain. The finite ridgelet transform is not redundant2 but has constraints on the size of images.

The Fourier strategy for digital Radon transform is based on the projection-slice formula suggesting that approximate Radon transforms for digital data can be based on Discrete Fourier transforms. This is a widely used approach in the literature of medical imaging and synthetic aperture radar imaging. In this strategy too, discrete lines must be defined. The two Stanford's university algorithms [START_REF] Averbuch | Fast slant stack: A notion of Radon transform for data in a cartesian grid which is rapidly computible, algebraically exact, geometrically faithful and invertible[END_REF], [START_REF] Starck | The curvelet transform for image denoising[END_REF] consist in substituting the sampled value of the Fourier transform obtained on the square lattice with sampled value of s on a polar lattice. In [START_REF] Averbuch | Fast slant stack: A notion of Radon transform for data in a cartesian grid which is rapidly computible, algebraically exact, geometrically faithful and invertible[END_REF], Averbuch et Al proposed the Fast Slant Stack based on a chirp-Z transform which requires an iterative approximation algorithm for the inverse transform. In [START_REF] Starck | The curvelet transform for image denoising[END_REF], Starck et al proposed to use a simple nearest-neighbor interpolation scheme.

In [START_REF] Carré | Ridgelet transform based on Réveillès discrete lines[END_REF] and [START_REF] Carré | Discrete Analytical Ridgelet Transform[END_REF], Carré and Andres proposed to define the discrete lines with discrete analytical geometry in the 2-D Fourier domain. This solution allows them to have different ridgelet decompositions according to the arithmetical thickness of the discrete lines. The transformation is redundant but the repetition of information depends on the type of the discrete lines used and can be adapted to the application. Moreover this method is associated with a non-iterative inverse algorithm that gives an exact reconstruction. In this paper, we present the extension of the 2-D discrete strategy to the 3-D space to define a reversible 3-D discrete ridgelet transform. Preliminar results of this study are presented in [START_REF] Helbert | La transformée ridgelet analytique discrète 3D[END_REF], [START_REF] Carré | 3-D fast ridgelet transform[END_REF].

In the literature, some 3-D discrete Ridgelet transforms, or associated representations such as Curvelet and Beamlet, have been recently proposed:

• Querre, Starck, Donoho et al. proposed an extension of their 2-D strategy [START_REF] Querre | Analysis of the galaxy distribution using multiscale methods[END_REF]- [START_REF] Donoho | Fast X-ray and beamlet transforms for three-dimensional data[END_REF]. In the Fourier domain, a cartesianto-spherical conversion is used: they define for this an interpolation scheme that substitute the sampled values on the cartesian system with sampled values in a spherical system. Since the aim of these papers is to develop tools for analysis of 3-D data (for example, Querre et al. have proposed a 3-D extension of discrete ridgelet transform in [START_REF] Querre | Analysis of the galaxy distribution using multiscale methods[END_REF] to present a statistical tool to describe galaxy distribution) the interpolation scheme is not presented and the inversion is not discussed. • Averbuch et al [START_REF] Averbuch | 3D Fourier based discrete Radon transform[END_REF], [START_REF] Averbuch | 3D discrete x-ray transform[END_REF] have recently proposed an extension of the Fast Slant Stack to the 3-D case. They use the same strategy than Starck, Donoho et al, but they define and study a very complete interpolation scheme in the Fourier domain. As for the 2-D case, they use the fractional Fourier transform and they obtained the same properties than for the 2-D transform (algebraic exactness, geometric fidelity and parallels with continuum theory). However even though the invertibility of the decomposition is shown, no reconstruction algorithm is given (it is not defined so far in 3-D).

All these decompositions are right now used for 3-D image structure analysis but not for video denoising because of the difficult inversion problem.

Other 3-D discrete multiscale transforms have been recently proposed:

• Selesnick proposed an extension to the 3-D case of the dual tree complex wavelet transform [START_REF] Selesnick | Video denoising using 2d and 3d dual-tree complex wavelet transforms[END_REF]. With this new decomposition, a denoising strategy is defined and applied on video. A c Matlab toolbox for 3-D oriented transforms is available on http://taco.poly.edu/WaveletSoftware/. This 3-D oriented transform isolates motion in different directions in separate subbands and can also represent motion information. • Ying et al. have proposed very recently a 3-D discrete Curvelet transform [START_REF] Ying | 3d discrete curvelet transform[END_REF]. Contrary to the previous implementations of Curvelet that used the Ridgelet transform [START_REF] Starck | The curvelet transform for image denoising[END_REF], they propose two direct implementations based on localizing windows in the Fourier domain. The first strategy uses the unequispaced FFT (with an interpolation process) and requires an iterative reconstruction algorithm. The second implementation is based on the wrapping of Fourier samples. In this case, the inverse transform is computed as the adjoint of the forward transform. • Lu and Do proposed a family of filter banks, named 3-D directional filter banks [START_REF] Lu | 3-d directional filter banks and surfacelets[END_REF], that decomposes a 3-D signal into directional subbands with a tree structured construction. They also proposed an multiresolution transform, named the surfacelet transform, by combining the 3-D directional filter banks with the Laplacian pyramid.

In this paper, the 3-D dual tree complex wavelet transform and the 3-D undecimated wavelet transform are used as a reference 3-D transform to compare denoising results with the 3-D DART in section VI.

