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Stein's method and stohasti analysis of Rademaher funtionalsby Ivan Nourdin∗, Giovanni Peati† and Gesine Reinert‡Université Paris VI, Université Paris Ouest and Oxford UniversityAbstrat: We ompute expliit bounds in the Gaussian approximation of funtionals of in�nite Rade-maher sequenes. Our tools involve Stein's method, as well as the use of appropriate disrete Malliavinoperators. Although our approah does not require the lassial use of exhangeable pairs, we employ ahaos expansion in order to onstrut an expliit exhangeable pair vetor for any random variable whihdepends on a �nite set of Rademaher variables. Among several examples, whih inlude random variableswhih depend on in�nitely many Rademaher variables, we provide three main appliations: (i) to CLTsfor multilinear forms belonging to a �xed haos, (ii) to the Gaussian approximation of weighted in�nite
2-runs, and (iii) to the omputation of expliit bounds in CLTs for multiple integrals over sparse sets. Thislast appliation provides an alternate proof (and several re�nements) of a reent result by Blei and Janson.Key words: Central Limit Theorems; Disrete Malliavin operators; Normal approximation;Rademaher sequenes; Sparse sets; Stein's method; Walsh haos.2000 Mathematis Subjet Classi�ation: 60F05; 60F99; 60G50; 60H07.1 IntrodutionThe onnetion between Stein's method (see e.g. [7, 33, 38, 39℄) and the integration by partsformulae of stohasti analysis has been the objet of a reent and quite fruitful study. Thepapers [22, 23, 24℄ deal with Stein's method and Malliavin alulus (see e.g. [26℄) in a Gaussiansetting; in [25℄ one an �nd extensions involving density estimates and onentration inequalities;the paper [28℄ is devoted to expliit bounds, obtained by ombining Malliavin alulus andStein's method in the framework of Poisson measures. Note that all these referenes ontainexamples and appliations that were previously outside the sope of Stein's method, as theyinvolve funtionals of in�nite-dimensional random �elds for whih the usual Stein-type tehniques(suh as exhangeable pairs, zero-bias transforms or size-bias ouplings), whih involve pikinga random index from a �nite set, seem inappropriate.The aim of this paper is to push this line of researh one step further, by ombining Stein'smethod with an appropriate disrete version of Malliavin alulus, in order to study the normalapproximation of the funtionals of an in�nite Rademaher sequene. By this expression wesimply mean a sequene X = {Xn : n > 1} of i.i.d. random variables, suh that P (X1 = 1) =
P (X1 = −1) = 1/2. A full treatment of the disrete version of Malliavin alulus adopted in thispaper an be found in [31℄ or [32℄; Setion 2.5 below provides a short introdution to the mainobjets and results.
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The main features of our approah are the following:(i) We will be able to deal diretly with the normal approximation of random variables possiblydepending on the whole in�nite sequene X. In partiular, our results apply to randomelements not neessarily having the form of partial sums.(ii) We will obtain bounds expressed in terms of the kernels appearing in the haoti deom-position of a given square-integrable random variable. Note that every square-integrablefuntional of X admits a haoti deomposition into an orthogonal sum of multiple inte-grals.(iii) We employ the haoti expansion in order to onstrut an expliit exhangeable pair ve-tor for any random variable whih depends on a �nite set of Rademaher variables. Inpartiular, this exhangeable pair satis�es a linearity ondition in onditional expetationexatly, whih allows the normal approximation results from Reinert and Röllin [34℄ to beapplied.(iv) In the partiular ase of random variables belonging to a �xed haos, that is, having theform of a (possibly in�nite) series of multilinear forms of a �xed order, we will express ourbounds in terms of norms of ontration operators (see Setion 2.2). These objets alsoplay a entral role in the normal and Gamma approximations of funtionals of Gaussian�elds (see [22, 23, 24, 27℄) and Poisson measures (see [28, 29, 30℄). In this paper, weshall onsider kernels de�ned on disrete sets, and the orresponding ontration normsare integrals with respet to appropriate tensor produts of the ounting measure.The use of ontration operators in the normal approximation of Rademaher funtionalsseems to us a truly promising diretion for further researh. One striking appliation of thesetehniques is given in Setion 6, where we dedue expliit bounds (as well as a new proof) for aombinatorial entral limit theorem (CLT) reently proved by Blei and Janson in [4℄, involvingsequenes of multiple integrals over �nite �sparse� sets. In the original Blei and Janson's proof, therequired sparseness ondition emerges as an e�ient way of re-expressing moment omputationsrelated to martingale CLTs. In ontrast, our approah does not involve martingales or momentsand (quite surprisingly) the orret sparseness ondition stems naturally from the de�nition ofontration. This yields moreover an expliit upper bound on an adequate distane betweenprobability measures.Another related work is the paper by Mossel et al. [21℄, where the authors prove a generalinvariane priniple, allowing to ompare the distribution of polynomial forms onstruted fromdi�erent olletions of i.i.d. random variables. In partiular, in [21℄ a ruial role is playedby kernels �with low in�uenes�: we will point out in Setion 4 that in�uene indies are animportant omponent of our bounds for the normal approximation of elements of a �xed haos.In Setion 6.3, we also show that the ombination of the �ndings of the present paper with thoseof [21℄ yields an elegant answer to a question left open by Blei and Janson in [4℄.A further important point is that our results do not hinge at all on the fat that N is anordered set. This is one of the advantages both of Stein's method and of the Malliavin-type,�ltration-free stohasti analysis. It follows that our �ndings an be diretly applied to i.i.d.Rademaher families indexed by an arbitrary disrete set.The reader is referred to Chatterjee [5℄ for another Stein-type approah to the normal ap-proximation of funtionals of �nite i.i.d. vetors. Some onnetions between our �ndings and2



