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1 INTRODUCTION  

Measurement of the mechanical properties of sound absorbing 
materials such as plastic foams and glass wools are shown to 
be complex due to frequency and dynamic strain dependances 
(Pritz 1986, Pritz 1994). This paper deals with mechanical re-
sponse of such materials in function of static and dynamic 
strains and frequency, in order to specify suitable experimental 
conditions. Anisotropy and validity of quasistatic hypothesis 
are discussed.  

2 DESCRIPTION OF THE MEASUREMENT SET-UP  

Measurement of mechanical properties of sound absorbing ma-
terials described by Biot theory is performed using a quasistatic 
set-up (Sahraoui et al. 2001a).  

The measurement set-up is depicted on figure 1. It is based 
on small amplitude sinusoidal compression of a cubic porous 
sample between two rigid plates. In order to insure the contact 
between the sample and the moving plate, sample is slightly 
strained. Then controlled amplitude harmonic excitation is per-
formed by a shaker. The quasistatic frequency range is re-
stricted to frequencies which are far below the resonance of the 
sample, typically from 1 Hz to 100 Hz. In this low frequency 
range, inertial and viscous coupling with the air are neglected. 

Applied force )(ωF , longitudinal displacement )(ωLu of 
the moving plate, and displacements at the centre of  lateral 
faces )(ωTu , )(' ωTu are monitored as function of frequency 
(Figure 1). Three transfer functions are computed:  
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are two displacements ratios, homogeneous to Poisson’s ratio. 
 
 

 
 

Figure 1. Mechanical properties measurement set-up. 
 
Calibration of measurement set-up is performed for )(ωK  

function by measuring frequency response of a reference spring 
of known stiffness and mass. Its damping is assumed to be 1%. 
Compensation of spring dynamic response is effective after 10 
Hz.  

 Calibration for )(ωT  function is performed by a simulta-
neous measurement of moving plate displacement by both 
transducers. 

3 CHARACTERISATION OF ACOUSTICAL POROUS 
MATERIALS 

The influence of experimental parameters is studied for two 
representative acoustical porous materials: a polymer foam and 
a rock wool. Acoustical parameters, according to Biot-Allard 
theory (Allard 1993), are given in table 1.  Samples are 40 mm 
thick cubes. 
 
 
Table 1. Acoustic parameters of tested materials. 
Material Porosity Resistivity 

N.s.m-4 
Tortuosity Density 

kg.m-3 
Polymer 
foam 

0.97 165 000 1.8 39.5 

Rock 
wool 

0.98 16 500 1.1 21 
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3.1 Influence of static and dynamic strain amplitude 

Sample stiffness is studied as a function of staticsε  and dy-
namic dε  strains, so that imposed strain is 

)sin()( tt ds ωεεε += . (3) 

First, the influence of the amplitude of dynamic strain is 
studied. Measurement is performed at 100 Hz for a static strain 
of 2%. Figure 2 shows results for polymer foam (grey squares): 
stiffness and loss factor are constant under 0.05 % dynamic 
strain. Then stiffness decreases and loss factor increases. The 
same behaviour is observed on figure 3 for rock wool. This 
confirms Pritz work (Pritz 1986, Pritz 1994) that mentions non 
linearity past 0.05 %. 

The influence of the amplitude of static strain is now stud-
ied. Measurement is performed at 100 Hz for 0.02% dynamic 
strain. Figure 2 shows results for polymer foam (black circles). 
First, stiffness increases quickly with static amplitude, as long 
as surface cells, damaged by cutting, are compressed. Then 
stiffness reaches a plateau, corresponding to linearity zone: re-
lated value is considered to be the actual stiffness of material. 
For higher amplitudes, stiffness decreases due to buckling of 
cells. In the same way, loss factor first decreases and then 
reaches a stable value considered as actual material loss factor.  

Figure 3 shows a different behaviour for fibrous material. 
Stiffness always increases without reaching a stable value, due 
to collapsing of fibres. No clear tendency is observed for loss 
factor. No linearity zone can be found.  

Measurement of stiffness and loss factor are performed us-
ing a dynamic strain less than 0.05 %. For polymer foam, static 
strain is increasing step by step in order to reach linearity zone. 
This procedure is repeated for every sample. For fibrous mate-
rial, measurement is performed using a static strain as close as 
possible to use conditions. 

 
 

 
 
Figure 2. Influence of dynamic (at static strain = 2%) and static 
strain (at dynamic strain = 0.02%) on measured stiffness and 
loss factor of polymer foam. 

 

 

 
 
Figure 3. Influence of dynamic (at static strain = 1.2%) and 
static strain (at dynamic strain = 0.085%) on measured stiffness 
and loss factor of rock wool. 

3.2 Anisotropy 

In order to analyse anisotropy of porous materials, cubic sam-
ples are tested. By positioning the sample according to each di-
rection, three triplets )(ωK , )(ωT , )(' ωT  are determined. 
If the three triplets are identical and )(ωT = )(' ωT  for each 
direction, the tested material is isotropic. Only in these condi-
tions, Young’s modulus and Poisson’s ratio can be determined. 
For a sample of base surface S and thickness L, they are related 
to functions of Poisson’s rationυ , )(υh and )(υg  by  

)()( υω gT = , (4) 
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These functions can be computed using a finite elements code. 
They are presented in figure 4 for a cubic sample. 
   