III. THE 3-D DISCRETE ANALYTICAL RADON TRANSFORM

A. Principles of the 3-D Discrete Radon Transform

The discretization of the 3-D Radon transform is the extension of the 2-D discrete Radon transform method: 1) Compute the 3-D Discrete Fourier Transform of f , 2) Extract Fourier coefficients that belong to straight lines L θ,γ going through the origin, 3) Compute the 1-D Discrete Fourier Transform on each line L θ,γ (defined for each value of the two angular parameters).

The idea (as proposed in [START_REF] Carré | Discrete Analytical Ridgelet Transform[END_REF], [START_REF] Carré | Ridgelet transform based on Réveillès discrete lines[END_REF] in 2-D case) is to represent each direction with an analytical 3-D discrete straight line in the Fourier domain.

For the 3-D discrete Radon transform, we need a discrete 3-D straight line that has a central symmetry and forms a "good" approximation of the corresponding Euclidian straight line (i.e. direction). Moreover, if our transform is to be perfectly invertible, the discrete 3-D straight lines need to cover all the Fourier domain (each point of the Fourier domain belongs to at least one discrete 3-D line).

Since none of the "classical" notions of discrete 3-D lines fits all of these conditions, we propose our own families of discrete 3-D lines with help of the discrete analytical geometry. An important body of theory is available in [START_REF] Réveillès | Géométrie discrète, calcul en nombres entiers et algorithmique[END_REF], [START_REF] Andres | Discrete linear objects in dimension n: The standard model[END_REF].

We propose two methods to define 3-D discrete lines covering all 3-D cubic lattice: 1) Cover the 3-D cubic lattice with 3-D discrete radial lines going through the origin defined from their orthogonal projections [START_REF] Carré | 3-D fast ridgelet transform[END_REF].

2) Cover the 3-D cubic lattice with a specific set of 3-D planes [START_REF] Helbert | La transformée ridgelet analytique discrète 3D[END_REF]. Each discrete plane is then being covered with a set of 2-D line segments.

In order to explain these two constructions, we first propose to review briefly the principle of 2-D discrete analytical lines.

B. 2-D Discrete Lines

The 2-D discrete lines that are used in the DART application are not classical discrete lines (which do not provide a central symmetry in the Fourier domain). Central symmetry is easily obtained by defining an analytical discrete lines from the cartesian point O(0, 0) to the cartesian point P (p, q) [START_REF] Réveillès | Géométrie discrète, calcul en nombres entiers et algorithmique[END_REF]:

L ωL (p,q) = (x, y) ∈ Z 2 |qx -py| ≤ ω L 2 (11) 
with (p, q) ∈ Z 2 the direction of the line and ω L , function of p and q, is called the arithmetical thickness. It allows us to control the redundancy of the transform and the topological properties of the discrete analytical lines (the discrete line connexity). For example, if ω L < max (|p| , |q|), the discrete line is not connected. Three different types of closed discrete lines have been tested:

• closed naive discrete lines: ω L = max (|p| , |q|). These lines (figure 1(a)) are the thinnest connected closed discrete lines.

They are 8-connected3 • closed Pythagorician lines: ω L = p 2 + q 2 . These lines (figure 1(b)) are 8-connected and offer a medium redundancy, between the naive and supercover lines. • supercover lines: ω L = |p| + |q|. These lines (figure 1(c)) are the thickest connected closed discrete lines that have been considered in our applications [START_REF] Andres | Discrete linear objects in dimension n: The standard model[END_REF]. They are the thinnest closed lines that are 4-connected and that cover the Euclidean line they approximate.
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C. Definition of 3-D Supercover Lines

First we propose to cover the 3-D cubic lattice with 3-D discrete lines. The supercover 3-D straight line is defined by the intersection of the extrusion of three orthogonal projections (figure 2). In the cartesian domain, the supercover 3-D discrete line L ω1,ω2,ω3 (p,q,r) linking the cartesian points O (0, 0, 0) and Q (p, q, r) is defined by: L ω1,ω2,ω3

(p,q,r) = π oxy (p, q, r) ∩ π oyz (p, q, r) ∩ π ozx (p, q, r) (12) 
with: At last, the set of discrete directions (p, q, r) for a complete representation has to be determined. The set of line segments must cover all the cubic lattice in the Fourier domain. For this, in the 2-D case we define the directions according to pairs of symmetric points from the boundary of the 2-D discrete Fourier spectra. We know from [START_REF] Carré | Ridgelet transform based on Réveillès discrete lines[END_REF] (this result is reviewed at appendix I) that if a discrete line L ωL (p,q) satisfies ω L ≥ max (|p| , |q|) then the set of all discrete analytical lines provides a complete cover of the lattice.

π oxy (p, q, r) = (x, y, z) ∈ Z 3 | |qx -py| ≤ ω 1 2 (13) 
π oyz (p, q, r) = (x, y, z) ∈ Z 3 | |ry -qz| ≤ ω 2 2 (14) π ozx (p, q, r) = (x, y, z) ∈ Z 3 | |pz -rx| ≤ ω 3 2 (15 
We propose to generalize this strategy and the set of discrete directions (p, q, r) for a complete representation is determined according to pairs of central symmetric points from the boundary of the 3-D Fourier domain.

Figure 3 shows how the 3-D discrete lines that cover the 3-D Fourier domain are chosen. As this 3-D discrete analytical lines is not always connected, the 3-D Fourier spectra is not always covered.