the results proved in [5℄ (in the speial ase of quadrati funtionals) are pointed out in Setion4.2.The paper is organized as follows. Setion 2 ontains results on multiple integrals, Stein'smethod and disrete Malliavin alulus (in partiular, a new hain rule is proved). Setion 3provides general bounds for the normal approximation of Rademaher funtionals; it gives �rstexamples and the exhangeable pair onstrution. In Setion 4 we are interested in randomvariables belonging to a �xed haos. Setion 5 fouses on sums of single and double integrals andrelated examples. Setion 6 is devoted to further appliations and re�nements, mainly involvingintegrals over sparse sets. Tehnial proofs are deferred to the Appendix.2 Framework and main tools2.1 The setupAs before, we shall denote by X = {Xn : n > 1} a standard Rademaher sequene. This meansthat X is a olletion of i.i.d. random variables, de�ned on a probability spae (Ω,F , P ) andsuh that P [X1 = 1] = P [X1 = −1] = 1/2. To simplify the subsequent disussion, for the rest ofthe paper we shall suppose that Ω = {−1, 1}N and P = [12{δ−1 + δ1}]N. Also, X will be de�nedas the anonial proess, that is: for every ω = (ω1, ω2, ...) ∈ Ω, Xn(ω) = ωn. Starting from X,for every N > 1 one an build a random signed measure µ(X,N) on {1, ..., N}, de�ned for every
A ⊂ {1, ..., N} as follows:

µ(X,N) (A) =
∑

j∈A

Xj .It is lear that σ{X} = σ{µ(X,N) : N > 1}. We shall sometimes omit the index N and write
µ(X,N) = µX , whenever the domain of integration is lear from the ontext.We de�ne the set D =

{
(i1, i2) ∈ N2 : i1 = i2

} to be the diagonal of N2. For n > 2, we put
∆n = {(i1, ..., in) ∈ Nn : the ij 's are all di�erent} , (2.1)and, for N,n > 2,
∆N

n = ∆n ∩ {1, ..., N}n (2.2)(so that ∆N
n = ∅ if N < n). The random signed measures µ(X,N) satisfy that, for every

A,B ⊂ {1, ..., N},
µ⊗2

(X,N) ([A × B] ∩ D) =
∑

j

X2
j 1{j∈A}1{j∈B} = κ (A ∩ B) = ♯ {j : j ∈ A ∩ B} , (2.3)where κ is the ounting measure on N. The appliation A 7→ µ⊗2

(X,N) ([A × A] ∩ D) is alledthe diagonal measure assoiated with µ(X,N). The above disussion simply says that, forevery N > 1, the diagonal measure assoiated with µ(X,N) is the restrition on {1, ..., N} of theounting measure κ. Note that, for �nite sets A,B one has also
E[µX(A)µX(B)] = κ(A ∩ B).
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Remark 2.1 In the terminology e.g. of [30℄ and [40℄, the olletion of random variables
{µ(X,N)(A) : A ⊂ {1, ..., N}, N > 1}de�nes an independently sattered random measure (also alled a ompletely random measure)on N, with ontrol measure equal to κ. In partiular, if A1, ..., Ak is a olletion of mutuallydisjoint �nite subsets of N, then the random variables µX(A1), ..., µX(Ak) are mutually indepen-dent.2.2 The star notationFor n > 1, we denote by ℓ2 (N)n the lass of the kernels (= funtions) on Nn that are squareintegrable with respet to κ⊗n; ℓ2 (N)◦n is the subset of ℓ2 (N)n omposed of symmetri kernels;

ℓ2
0 (N)n is the subset of ℓ2 (N)n omposed of kernels vanishing on diagonals, that is, vanishing onthe omplement of ∆n ; ℓ2

0 (N)◦n is the subset of ℓ2
0 (N)n omposed of symmetri kernels.For every n,m > 1, every r = 0, ..., n ∧ m, every l = 0, ..., r, and every f ∈ ℓ2

0 (N)◦n and
g ∈ ℓ2

0 (N)◦m, we denote by f ⋆l
r g the funtion of n + m − r − l variables obtained as follows:

r variables are identi�ed and, among these, l are integrated out with respet to the ountingmeasure κ. Expliitly,
f ⋆l

r g (i1, ..., in+m−r−l)

=
∑

a1,...,al

f (i1, ..., in−r ; in−r+1, ..., in−l; a1, ..., al)

× g (in−l+1, ..., in+m−r−l; in−r+1, ..., in−l; a1, ..., al) ;note that, sine f and g vanish on diagonals by assumption, the sum atually runs over all vetors
(a1, ..., al) ∈ ∆l. For instane,

f ⋆0
0 g (i1, ..., in+m) = f ⊗ g (i1, ..., in+m) = f (i1, ..., in) g (in+1, ..., in+m) ,and, for r ∈ {1, . . . , n ∧ m},

f ⋆r
r g (i1, ..., in+m−2r)

=
∑

a1,...,ar

f (i1, ..., in−r; a1, ..., ar) g (in−r+1, ..., in+m−2r ; a1, ..., ar) .In partiular, if r = m = n

f ⋆m
m g =

∑

a1,...,am

f (a1, ..., am) g (a1, ..., am) = 〈f, g〉ℓ2(N)⊗m .Example 2.2 If n = m = 2, one has
f ⋆0

0 g (i1, i2, i3, i4) = f (i1, i2) g (i3, i4) ; f ⋆0
1 g (i1, i2, i3) = f (i1, i2) g (i3, i2) ;

f ⋆1
1 g (i1, i2) = Σaf (i1, a) g (i2, a) ; f ⋆0

2 g (i1, i2) = f (i1, i2) g (i1, i2) ;

f ⋆1
2 g (i) = Σaf (i, a) g (i, a) ; f ⋆2

2 g = Σa1,a2f (a1, a2) g (a1, a2) .Remark 2.3 In general, a kernel of the type f ⋆l
r g may be not symmetri and may not vanishon diagonal sets. 4