 
 
Figure 4. )(υh and )(υg functions. 

 
Measurements performed at LAUM show that polymer 

foams are anisotropic in most cases (Melon et al. 1998). Iso-
tropic law is then no more suitable. Axisymmetrical law is usu-
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ally assumed, but much more complicated to implement. For 
usual applications, Dauchez et al. show that isotropic law can 
give good results (Dauchez et al. 2000): a pseudo Young’s 
modulus and a pseudo Poisson’s ratio are determined from 
transfer functions measured in the direction corresponding to 
actual use of material. 

3.3 Frequency dependance of characteristics 

Frequency dependance of Young’s modulus and loss factor of 
polymer foams have been studied by various authors (Pritz 
1994, Mariez et al. 1997, Sfaoui 1995).  

Figure 5 and 6 present experimental results for an anisot-
ropic polymer foam. It is shown that frequency dependances 
are the same for each direction. Poisson’s ratio is real and con-
stant with frequency. These results confirm structural model 
prediction (Sahraoui et al. 2001b): Poisson’s ratio only depends 
on the microstructure of  material, whereas Young’s modulus 
and loss factor also depends on polymer characteristics. 

 
 

 
 
Figure 5. Longitudinal and transversal Young’s modulus and 
loss factors of polymer foam. 
 
 

 
 
Figure 6. Poisson’s ratios of  polymer foam.   

 
Fibrous materials have most of fibres parallel to the mate-

rial plane. Poisson’s ratio, determined from normal compres-
sion of material, is then close to zero (Sides et al., 1971) and no 
frequency dependant. Measurement of Young’s modulus and 
loss factor in the normal direction is presented in figure 7: they 
are not frequency dependant, as observed by Pritz (Pritz 1986). 
This result is valid only if fibres are not binding by a polymer 
agent.  

 
 

Figure 7. Young’s modulus and loss factor of rock wool 
(Shaded part corresponds to improper data due to insufficient 
transducer sensitivity).   

 

3.4 Validity of quasistatic hypothesis 

Quasistatic hypothesis are: dynamic influence of skeleton iner-
tia and influence of saturating fluid  can be neglected over the 
whole frequency range 1 Hz-100 Hz. These hypotheses are 
verified using a finite element code with poroelastic elements 
(Panneton et al. 1997). The experimental conditions are simu-
lated by: a clamped solid plate used as force sensor, a square 
base (S = 50 mm × 50 mm) porous sample of thickness h, a 
moving solid plate. Porous sample characteristics are:  porosity 
0.98,  resistivity 103 to 107 Nsm-4, tortuosity 1.3, density 30 
kg.m-3, Young’s modulus 100 kPa, loss factor 0.1, Poisson’s 
ratio 0.3, thickness 10 mm or 50 mm. Boundary conditions are 
: no transversal displacement of skeleton in contact with the 
plates, free displacement of the fluid and skeleton elsewhere. 
Fluid in the porous media is not loaded by external fluid.  

Figures 8 and 9 present predicted stiffness, normalized to 
base surface S and thickness h, for several air flow resistivities 
and for two thicknesses. Dynamic effect is shown mainly on 
real part and for thicker sample after 100 Hz: mechanical im-
pedance decreases near sample first resonance. Coupling effect 
with fluid can be shown after 10 Hz for strong resistivities 
higher than 106 Nms-4. Effect on real part corresponds to added 
stiffness, and effect on imaginary part corresponds to added 
damping. This latter effect comes to lower frequencies. 

For common materials and cubic samples, quasistatic hy-
pothesis is valid. Special care has to be taken for thin and very 
resistive materials. This fact is confirmed by a measurement 
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performed on a fibrous sample: diameter 44 mm, thickness 8.5 
mm, resistivity 240 kNsm-4. Figure 10 shows a sharp increasing 
loss factor after 10 Hz and of Young’s modulus after 50 Hz. 

 

  
 
Figure 8. Predicted stiffness )(ωK  for several air flow resis-
tivities (Nsm-4) of  50 mm thick porous sample.   

 
 

 
 

Figure 9. Predicted stiffness )(ωK  for several air flow resis-
tivities (Nsm-4) of  10 mm thick porous sample.   

 
 

 
 

Figure 10. Measured Young’s modulus and loss factor of 8.5 
mm thick fibrous material. 

 

4 CONCLUSION 

This paper addresses the measurement of mechanical proper-
ties of acoustical porous materials by quasistatic method. It is 
shown that this technique is well suited for common material 
up to 100 Hz. Restrictions occurs for thin samples of very high 
air flow resistivity and for fibrous material that do not exhibit a 
linear behaviour with static strain.  

In order to get properties at higher frequencies, time tem-
perature principle is being used for polymer foams (Etchessa-
har et al. 2002).  
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