O(0, 0, 0) Q(p, q, r) If π oxy (p, q, r), π oyz (p, q, r) and π ozx (p, q, r) are 2-D supercover lines, then L ω1,ω2,ω3

(p,q,r)
is the supercover of the 3-D Euclidian line OQ (figure 4(c)), studied in discrete analytical geometry [START_REF] Andres | Discrete linear objects in dimension n: The standard model[END_REF]. However, experience shows that if ω 1 < |p|+|q|, ω 2 < |q|+|r| and ω 3 < |r| + |p|, then the discrete 3-D analytical lines L ω1,ω2,ω3 (p,q,r)

is not necessary connected (figures 4(a) and 4(b)) and thus the 3-D Fourier domain is not always entirely covered. The following proposition shows that the supercover lines always cover the cubic lattice.

Proposition 1 :

Let a cubic lattice be defined as

Ω 3 N = [-N, N ] × [-N, N ] × [-N, N ]. The supercover 3-D lines L |p|+|q|,|q|+|r|,|r|+|p| (p,q,r)
provides a complete cover of the lattice Ω 3 N .

Proof :

Let's consider a point A of the cubic lattice Ω 3 N , and O(0, 0, 0) the center of Ω 3 N . We will demonstrate that A is element of a supercover line. Let's suppose that the line OA intersects the border of Ω 3 N in a point B(x B , y B , N ) with (x B , y B ) ∈ R 2 (all the others cases are symetric). The supercover line of 3-D straight line L noted noted S(L) can also be defined by [START_REF] Wagner | An approach to discretization based on the Hausdorff metric[END_REF]:

S(L) = k ∈ Z n d ∞ (k, L) ≤ 1 2 (16) = L ⊕ B ∞ 1 2 ∩ Z n ( 17 
)
where , ω 2 = max(q, r),ω 3 = max(r, p), (b) closed pythagorician:

⊕ is the Minkowski sum, d ∞ (x, y) = sup 1≤i≤n |x i -y i |, x = {x 1 ,
ω 1 = p p 2 + q 2 , ω 2 = p q 2 + r 2 , ω 3 = p r 2 + p 2 (c) supercover: ω 1 = |p| + |q|, ω 2 = |q| + |r|, ω 3 = |r| + |p|.

D. Method Based on the Extrusion of Discrete 2-D Analytical Lines

This method has been first proposed in [START_REF] Helbert | La transformée ridgelet analytique discrète 3D[END_REF], [START_REF] Carré | 3-D fast ridgelet transform[END_REF]. The idea is to use covering properties that we have in 2-D to define discrete 3-D lines preserving these properties: cover the 3-D cubic lattice with a specific set of 3-D planes and each discrete plane is then being covered with a set of 2-D line segments.

To compute a discrete plane P ωP [r,s] for our application [START_REF] Andres | Discrete analytical hyperplanes[END_REF], we need to define the analytical 2-D discrete line

L ωP [r,s] = (x, y) ∈ Z 2 |rx + sy| ≤ ωP 2
and the discrete plane is obtained by the extrusion of the analytical 2-D discrete line along the z-axis (the central plane axis is chosen arbitrarily).

Then, the 3-D cubic lattice is covered with discrete analytical 3-D planes defined by the following equation (figure 5):

P ωP [r,s] = (x, y, z) ∈ Z 3 |sx -ry + 0 • z| ≤ ω P 2 (18) 
where (r, s) ∈ Z 2 are the γ direction of the plane and ω P , function of r and s, is the arithmetical thickness. These planes have a central symmetry and are the analytical discretization of the Euclidean planes P γ : sx -ry + 0 • z = 0 for a given arithmetical thickness w P . Each 2-D line gives a 1-D row and all the lines provides a 2-D domain. This construction is illustrated in figure 6. We thus extract Fourier coefficients from P ωP [r,s] and we cover this 2-D domain with discrete 2-D analytical lines

L ωL [p,q] = (u, v) ∈ Z 2 |pu + qv| ≤ ωL 2
where (p, q) are the θ direction (this discrete 3-D line can be viewed as intersection of two orthogonal discrete planes). The lines are covered in a natural way as illustred in figure 6. In order to cover all the cubic lattice in the Fourier domain, we thus define the directions according to pairs of symmetric points from the boundary of:

• the plane {z = 0} for the planes P ωP 

E. Computation of the 3-D discrete analytical Radon transform

We have proposed two strategies to define 3-D discrete lines. Now, we can use the Fourier domain for the computation of our discrete Radon transform. For this, Fourier coefficients of f are extracted along the proposed 3-D discrete analytical lines and ordered in a natural way (as illustrated in figure 6):

Q ω Θ = Q ω1,ω2,ω3 [p,q,r] = ∪ k∈Z + f ν k 1 , ν k 2 , ν k 3 ( 19 
) with ν k 1 , ν k 2 , ν k 3 ∈ L ω1,ω2,ω3
(p,q,r)

for the 3-D construction or

Q ω Θ = Q ωL,ωP [p,q,r,s] = ∪ k∈Z + f ν k 1 , ν k 2 , ν k 3 ( 20 
)
with ν k 1 , ν k 2 , ν k 3 ∈ (L ωL (p,q) ∩ P ωP (r,s) ) for the plane-line construction and we take the 1-D inverse discrete Fourier transform of Q on each value of the direction Θ.