The next two lemmas ollet some useful fats for subsequent setions. Their proofs arepostponed in the appendix.Lemma 2.4 Let f ∈ ℓ2
0 (N)◦n, g ∈ ℓ2

0 (N)◦m (n,m > 1) and 0 6 l 6 r 6 n ∧ m. Then:1. f ⋆l
r g ∈ ℓ2 (N)⊗(n+m−r−l) and ‖f ⋆l

r g‖
ℓ2(N)⊗(n+m−r−l) 6 ‖f‖ℓ2(N)⊗n‖g‖ℓ2(N)⊗m ;2. if n > 2 then

max
j∈N




∑

(b1,...,bn−1)∈Nn−1

f2(j, b1, ..., bn−1)




2

6 ‖f ⋆n−1
n f‖2

ℓ2(N)

6 ‖f‖2
ℓ2(N)⊗n×max

j∈N

∑

(b1,...,bn−1)∈Nn−1

f2(j, b1, ..., bn−1)and, if l = 1, . . . , n,
‖f ⋆l−1

l g‖2
ℓ2(N)⊗(n+m−2l+1) =

∞∑

j=1

‖f(j, ·) ⋆l−1
l−1 g(j, ·)‖2

ℓ2(N)⊗(n+m−2l)

6 ‖f ⋆n−1
n f‖ℓ2(N) × ‖g‖2

ℓ2(N)⊗m . (2.4)3. ‖f ⋆0
1 f‖ℓ2(N)⊗(2n−1) = ‖f ⋆n−1

n f‖ℓ2(N) and, for every l = 2, ..., n (n > 2),
‖f ⋆l−1

l f‖ℓ2(N)⊗(2n−2l+1) 6 ‖f ⋆l−1
l−1 f × 1∆c

2(n−l+1)
‖ℓ2(N)⊗(2n−2l+2) 6 ‖f ⋆l−1

l−1 f‖ℓ2(N)⊗(2n−2l+2) .Here, ∆c
q stands for the omplement of the set ∆c

q, that is, ∆c
q is the olletion of all vetors

(i1, ..., iq) suh that ik = il for at least one pair (l, k) suh that l 6= k.Remark 2.5 1. Aording e.g. to [21℄, the quantity
∑

(b1,...,bn−1)∈Nn−1

f2(j, b1, ..., bn−1)is alled the in�uene of the jth oordinate on f .2. When speializing Lemma 2.4 to the ase n = 2, one gets
max
j∈N

[
∑

i∈N

f2(i, j)

]2

6 ‖f ⋆1
2 f‖2

ℓ2(N) (2.5)
= ‖f ⋆1

1 f × 1∆c
2
‖2

ℓ2(N)⊗2 6 ‖f ⋆1
1 f‖2

ℓ2(N)⊗2 = Trace{[f ]4}.Here, [f ] denote the in�nite array {f(i, j) : i, j ∈ N} and [f ]4 stands for the fourth powerof [f ] (regarded as the kernel of a Hilbert-Shmidt operator).Lemma 2.6 Fix n,m > 1, and let fk ∈ ℓ2
0(N)◦n and gk ∈ ℓ2

0(N)◦m, k > 1, be suh that
fk −→

k→∞
f and gk −→

k→∞
g, respetively, in ℓ2

0(N)◦n and ℓ2
0(N)◦m. Then, for every r = 0, ..., n ∧ m,

fk ⋆r
r gk −→

k→∞
f ⋆r

r g in ℓ2(N)⊗m+n−2r. 5



2.3 Multiple integrals, haos and produt formulaeFollowing e.g. [32℄, for every q > 1 and every f ∈ ℓ2
0 (N)◦q we denote by Jq (f) the multipleintegral (of order q) of f with respet to X. Expliitly,

Jq(f) =
∑

(i1,...,iq)∈Nq

f(i1, ..., iq)Xi1 · · · Xiq =
∑

(i1,...,iq)∈∆q

f(i1, ..., iq)Xi1 · · · Xiq (2.6)
= q!

∑

i1<...<iq

f(i1, ..., iq)Xi1 · · · Xiq ,where the possibly in�nite sum onverges in L2(Ω). Note that, if f has support ontained in some�nite set {1, ..., N}q , then Jq (f) is a true integral with respet to the produt signed measure
µ⊗q

(X,N), that is,
Jq (f) =

∫

{1,...,N}q

f dµ⊗q
(X,N) =

∫

∆N
q

f dµ⊗q
(X,N).One ustomarily sets ℓ2 (N)◦0 = R, and J0(c) = c, ∀c ∈ R. It is known (see again [32℄) that, if

f ∈ ℓ2
0 (N)◦q and g ∈ ℓ2

0 (N)◦p, then one has the isometri relation
E[Jq(f)Jp(g)] = 1{q=p}q!〈f, g〉ℓ2(N)⊗q . (2.7)In partiular,
E[Jq(f)2] = q!‖f‖2

ℓ2(N)⊗q . (2.8)The olletion of all random variables of the type Jn(f), where f ∈ ℓ2
0 (N)◦q, is alled the qthhaos assoiated with X.Remark 2.7 Popular names for random variables of the type Jq(f) are Walsh haos (see e.g.[19, Ch. IV℄) and Rademaher haos (see e.g. [4, 11, 18℄). In Meyer's monograph [20℄ theolletion {Jq(f) : f ∈ ℓ2

0 (N)◦q , q > 0} is alled the toy Fok spae assoiated with X.Reall (see [32℄) that one has the following haoti deomposition: for every F ∈ L2(σ{X})(that is, for every square integrable funtional of the sequene X) there exists a unique sequeneof kernels fn ∈ ℓ2
0 (N)◦n, n > 1, suh that