The sampling of the extracted Fourier coefficients depends on the 3-D discrete analytical lines used to compute the discrete Radon transform. The 1-D inverse Fourier transform is computed on non-equispaced Fourier coefficients and we need an approximation to the Fourier transform for non-equispaced data or for the computation of the polar Fourier transform [START_REF] Toft | The Radon transform, theory and implementation[END_REF], [START_REF] Fourmont | Non-equispaced fast fourier transforms with applications to tomography[END_REF], [START_REF] Bronstein | Reconstruction in diffraction ultrasound tomography using non-uniform FFT[END_REF], [START_REF] Natterer | Numerical methods in tomography[END_REF], [START_REF] Potts | Fast Fourier transforms for nonequispaced data: a tutorial[END_REF]. In 2-D, none of these methods were specifically conceived to be invertible and the alternative approaches proposed [START_REF] Averbuch | Fast slant stack: A notion of Radon transform for data in a cartesian grid which is rapidly computible, algebraically exact, geometrically faithful and invertible[END_REF], [START_REF] Averbuch | 3D discrete x-ray transform[END_REF] use an iterative method. In this paper, we want to define a 3-D discrete ridgelet transform that is fast, simple and associated with an exact reconstruction. We consider that the 3-D discrete analytical lines are a good approximation of the Euclidian lines for each line direction and we use a classical discrete Fourier transform defined for equispaced coefficients (for the 2-D case, a similar approach is used in [START_REF] Starck | The curvelet transform for image denoising[END_REF] and [START_REF] Carré | Ridgelet transform based on Réveillès discrete lines[END_REF]).

Figure 7 shows projections of an image of size (55×55×55) with one white voxel at coordinates [START_REF] Carré | 3-D fast ridgelet transform[END_REF][START_REF] Potts | Fast Fourier transforms for nonequispaced data: a tutorial[END_REF][START_REF] Potts | A new linogram algorithm for computerized tomography[END_REF]. 

It

F. Reconstruction of the 3-D Discrete Radon Transform

Our analytical reconstruction procedure works as follows: 1) Compute the 1-D Fourier transform for each set R f (., Θ, γ); 2) Substitute the sampled value of f on the lattice where the points fall on 3-D discrete lines with the sampled value of f on the cubic lattice; 3) Apply the 3-D inverse Fourier transform.

Due to the redundancy, some Fourier coefficients belong to more than one discrete line. In this case, the Fourier value is defined by the mean average. The number of times a pixel belongs to a discrete line depends of the frequency (it is more important at low frequencies) and depends of the type of discrete lines.

The 3-D DART followed by its inverse is a one-to-one transform. It provides an exact reconstruction properties if the set of directions of lines provides a complete cover of the cubic lattice:

• With the discrete Radon transform defined with 3-D discrete lines method, the 3-D discrete Radon transform is thus perfectly invertible if the 3-D analytical discrete lines are 3-D supercover lines; • With the discrete Radon transform defined with discrete planes and 2-D discrete lines, the 3-D Fourier domain is always covered by the analytical 3-D discrete lines for all the presented thickness (ω(p, q) ≥ max (|p| , |q|)). This transform is thus always perfectly revertible.

IV. THE 3-D DISCRETE ANALYTICAL RIDGELET TRANSFORM

A. Definition of the 3-D DART

For the ridgelet transform, we must take a 1-D wavelet transform along the radial variable in Radon space. The choice of a discrete one-dimensional wavelet transform is discussed for the 2-D case by Starck et al. in [START_REF] Starck | The curvelet transform for image denoising[END_REF]. The choice of the type of 1-D wavelet transform depends on the goal of the transform. This wavelet transform can be decimated (DWT) or undecimated (UDWT) and the wavelet base can be adapted according to the application, as with the classical wavelet decomposition. In this article, we illustrate the 3-D ridgelet transform with denoising applications. We thus propose to use an undecimated wavelet transform.

Because of decimation after filtering, the Mallat's decomposition is completely time-variant. A way to obtain a time-invariant system is to compute all the integer shifts of the signal. Since the decomposition is not decimated, filters are dilated between each projection. This algorithm presents many advantages, particularly a knowledge of all wavelets' coefficients: coefficients removed during the downsampling are not necessary for a perfect reconstruction, but they may contain useful information for denoising.

B. Redundancy of the 3-D Discrete Analytical Ridgelet Transform

The redundancy factor of 3-D DART representation depends on the 3-D discrete analytical lines used to define the Discrete Radon transform and the type of wavelet transform.

As stated, the thickness parameters allow us to control the redundancy factor of the transform and to adapt it to a given application. Table I shows the different redundancy factor, computed by experimentation, in function of the discrete Radon transform strategies and the object thicknesses. As for the two discrete Radon transform strategies, the voxels covering low frequencies in the Fourier domain belong to more discrete lines than those covering the higher frequency. The redundancy is concentrated mainly in low frequencies.

We can introduce additional redundancy with the wavelet decomposition by using a Undecimated Discrete Wavelet Transform. We increase the factor by the scale number of the UDWT. The redundancy factor of the 3-D DART depends on the wavelet decomposition choice and the scale number (Table II). The most important 3-D DART redundancy factor is obtained with 3-D discrete planes, 2-D discrete lines and an UDWT. For example, this factor is close to 50 with a undecimated wavelet scale 4 decomposition. 

C. Complexity of the 3-D Discrete Analytical Ridgelet Transform

Let us compute the algorithmic complexity of performing a 3-D Discrete Analytical Ridgelet Transform. We review briefly the algorithm: first, a 3-D discrete Fourier transform is computed on a 3-D image of size (M × M × M ). The computation of the 3-D DART can also use the fast Fourier transform of complexity O(n log n). Consequently, the total complexity becomes O(M 6 log M ) or O(N 2 log N ) with N the number of samples. We can remark that the complexity of our algorithm depends on the complexity of the Fourier transform.

Algorithms have been developped with c Matlab software on a AMD Athlon TM 64 2800+ single processor and a GNU/Linux system. The 3-D DART, using naive planes, 2-D naive discrete lines and an undecimated wavelet scale 4 decomposition, is computed in 32 seconds for a 3-D image of size (63 × 63 × 63) and uses 33.4 Mega-octets with 64-bit data. It is computed in 342 seconds for a 3-D image of size (127 × 127 × 127) and uses 276 Mega-octets with 64-bit data.