F = E(F ) +
∑

n>1

Jn(fn) = E(F ) +
∑

n>1

n!
∑

i1<i2<...<in

fn(i1, ..., in)Xi1 · · · Xin , (2.9)where the seond equality follows from the de�nition of Jn(fn), and the series onverge in L2.Remark 2.8 Relation (2.9) is equivalent to the statement that the set
{1} ∪

⋃

n>1

{Xi1 . . . Xin : 1 6 i1 < . . . < in} (2.10)is an orthonormal basis of L2(σ{X}). An immediate proof of this fat an be dedued from basiharmoni analysis. Indeed, it is well-known that the set Ω = {−1,+1}N, when endowed with theprodut struture of oordinate multipliation, is a ompat Abelian group (known as the Cantorgroup), whose unique normalized Haar measure is the law of X. Relation (2.9) then follows fromthe fat that the dual of Ω onsists exatly in the mappings ω 7→ 1 and ω 7→ Xi1(ω) · · · Xin(ω),
in > ... > i1 > 1, n > 1. See e.g. [3, Setion VII.2℄.6



Given a kernel f on Nn, we denote by f̃ its anonial symmetrization, that is:
f̃ (i1, ..., in) =

1

n!

∑

σ

f(iσ(1), ..., iσ(n)),where σ runs over the n! permutations of {1, ..., n}. The following result is a standard multi-pliation formula between multiple integrals of possibly di�erent orders. Sine we did not �ndthis result in the literature (see, however, [32, formula (15)℄), we provide a simple ombinatorialproof in Setion 6.3.Proposition 2.9 For every n,m > 1, every f ∈ ℓ2
0 (N)◦n and g ∈ ℓ2

0 (N)◦m, one has that
Jn (f)Jm (g) =

n∧m∑

r=0

r!

(
n

r

)(
m

r

)
Jn+m−2r

[(
f̃ ⋆r

r g
)
1∆n+m−2r

]
. (2.11)Remark 2.10 Proposition 2.9 yields that the produt of two multiple integrals is a linear om-bination of square-integrable random variables. By indution, this implies in partiular that, forevery f ∈ ℓ2

0 (N)◦n and every k > 1, E|Jn(f)|k < ∞, that is, the elements belonging to a givenhaos have �nite moments of all orders. This fat an be alternatively dedued from standardhyperontrative inequalities, see e.g. Theorem 3.2.1 in [11℄ or [18, Ch. 6℄. Note that similarresults hold for random variables belonging to a �xed Wiener haos of a Gaussian �eld (see e.g.[16, Ch. V℄).2.4 Finding a haoti deompositionThe seond equality in (2.9) learly implies that, for every i1 < ... < in,
n!fn(i1, ..., in) = E(F × Xi1 · · · Xin).In what follows, we will point out two alternative proedures yielding an expliit expression forthe kernels fn.(i) Möbius inversion (Hoe�ding deompositions). We start with the following observation: if

F = F (X1, ...,Xd) is a random variable that depends uniquely on the �rst d oordinates of theRademaher sequene X, then neessarily F admits a �nite haoti deomposition of the form
F = E(F ) +

d∑

n=1

∑

16i1<...<in6d

n!fn(i1, . . . , in)Xi1 · · · Xin . (2.12)Note that the sum in the haoti deomposition (2.12) must stop at d: indeed, the terms oforder greater than d are equal to zero sine, if not, they would involve e.g. produts of thetype Xj1 · · · Xjd+1
with all the ja's di�erent, whih would not be onsistent with the fatthat F is σ{X1, . . . ,Xd}-measurable. Now note that one an rewrite (2.12) as F = E(F ) +∑

I⊂{1,...,d} G(I), where, for I := {i1, . . . , ia},
G(I) = a!fa(i1, . . . , ia)Xi1 . . . Xia . 7



By exploiting the independene, one obtains also that, for every J := {j1, ..., jn} ⊂ {1, . . . , d},
H(J) := E[F − E(F )|Xj1 , . . . ,Xjn ] =

∑

I⊂J

G(I),thus yielding that, by inversion (see e.g. [37, p. 116℄), for every n = 1, ..., d,
n!fn(j1, ..., jn)Xj1 · · · Xjn =

∑

{i1,...,ia}⊂{j1,...,jn}
(−1)n−aE[F − E(F )|Xi1 , ...,Xia ]. (2.13)Formula (2.13) simply means that, for a �xed n, the sum of all random variables of the type

n!fn(j1, ..., jn)Xj1 · · · Xjn oinides with the nth term in the Hoe�ding-ANOVA deompositionof F (see e.g. [17℄). By a density argument (whih is left to the reader), representation (2.13)extends indeed to random variables depending on the whole sequene X.(ii) Indiators expansions. Assume that we an write F = F (X1, . . . ,Xd) with F : {−1,+1}d →
R. Taking into aount all the possibilities, we have

F =
∑

(ε1,...,εd)∈{−1,+1}d

F (ε1, . . . , εd)

d∏

i=1

1{Xi=εi}.Now, the ruial point is the identity 1{Xi=εi} = 1
2(1 + εiXi). Hene

F = 2−d
∑

(ε1,...,εd)∈{−1,+1}d

F (ε1, . . . , εd)

d∏

i=1

(1 + εiXi). (2.14)But
d∏

i=1

(1 + εiXi) = 1 +
∑

16i16d

εi1Xi1 +
∑

16i1<i26d

εi1εi2Xi1Xi2

+
∑

16i1<i2<i36d

εi1εi2εi3Xi1Xi2Xi3 + . . . + εi1 . . . εidXi1 . . . Xid ;inserting this in (2.14) one an dedue the haoti expansion of F .2.5 Disrete Malliavin alulus and a new hain ruleWe will now de�ne a set of disrete operators whih are the analogues of the lassi Gaussian-based Malliavin operators (see e.g. [16, 26℄). The reader is referred to [31℄ and [32℄ for anyunexplained notion and/or result.The operator D, alled the gradient operator, transforms random variables into randomsequenes. Its domain, noted domD, is given by the lass of random variables F ∈ L2(σ{X})suh that the kernels fn ∈ ℓ2
0(N)◦n in the haoti expansion F = E(F )+

∑
n>1 Jn(fn) (see (2.9))verify the relation ∑

n>1

nn!‖fn‖2
ℓ2(N)⊗n < ∞.8



In partiular, if F = F (X1, . . . ,Xd) depends uniquely on the �rst d oordinates of X, then
F ∈ domD. More preisely, D is an operator with values in L2(Ω × N, P ⊗ κ), suh that, forevery F = E(F ) +

∑
n>1 Jn(fn) ∈ domD,

DkF =
∑

n>1

nJn−1(fn(·, k)), k > 1, (2.15)where the symbol fn(·, k) indiates that the integration is performed with respet to n − 1variables. Aording e.g. to [31, 32℄, the gradient operator admits the following representation.Let ω = (ω1, ω2, . . .) ∈ Ω, and set
ωk

+ = (ω1, ω2, . . . , ωk−1,+1, ωk+1, . . .)and
ωk
− = (ω1, ω2, . . . , ωk−1,−1, ωk+1, . . .)to be the sequenes obtained by replaing the kth oordinate of ω, respetively, with +1 and −1.Write F±

k instead of F (ωk
±) for simpliity. Then, for every F ∈ domD,

DkF (ω) =
1

2

(
F+

k − F−
k

)
, k > 1. (2.16)Remark 2.11 It is easily seen that, if the random variable F ∈ L2(σ{X}) is suh that themapping (ω, k) 7→ 1

2(F+
k −F−

k )(ω) is an element of L2(Ω×N, P ⊗κ), then neessarily F ∈ domD.We write δ for the adjoint of D, also alled the divergene operator. The domain of δ isdenoted by domδ, and is suh that domδ ⊂ L2(Ω × N, P ⊗ κ). Reall that δ is de�ned via thefollowing integration by parts formula: for every F ∈ domD and every u ∈ domδ

E[Fδ(u)] = E[〈DF, u〉ℓ2(N)] = 〈DF, u〉L2(Ω×N,P⊗κ). (2.17)Now set L2
0(σ{X}) to be the subspae of L2(σ{X}) omposed of entered random variables.We write L : L2(σ{X}) → L2

0(σ{X}) for the Ornstein-Uhlenbek operator, whih is de�ned asfollows. The domain domL of L is omposed of random variables F = E(F ) +
∑

n>1 Jn(fn) ∈
L2(σ{X}) suh that ∑

n>1

n2n!‖fn‖2
ℓ2(N)⊗n < ∞,and, for F ∈ domL,

LF = −
∑

n>1

nJn(fn). (2.18)With respet to [31, 32℄, note that we hoose to add a minus in the right-hand side of (2.18), inorder to failitate the onnetion with the paper [22℄. One ruial relation between the operators
δ, D and L is that

δD = −L. (2.19)The inverse of L, noted L−1, is de�ned on F ∈ L2
0(σ{X}), and is given by

L−1F = −
∑

n>1

1

n
Jn(fn). (2.20)9



Lemma 2.12 Let F ∈ domD be entered, and f : R → R be suh that f(F ) ∈ domD. Then
E
[
Ff(F )

]
= E

[
〈Df(F ),−DL−1F 〉ℓ2(N)

]
.Proof. Using (2.19) and (2.17) onseutively, we an write

E
[
Ff(F )

]
= E

[
LL−1Ff(F )

]
= −E

[
δDL−1Ff(F )

]
= E

[
〈Df(F ),−DL−1F 〉ℓ2(N)

]
.Finally, we de�ne {Pt : t > 0} = {etL : t > 0} to be the the semi-group assoiated with L,that is,

PtF =
∞∑

n=0

e−ntJn(fn), t > 0, for F = E(F ) +
∞∑

n=1

Jn(fn) ∈ L2(σ{X}). (2.21)The next result will be useful throughout the paper.Lemma 2.13 Let F ∈ domD and �x k ∈ N. Then:1. The random variables DkF , DkL
−1F , F+

k and F−
k are independent of Xk.2. It holds that |F+

k − F | 6 2|DkF | and |F−
k − F | 6 2|DkF |, P -almost surely.3. If F has zero mean, then E‖DL−1F‖2

ℓ2(N) 6 E‖DF‖2
ℓ2(N) with equality if and only if F isan element of the �rst haos.Proof. 1. One only needs to ombine the de�nition of F±

k with (2.16).2. Use F±
k − F = ±(F+

k − F−
k )1{Xk=∓1} = ±2DkF1{Xk=∓1}.3. Let us onsider the haoti expansion of F :

F =
∑

n>1

Jn(fn).Then −DkL
−1F =

∑
n>1 Jn−1

(
fn(·, k)

) and DkF =
∑

n>1 nJn−1

(
fn(·, k)

). Therefore, using theisometri relation (2.7),
E‖DL−1F‖2

ℓ2(N) = E
∑

k∈N



∑

n>1

Jn−1

(
fn(·, k)

)



2

=
∑

n>1

(n − 1)!‖fn‖2
ℓ2(N)⊗n

6
∑

n>1

n2(n − 1)!‖fn‖2
ℓ2(N)⊗n

= E
∑

k∈N



∑

n>1

nJn−1

(
fn(·, k)

)