D. Definition of the 3-D Local-DART

The ridgelet transform can be easily extended to a local transform by a smooth partitioning: in 2-D, the image is smoothly windowed into squares and we analyse each square by the ridgelet transform. The local ridgelet transform is used to introduce redundancy in 2-D image restorations and to process locally 2-D image contours. For this decomposition, the analysis is better localized in the spatial domain. This property eliminates the parasitic lines present in the ridgelet reconstruction due to the selection of an important contour in an area of the image [START_REF] Starck | The curvelet transform for image denoising[END_REF].

The 3-D DART can be easily extended to a local transform by the smooth partitioning windowed into cubes. Each cube is analysed by the DART.

To define the smooth partitioning, we have adapted the method detailed in [START_REF] Starck | The curvelet transform for image denoising[END_REF] to our discrete transform. In 1-D, the interpolation of a point value f (i) from its two 1-D block values B 1 (i 1 ), B 2 (i 2 ) of size l = b+1 2 with i 1 ≥ l and i 2 = i 1 -l+1 (figure 8) is defined by:

f (i) = Ω i 2 l B 1 (i 1 ) + Ω 1 - i 2 l B 2 (i 2 ) (21) 
with Ω (x) = cos 2 πx 2 and respect the symmetry property Ω (x) + Ω (1 -x) = 1. We calculate a voxel value f (i, j, k) from its eight 3-D block values of size l×l×l with l = b+1 2 :

B 1 (i) B 2 (i) Ω 1 `i l ´Ω2 `i l í1 i 2
B 1 (i 1 , j 1 , k 1 ), B 2 (i 1 , j 1 , k 2 ), B 3 (i 1 , j 2 , k 1 ), B 4 (i 1 , j 2 , k 2 ), B 5 (i 2 , j 1 , k 1 ), B 6 (i 2 , j 1 , k 2 ), B 7 (i 2 , j 2 , k 1 ), B 8 (i 2 , j 2 , k 2 ) with i 1 , j 1 , k 1 ≥ l and i 2 = i 1 -l + 1, j 2 = j 1 -l + 1, k 2 = k 1 -l + 1 such as: f a,b k = Ω k 2 l B a (i 1 , j 1 , k 1 ) (22) 
+ Ω 1 - k 2 l B b (i 1 , j 1 , k 2 ) (23) 
where a and b are the block numbers ((a, b) = (2n + 1, 2n + 2) n=0...3 ) and:

f j,1 = Ω j 2 l f 1,2 k + Ω 1 - j 2 l f 3,4 k (24) 
f j,2 = Ω j 2 l f 5,6 k + Ω 1 - j 2 l f 7,8 k (25) 
f (i, j, k) = Ω i 2 l f j,1 + Ω 1 - i 2 l f j,2 (26) 
The local-DART also introduces redundancy. This 3-D partitioning with cubic block increases the redundancy:

ρ = l * n L 3 = 2L -l + 1 L + L l 3 ( 27 
)
where L is the 3-D image size, l the block size and n the block number.

V. DENOISING APPLICATIONS

A. Principles

In order to illustrate the 3-D DART potentiality, we present synthetic image and video denoising with a classic denoising process.

The denoising procedure by ridgelet transform simply consists in thresholding the ridgelet coefficients and computing the inverse ridgelet transform. The thresholding is performed with the help of an undecimated method (UDWT) developped for the Daubechies D8 wavelet scale 4 decomposition [START_REF] Daubechies | Orthonormal bases of compactly supported wavelets[END_REF]. Let r f be the noisy undecimated ridgelet coefficients, we use the following hard-thresholding:

r f (a, b, Θ) = r f (a, b, Θ) if |r f (a, b, Θ)| ≥ ασ 0 otherwise (28) 
α can be defined as α = 2 log(N ) or as α = 3, and the variance σ is estimated using the absolute median of the wavelet decomposition's first scale of each radial projection [START_REF] Donoho | Wavelet shrinkage and W.V.D. : a 10-minute tour[END_REF].

In order to study precisely the result of the denoising algorithm with different types of discrete analytical lines we have generated an artificial 3-D object and added important white noise. With a more redundant decomposition (based on supercover discrete lines and planes) the denoising result is better than for a less redundant decomposition (naive 2-D lines and planes): in general the edge is reconstructed more precisely and the uniform areas are smoother. As in the wavelet decomposition, overcompletness provides advantages for denoising. Table III illustrates this phenomena: we present the mean SNR of five denoised videos with the three types of discrete analytical lines. We remarks that the more important thickness is, better the quality of denoising is in term of SNR that confirms the visual constatation. In order to obtain the 3-D images and videos denoising results presented in this paper, we propose to use the discrete Radon transform defined with naive planes and 2-D discrete naive lines. This choice indeed corresponds to the faster algorithm of our proposed methods. Moreover, it corresponds to the less redundant reconstructible decomposition and is associated to inferior performance since the overcompletness provides advantages for denoising.

We compare the denoising of different 3-D images by thresholding of the 3-D DART and of the 3-D undecimated wavelet decomposition. We use the Signal to Noise Rate4 (SNR) and the visual analysis to measure the performance. In order to make a more complete comparison, we study the SNR means computed after the denoising of five color videos. Moreover, we use two numerical definitions for the SNR measure: the first SNR computation, noted SNR 1 , is extracted from Vetterli and Kovacenic's book [START_REF] Vetterli | Wavelets and Subband Coding, ser. Signal Processing[END_REF] and the second SNR computation, noted SNR 2 , is a part of WaveLab 7 . Table IV illustrates these measures.