2

= E‖DF‖2
ℓ2(N).Moreover, the previous equality shows that we have equality if and only if fn = 0 for all n > 2,that is, if and only if F is an element of the �rst haos.We onlude this setion by proving a hain rule involving deterministi funtions of randomvariables in the domain of D. It should be ompared with the lassi hain rule of the Gaussian-based Malliavin alulus (see e.g. [26, Prop. 1.2.2℄).10



Proposition 2.14 (Chain Rule). Let F ∈ domD and f : R → R be thrie di�erentiable withbounded third derivative. Assume moreover that f(F ) ∈ domD. Then, for any integer k, P -a.s.:
∣∣∣∣Dkf(F ) − f ′(F )DkF +

1

2

(
f ′′(F+

k ) + f ′′(F−
k )
)
(DkF )2Xk

∣∣∣∣ 6
10

3
|f ′′′|∞|DkF |3.Proof. By a standard Taylor expansion,

Dkf(F ) =
1

2

(
f(F+

k ) − f(F−
k )
)

=
1

2

(
f(F+

k ) − f(F )
)
− 1

2

(
f(F−

k ) − f(F )
)

=
1

2
f ′(F )(F+

k − F ) +
1

4
f ′′(F )(F+

k − F )2 + R1

−1

2
f ′(F )(F−

k − F ) − 1

4
f ′′(F )(F−

k − F )2 + R2

= f ′(F )DkF +

1

8

(
f ′′(F+

k ) + f ′′(F−
k )
)(

(F+
k − F )2 − (F−

k − F )2
)

+ R1 + R2 + R3

= f ′(F )DkF − 1

2

(
f ′′(F+

k ) + f ′′(F−
k )
)
(DkF )2Xk + R1 + R2 + R3,where, using Lemma 2.13,

|R1| 6
1

12
|f ′′′|∞

∣∣F+
k − F

∣∣3 6
2

3
|f ′′′|∞|DkF |3

|R2| 6
1

12
|f ′′′|∞

∣∣F−
k − F

∣∣3 6
2

3
|f ′′′|∞|DkF |3

|R3| 6
1

8
|f ′′′|∞

(∣∣F+
k − F

∣∣3 +
∣∣F−

k − F
∣∣3
)

6 2|f ′′′|∞|DkF |3.By putting these three inequalities together, the desired onlusion follows.2.6 Stein's method for normal approximationStein's method is a olletion of probabilisti tehniques, using di�erential operators in order toassess quantities of the type ∣∣E[h(F )] − E[h(Z)]
∣∣,where Z and F are generi random variables, and the funtion h is suh that the two expetationsare well de�ned. In the spei� ase where Z ∼ N (0, 1), with N (0, 1) a standard Gaussian law,one is led to onsider the so-alled Stein equation assoiated with h, whih is lassially given by

h(x) − E[h(Z)] = f ′(x) − xf(x), x ∈ R. (2.22)A solution to (2.22) is a funtion f , depending on h, whih is Lebesgue a.e.-di�erentiable, andsuh that there exists a version of f ′ verifying (2.22) for every x ∈ R. The following result ollets�ndings by Stein [38, 39℄, Barbour [2℄, Daly [8℄ and Götze [13℄. Preisely, the proof of Point (i)(whih is known as Stein's lemma) involves a standard use of the Fubini theorem (see e.g. [7,Lemma 2.1℄). Point (ii) is proved e.g. in [39, Lemma II.3℄ (for the estimates on the �rst andseond derivative), in [8, Theorem 1.1℄ (for the estimate on the third derivative) and in [2℄ and[13℄ (for the alternative estimate on the �rst derivative). From here onwards, denote by Ck
b theset of all real-valued bounded funtions with bounded derivatives up to kth order.11



Lemma 2.15 (i) Let W be a random variable. Then, W
Law
= Z ∼ N (0, 1) if and only if forevery ontinuous, pieewise ontinuously di�erentiable funtion f suh that E|f ′(Z)| < ∞,

E[f ′(W ) − Wf(W )] = 0. (2.23)(ii) If h ∈ C2
b , then (2.22) has a solution fh whih is thrie di�erentiable and suh that ‖f ′

h‖∞ 6

4‖h‖∞, ‖f ′′
h‖∞ 6 2‖h′‖∞ and ‖f ′′′

h ‖∞ 6 2‖h′′‖∞. We also have ‖f ′
h‖ 6 ‖h′′‖∞.Now �x a funtion h ∈ C2

b , onsider a Gaussian random variable Z ∼ N (0, 1), and let F bea generi square integrable random variable. Integrating both sides of (2.22) with respet to thelaw of F gives
∣∣E[h(F )] − E[h(Z)]

∣∣ =
∣∣E[f ′

h(F ) − Ffh(F )]
∣∣ (2.24)with fh the funtion given in Lemma 2.15. In the following setions we will show that, if F isa funtional of the in�nite Rademaher sequene X, then the quantity in the RHS of (2.24) anbe suessfully assessed by means of disrete Malliavin operators.Remark 2.16 Plainly, if the sequene Fn, n > 1, is suh that ∣∣E[h(Fn)] − E[h(Z)]

∣∣ → 0 forevery h ∈ C2
b , then Fn

Law→ Z.3 General Bounds for Rademaher funtionals3.1 Main boundThe following result ombines Proposition 2.14 with Lemma 2.15-(ii) and Relation (2.24) in orderto estimate expressions of the type |E[h(F )]−E[h(Z)]|, where F is a square integrable funtionalof the in�nite Rademaher sequene X, and Z ∼ N (0, 1).Theorem 3.1 Let F ∈ domD be entered and suh that∑k E
∣∣DkF

∣∣4 < ∞. Consider a funtion
h ∈ C2

b and let Z ∼ N (0, 1). Then,
|E[h(F )] − E[h(Z)]| 6 min(4‖h‖∞, ‖h′′‖∞)B1 + ‖h′′‖∞B2, (3.25)where