The SNR calculations show that the 3-D DART is better than the 3-D undecimated wavelet transform and the 3-D dual tree complex wavelet transform. This simple experimentation illustrates the fact that the 3-D DART is competitive for video denoising.

C. Color denoising

We have studied the colour video denoising with the DART in several classical colour spaces :

• Red, Green and Blue : the most used in colour image processing because of material dependance, 7 Wavelab is a c Matlab toolbox available in http://www-stat.stanford.edu/∼wavelab/ We illustrate two examples of denoising:

• Restoration of the less noisy video σ = 42 in RGB colour representation (figure 12).

• Restoration of the very noisy video σ = 264 in YcrCb colour representation (figure 13).

First, we can see in figure 12 that the quality of colours and linear forms perception are very encouraging for the colour video denoising: colours in the video after the denoising are not debased. The rectilinear contours, those of the train or the green hedge for example, are maintained and not destorted. Futhermore, we correctly restore zones containing small objects, for example the numbers on the calendar. The 3-D DART allows to process the temporal evolution like contours. Now, we propose to evaluate the robustness of our method with very noisy data (figure 13(a): σ = 264). The denoising results (figure 13(b)) are correct with regard to the noisy video: colours and contours of the different animals are correctly restored. But with this level of noise, the calendar numbers are difficult to read.

In order to evaluate the preserving of the original colour during the denoising process, we propose to use a perceptual colour measure. We have compared results using the S-CIELAB [START_REF] Zhang | A spatial extension of CIELAB for digital color image reproduction[END_REF] ∆E 2000 calculations [START_REF] Luo | The development of the CIE 2000 colour difference formula: CIEDE 2000[END_REF]- [START_REF] Luo | Further comments on CIEDE 2000[END_REF], a perceptual colour fidelity metric. A high ∆E 2000 between an original image and a processed image corresponds to an important colorimetric difference.

We have extracted a noisy image of less noisy video (figure 12) and the corresponding denoised image by local-DART to measure how accurate the reproduction of a colour is compared to one the original when viewed by a human observer. The presented measures are calculated for an observer visualizing images at 47 cm away from a monitor displaying 72 dots per inch.

In figure 11(a), the ∆E 2000 between the original and the noisy image shows an important perceptual colour difference mainly on colours close to white and on detailed zones like the calendar.

The ∆E 2000 is better on denoised homogeneous coloured zones (figure 11(c)) likewise on colours close to white. The calendar is more perceptually correctly restored. However the restored calendar numbers are of low perceptual quality.

The house roof on the calendar, composed of straights, is not correctly restored. The rectilinear forms correspond to some discrete analytical ridgelet coefficients a part of which has been thresholded.

These perceptual colour difference results show that we improve the human observer perception of videos denoised with the 3-D DART.

VII. CONCLUSION

So far, the development of the 2-D discrete ridgelet transform has been investigated by three teams in previous works. In this paper, we have proposed an implementation of the 3-D ridgelet transform. Our innovative choice is to extend the ridgelet transform to 3-D by using the formalism of the discrete analytical geometry theory in the Fourier domain. We thus define a 3-D discrete ridgelet transform: the 3-D Discrete Analytical Ridgelet Transform (3-D DART). In this paper, we have proposed two strategies to implement the 3-D Discrete Analytical Ridgelet Transform: 3-D discrete radial lines going through the origin defined from their orthogonal projections and 3-D planes covered with 2-D line segments. The two 3-D DART algorithms are easy to implement. It provides an exact reconstruction property: the 3-D DART followed by a reverse 3-D DART is a oneto-one transform. Our experiments have shown that our approach is based on a geometrically faithful notion of ridgelets: the associated 3-D discrete Radon decomposition of an array containing a single nonzero entry follows a broken line. Moreover, by using the analytical formalisation, we define a flexible ridgelet transform: we can define different 3-D DART decompositions according to the arithmetical thickness of the analytical discrete lines.

We have illustrated the performances of the DART for denoising problems with Gaussian noise. This study indicates that the DART and the Local-DART thresholding are outstanding in the 3-D image denoising and enable an effective denoising of a colour video, even with very noisy videos.

This work can be extended to several directions. One of the theoretical questions in discrete geometry is the problem of defining an arithmetical thickness 3-D function that provides a smaller redundancy and a cover of the Fourier cube. This is still an open and difficult arithmetical problem. One of the most important interests of the discrete analytical approach is the possibility to easily extend our work to n-D (we are investigating the application of a 4-D DART to the denoising process of animated 3-D images). We propose to extract the Fourier coefficients along a n-D discrete analytical line going through the origin. The principle of the n-D method is the same as in the 3-D case with the same properties (exact reconstruction, rapidity, flexible definition). The choice of colour basis for the denoising problematic remains an opened problem through. 

Proof :

The proof of this proposition is obvious because of a well known result in discrete analytical geometry that states that a closed discrete line of direction (p, q) is connected if and only if ω ≥ sup(|p|, |q|) [START_REF] Réveillès | Géométrie discrète, calcul en nombres entiers et algorithmique[END_REF]. For thinner (non connected) discrete lines, with values of ω < sup(|p|, |q|), it is possible but not certain that we also achieve a complete cover of the lattice Ω 2 N depending on the value of ω compared to N . However, for our applications, we preferred working with connected discrete lines. 

Fig. 1 .