B1 = E
∣∣1 − 〈DF,−DL−1F 〉ℓ2(N)

∣∣ 6
√

E
[
(1 − 〈DF,−DL−1F 〉ℓ2(N))

2
]
;

B2 =
20

3
E
[〈
|DL−1F |, |DF |3

〉
ℓ2(N)

]
. (3.26)Proof. Sine h ∈ C2

b , Equality (2.24) holds. Observe that, sine the �rst two derivatives of fhare bounded, one has that fh(F ) ∈ domD (this fat an be proved by using a Taylor expansion,as well as the assumptions on DF and the ontent of Remark 2.11). Using Lemma 2.12, onededues that
E
[
f ′

h(F ) − Ffh(F )
]

= E
[
f ′

h(F ) − 〈Dfh(F ),−DL−1F 〉ℓ2(N)

]
.We now use again the fat that f ′′

h is bounded: as an appliation of the �rst point of Lemma2.13, we dedue therefore that
E
[
DkL

−1F ×
(
f ′′

h (F+
k ) + f ′′

h (F−
k )
)
(DkF )2Xk

]
= 0, k > 1;12



in partiular, the boundedness of f ′′
h , along with the fat that E|DkF |4 < ∞ and Lemma 2.13-(3), ensure that the previous expetation is well-de�ned. Finally, the desired onlusion followsfrom the hain rule proved in Proposition 2.14, as well as the bounds on ‖f ′

h‖∞ and ‖f ′′′
h ‖∞stated in Lemma 2.15-(ii).Remark 3.2 1. The requirement that ∑k E

∣∣DkF
∣∣4 < ∞ is automatially ful�lled whenever

F belongs to a �nite sum of haoses. This an be dedued from the hyperontrativeinequalities stated e.g. in [18, Ch. 6℄.2. Sine we are onsidering random variables possibly depending on the whole sequene Xand having an in�nite haoti expansion, the expetation in (3.26) may atually be in�nite.3. Fix q > 1 and let F have the form of a multiple integral of the type F = Jq(f), where
f ∈ ℓ2

0(N)◦q . Then, one has that
〈DF,−DL−1F 〉ℓ2(N) =

1

q
‖DF‖2

ℓ2(N), (3.27)
〈|DL−1F |, |DF |3〉ℓ2(N) =

1

q
‖DF‖4

ℓ4(N). (3.28)4. Let G be an isonormal Gaussian proess (see [16℄ or [26℄) over some separable Hilbert spae
H, and assume that F ∈ L2(σ{G}) is entered and di�erentiable in the sense of Malliavin.Then the Malliavin derivative of F , noted DF , is a H-valued random element, and in [22℄the following upper bound is established (via Stein's method) between the laws of F and
Z ∼ N (0, 1):

dTV (F,Z) 6 2E|1 − 〈DF,−DL−1F 〉H|,where L−1 is here the inverse of the Ornstein-Uhlenbek generator assoiated with G and
dTV is the total variation distane between the laws of F and Z.5. Let N be a ompensated Poisson measure over some measurable spae (A,A), with σ-�niteontrol measure given by µ. Assume that F ∈ L2(σ{N}) is entered and di�erentiable inthe sense of Malliavin. Then the derivative of F is a random proesses whih a.s. belongsto L2(µ). In [28, Setion 3℄ the following upper bound for the Wasserstein distane (seeSetion 3.4 ) between the laws of F and Z ∼ N (0, 1) is proved (again by means of Stein'smethod):

dW (F,Z) 6 E|1 − 〈DF,−DL−1F 〉L2(µ)| + E

∫

A
|DaF |2 × |DaL

−1F |µ(da).3.2 First examples: Rademaher averagesA (possibly in�nite) Rademaher average is just an element of the �rst haos assoiated with X,that is, a random variable of the type
F =

∞∑

i=1

αiXi, with α ∈ ℓ2(N). (3.29)See e.g. [19, Ch. IV℄ for general fats onerning random variables of the type (3.29). The nextresult is a onsequene of Theorem 3.1 and of the relations (3.27)�(3.28). It yields a simple andexpliit upper bound for the Gaussian approximation of Rademaher averages.13



Corollary 3.3 Let F have the form (3.29), let Z ∼ N (0, 1) and onsider h ∈ C2
b . Then

∣∣E[h(F )] − E[h(Z)]
∣∣ 6 min(4‖h‖∞, ‖h′′‖∞)

∣∣∣∣∣1 −
∞∑

i=1

α2
i

∣∣∣∣∣+
20

3
‖h′′‖∞

∞∑

i=1

α4
i . (3.30)The proof of Corollary 3.3 (whose details are left to the reader) is easily dedued from thefat that, for F as in (3.29), one has that (3.27)-(3.28) with q = 1 hold, and DiF = αi for all

i > 1. We now desribe two appliations of Corollary 3.3. The �rst one provides a faster thanBerry-Esséen rate for partial sums of Rademaher random variables, using smooth test funtions.Example 3.4 Let Fn, n > 1, be given by
Fn =

1√
n

n∑

i=1

Xi.Then, Relation (3.30) in the speial ase αi = 1{i6n} × n−1/2 yields the bound
∣∣E[h(F )] − E[h(Z)]

∣∣ 6
20

3n
‖h′′‖∞,where Z ∼ N (0, 1), implying a faster rate than in the lassial Berry-Esséen estimates. Thisfaster rate arises from our use of smooth test funtions; a related result is obtained in [15℄ usinga oupling approah.The next example demonstrates that our tehniques allow to easily takle some problemswhih, due to their non-�nite desription, have previously esaped the Stein's method treatment.Example 3.5 For every r > 2, we set