 1 Fig. 1. The analytical 2-D discrete lines: (a) closed naive (ω L = max (|p| , |q|)), (b) closed pythagorician (ω L = p p 2 + q 2 ) and (c) supercover (ω L = |p| + |q|).

  ) qx-py = 0 is the 2-D discrete line equation linking (0, 0) and (p, q), result from the orthogonal projection of OQ on the plane Oxy. The analytical 3-D discrete line arithmetical thickness in the direction Ox, Oy and Oz is represented by ω 1 = |p| + |q|, ω 2 = |q| + |r| and ω 3 = |r| + |p|. (p, q, r) ∈ Z 3 is the direction of the line (and corresponds to the (θ, γ) direction of Radon projection of equation 6).

Fig. 2 .

 2 Fig. 2. A 3-D supercover line with this three orthogonal projections [31].

Fig. 3 .

 3 Fig. 3. Covering of the 3-D Fourier domain with 3-D discrete lines: definition of different 3-D Euclidian lines according to the central symmetry and extremity coordinates.

  Fig. 4. 3-D discrete lines: (a) closed naive: ω 1 = max(p, q), ω 2 = max(q, r),ω 3 = max(r, p), (b) closed pythagorician: ω 1 = p p 2 + q 2 , ω 2 = p q 2 + r 2 , ω 3 = p r 2 + p 2 (c) supercover: ω 1 = |p| + |q|, ω 2 = |q| + |r|, ω 3 = |r| + |p|.

Fig. 5 .Fig. 6 .

 56 Fig. 5. (a) Choice of the discrete discrete lines L ω P [r,s] , (b) cover of the 3-D Fourier domain with Euclidian planes.

  [r,s] .• the plane P ωP [r,s] for the lines L ωL (p,q) .According to the 2-D domain, the 3-D Fourier domain is always covered by the analytical 3-D discrete lines if ω P ≥ max(|r|, |s|) and ω L ≥ max(|p|, |q|).

Fig. 7 .

 7 Fig. 7. Image projections R f (., ., γ) issued of the 3-D discrete analytical Radon transform function of spatial parameters of an image I(x, y, z).

1 2

 1 3-D Fourier coefficients are then extracted on each 3-D discrete analytical lines and a 1-D inverse discrete Fourier transform are computed along resulting coefficients to obtain Radon projections. Finally, a wavelet decomposition are computed on each projection. • The complexity of the 1-D direct/inverse discrete Fourier transform is O(n 2 ). The computation of the first step requires O(M 6 ) operations. In order to cover a 1-D discrete analytical lines we have O(M ) step, because the size of the line is M-and the algorithm of coefficient extraction is linear. • With the method based on 3-D discrete analytical lines, exposed in paragraph III-C, the 3-D spectra needs (M -1)(3M -1) 3-D supercover lines to be covered. The complexity of this step is (M -1)(3M -1)O(M ), namely O(M 3 ). • With the method based on discrete analytical planes and 2-D discrete analytical lines, exposed in paragraph III-D, the 3-D spectra needs 2M -1 discrete planes to be covered and each plane of size n 1 × n 2 requires n 1 + n 2 -1 2-D discrete lines to be covered. The size of a plane is equivalent to M × M . The complexity of this step is thus (2M -1) 2 O(M ), namely O(M 3 ). • For each discrete line, we compute a 1-D inverse transform Fourier of complexity O(n 2 ). The complexity of this step is thus (M -1)(3M -1)O(M 2 ), namely O(M 4 ). The discrete Radon transform then requires O(M 6 ) + O(M 3 ) + O(M 4 ) -→ O(M 6 ) operations for the first method and O(M 6 ) + O(M 3 ) + O(M 4 ) -→ O(M 6 ) for the second, that is to say O(M 6 ) for both of them. • The complexity of a decimated wavelet decomposition is O(n). The complexity of this step is thus (M -1)(3M -1)O(M ), namely O(M 3 ). Notice that if the wavelet decomposition is undecimated, its complexity is equal to O(n log n). The 3-D discrete analytical ridgelet transform therefore gives a total of O(M 6 ) operations. If N = M × M × M is the number of samples of the video then the complexity our algorithm is O(N 2 ).

Fig. 8 .

 8 Fig. 8. 1-D smooth windowing. The 3-D voxel calculation is the simple extension of the 1-D formulation in the 3-D space.

Fig. 10 .

 10 Fig. 10. Images extracted from noisy and denoised videos

  (a) ∆E 2000 between an original image and a noisy image extracted of sequences. (b) ∆E 2000 scale. (c) ∆E 2000 between an original image and a denoised image extracted of sequences.

Fig. 11 .

 11 Fig. 11. S-CIELAB ∆E 2000 calculations.

2 :

 2 APPENDIX I 2-D DISCRETE FOURIER SPECTRA COVERING WITH 2-D DISCRETE ANALYTICAL LINESProposition Let a square lattice be defined asΩ 2 N = [-N, N ] × [-M, M ]. Let us consider the set of directions (p m , q m ) with, for 0 ≤ m ≤ 2N , (p m , q m ) = (N, m -N ) and for 2N + 1 ≤ m ≤ 4N -2, (p m , q m ) = (m -3N + 1, N ). The set of all the closed lines defined by |p m f 1 + q m f 2 | ≤ ω m /2 with ω m ≥ sup(|p m |, |q m |) provides a complete cover of the lattice Ω 2 N .

Fig. 12 .Fig. 13 .

 1213 Fig. 12. Extracting of four images issued: (a) original colour video, (b) noisy colour video and (c) colour video denoised with the 3-D DART in RGB space.

  

TABLE I DISCRETE

 I RADON TRANSFORM REDUNDANCY TABLE.

	Discrete objets thick-	naive	pythagorician	supercover
	nesses			
	3-D discrete planes	3.9	4.9	9.7
	and 2-D discrete lines			
	3-D discrete analyti-	2.6	3.3	6.2
	cal lines			

TABLE II DISCRETE

 II RIDGELET TRANSFORM REDUNDANCY TABLE. L IS THE NUMBER OF SCALE

	Discrete objets thicknesses		Naive	Pythagorean		Supercover
	Wavelet scale L decomposition	DWT	UDWT	DWT	UDWT	DWT	UDWT
	3-D discrete planes and 2-D discrete lines	3.9	3.9×(L + 1)	4.9	4.9×(L + 1)	9.7	9.7×(L + 1)
	3-D discrete analytical lines	2.6	2.6×(L + 1)	3.3	3.3×(L + 1)	6.2	6.2×(L + 1)

TABLE III MEAN

 III SIGNAL TO NOISE RATES FOR DENOISINGS WITH DART DEFINED WITH DIFFERENT DISCRETE ANALYTICAL OBJECT THICKNESS (IN DB).

		Noise	Naive	Pythagorean	Supercover
	SNR	6.34	10.84	10.90	11.35

TABLE IV SIGNAL

 IV TO NOISE RATES APPLIED ON EACH DENOISED COLOR COMPONENT OF A FRAME (IN DB).

			Noisy	3-D UDWT
		SNR 1	SNR 2	SNR 1	SNR 2
	Red	5.88	27.42	10.84	32.09
	Green	5.97	26.05	11.32	30.63
	Blue	5.07	20.64	10.42	25.30
		3-D dual tree transform	3-D DART
		SNR 1	SNR 2	SNR 1	SNR 2
	Red	11.69	31.81	12.44	32.44
	Green	12.17	30.39	13.09	31.18
	Blue	11.78	25.54	13.22	26.70

Redundancy of the transform is defined by: ρ = number of transform coefficients number of image pixels

Two pixels P (xp, yp) and Q(xq, yq) are

4-connected if and only if |xp -xq| + |yp -yq| ≤ 1. P and Q are 8-connected if and only if max (|xp -xq|, |yp -yq|) ≤ 1.

The SNR computation is extracted from Vetterli and Kovacenic 's book[START_REF] Vetterli | Wavelets and Subband Coding, ser. Signal Processing[END_REF]. It is available in the Minh Do's FRIT c Matlab Toolbox, http://www.ifp.uiuc.edu/∼minhdo/software/frit toolbox.tar.gz

3-D views constructed with 3-D Slicer: http://www.slicer.org/

http://www.its.bldrdoc.gov/vqeg/index.php

B. Denoising of a synthetic image

The image is a synthetic cube of size (63 × 63 × 63) with 256 levels of grey (figures 9a). A white Gaussian noise is added to this 3-D image 5 (figure 9b) with as the Signal to Noise Ratio equal to 9.62 dB.

The SNR of the 3-D image denoised by the 3-D DART strategy (18.25 dB) is higher than that of the 3-D image denoised by an undecimated wavelet decomposition (13.45 dB). We can see (figures 9(c) and 9(d)) that the edge is more precisely reconstructed and that the uniform areas are smoother for the DART than for the UDWT. 

VI. COLOUR VIDEO DENOISING

A. Principle

Carré and Andres have studied colour image denoising with the 2-D DART [START_REF] Carré | Discrete ridgelet transform : application to the denoising of color images[END_REF], [START_REF] Helbert | Color image restoration on the 2-D discrete analytical ridgelet transform[END_REF]. We propose to extend our 3-D DART strategies0 to colour video denoising using the 3-D local DART. For this, we consider the video as a spatio-temporal volume and we apply the same denoising processing by the 3-D DART as the previous 3-D image denoising [START_REF] Carré | Ridgelet decomposition: discrete implementation and color denoising[END_REF].

The video is a sequence of 279 images of size (279 × 279) with their three-colour components (figure 12 (a)). It comes from the Video Quality Experts Group 6 (V.Q.E.G.) .

A Gaussian noise is added to the three-colour components of the video. The colour video is decomposed into three videos corresponding to the three-colour components. We independently denoise every component with the associated 3-D local Discrete Analytical Ridgelet Transform and we reconstruct the video with the inverse 3-D local-DART. The local denoising processing is applied to blocks of size (71 × 71 × 71).

Setting the size of the blocks is a difficult problem. The more 3-D blocks, the more the 3-D DART redundancy increases (and thus the better the denoising results are). However the size of block must not be too small to compute a wavelet decomposition on each projection with a satisfactory number of level and to conserve an algebraic exactness, a geometric fidelity. It is the same problem for all the windowed or local transforms (as spectrogram, Malvar Wavelet ...).

B. Comparison with other 3-D transforms

First, the 3-D DART is compared to two reference transforms with a noisy video (σ = 42) in RGB colour representation (figure 10(b)):

• a 3-D undecimated Daubechies D8 wavelet scale 4 transform [START_REF] Mallat | Characterization of signals from multiscale edges[END_REF], [START_REF] Shensa | Wedding the à trous and Mallat algorithms[END_REF],

• a 3-D dual tree complex wavelet scale 4 transform [START_REF] Selesnick | Video denoising using 2d and 3d dual-tree complex wavelet transforms[END_REF]. Denoising results are evaluated with a soft thresholding scheme as proposed in [START_REF] Selesnick | Video denoising using 2d and 3d dual-tree complex wavelet transforms[END_REF] and the same threshold is used for each subband of the three type of transforms (figure 10).