Fr =
√

r
∑

i>r

Xi

i
.The random variable Fr has the form (3.29), with αi = 1{i>r}

√
r/i. We have that

∣∣∣∣∣1 −
∑

i∈N

α2
i

∣∣∣∣∣ =

∣∣∣∣∣∣
1 − r

∑

i>r

1

i2

∣∣∣∣∣∣
=

∣∣∣∣∣∣
r
∑

i>r

(
1

i
− 1

i + 1
− 1

i2

)∣∣∣∣∣∣
= r

∑

i>r

1

i2(i + 1)
6
∑

i>r

1

i(i + 1)
=

1

rand also
∑

i∈N

α4
i =

∑

i>r

r2

i4
6
∑

i>r

1

i(i − 1)
=

1

r − 1
.It follows from Relation (3.30) that, for Z ∼ N (0, 1),

|E[h(Fr)] − E[h(Z)]| 6
min(4‖h‖∞, ‖h′′‖∞)

r
+

20‖h′′‖∞
3(r − 1)

.In partiular, Fr
Law→ Z as r → ∞. 14



Remark 3.6 (A Mehler-type representation) Take an independent opy of X, noted X∗ =
{X∗

1 ,X∗
2 , ...}, �x t > 0, and onsider the sequene Xt = {Xt

1,X
t
2, ...} de�ned as follows: Xt isa sequene of i.i.d. random variables suh that, for every k > 1, Xt

k = Xk with probability e−tand Xt
k = X∗

k with probability 1 − e−t (we stress that the hoie between X and X∗ is madeseparately for every k, so that one an have for instane Xt
1 = X1, Xt

2 = X∗
2 , ... and so on). Then

Xt is a Rademaher sequene and one has the following representation: for every F ∈ L2(σ(X))and every ω = (ω1, ω2, ...) ∈ Ω = {−1,+1}N

PtF (ω) = E[F (Xt)|X = ω], (3.31)where Pt is the Ornstein-Uhlenbek semigroup given in (2.21). To prove suh a representation of
Pt, just onsider a random variable of the type Xj1 ×· · ·×Xjd

, and then use a density argument.Now observe that, for a entered F =
∑

n>1 Jn(fn) ∈ L2
0(σ{X}), Equation (2.20) holds, andonsequently

−DkL
−1F =

∑

n>1

Jn−1(fn(k, ·)) =

∫ ∞

0
e−tPtDkFdt =

∫ ∞

0
e−tE[DkF (Xt)|X]dt,so that

〈DF,−DL−1F 〉ℓ2(N) =

∫ ∞

0
e−t
∑

k>1

DkFE[DkF (Xt)|X] dt =

∫ ∞

0
e−t〈DF,E[DF (Xt)|X]〉ℓ2(N) dt.Note that the representation (3.31) of the Ornstein-Uhlebek semigroup is not spei� of Rade-maher sequenes, and ould be e.g. extended to the ase where X is i.i.d. standard Gaussian(see for instane [21, Setion 2.2℄). This onstrution would be di�erent from the one leadingto the usual Mehler formula (see e.g. [26, Formula (1.67)℄). See Chatterjee [6, Lemma 1.1℄and Nourdin and Peati [22, Remark 3.6℄ for further onnetions between Mehler formulae andStein's method in a Gaussian setting.3.3 A general exhangeable pair onstrutionRemark 3.6 uses a partiular example of exhangeable pair of in�nite Rademaher sequenes.We shall now show that the haos deomposition approah links in very well with the methodof exhangeable pairs. Let us assume that F = F (X1, ...,Xd) is a random variable that dependsuniquely on the �rst d oordinates Xd = (X1, . . . ,Xd) of the Rademaher sequene X, with �nitehaoti deomposition of the form (2.12). Now assume that E(F ) = 0 and E(F 2) = 1 so that

F =

d∑

n=1

∑

16i1<...<in6d

n!fn(i1, ..., in)Xi1 · · · Xin =

d∑

n=1

Jn(fn). (3.32)A natural exhangeable pair onstrution is as follows. Pik an index I at random, so that
P (I = i) = 1

d for i = 1, . . . , d, independently of X1, ...,Xd, and if I = i replae Xi by anindependent opy X∗
i in all sums in the deomposition (3.32) whih involve Xi. Call the resultingexpression F ′. Also denote the vetor of Rademaher variables with the exhanged omponentby X′

d. Then (F,F ′) forms an exhangeable pair.In [34℄ an embedding approah is introdued, whih suggests enhaning the pair (F,F ′) to apair of vetors (W,W′) whih then ideally satisfy the linearity ondition
E(W′ − W|W) = −ΛW (3.33)15



with Λ being a deterministi matrix. In our example, hoosing as embedding vetor W =
(J1(f1), . . . , Jd(fd)), we hek that

E(J ′
n(fn) − Jn(fn)|W)

= −1

d

d∑

i=1

∑

16i1<...<in6d

1{i1,...,in}(i) n!fn(i1, ..., in)E(Xi1 · · · Xin |W)

= −n

d
Jn(fn).Thus, with W′ = (J ′

1(f1), . . . , J
′
d(fd)), the ondition (3.33) is satis�ed, with Λ = (λi,j)16i,j6dbeing zero o� the diagonal and λn,n = n

d for n = 1, . . . , d. Our random variable of interest F isa linear ombination of the elements in W, and we obtain the simple expression
E(F ′ − F |W) =

1

d
LF = −1

d
δDF. (3.34)This oupling helps to assess the distane to the normal distribution, as follows.Theorem 3.7 Let F ∈ domD be entered and suh that E(F 2) = 1. Let h ∈ C1

b , let Z ∼
N (0, 1), and let (F,F ′) form the exhangeable pair onstruted as above, whih satis�es (3.34).Denote by L′ the Ornstein-Uhlenbek operator for the exhanged Rademaher sequene X′

d, anddenote by (L′)−1 its inverse. Then,
|E[h(F )] − E[h(Z)]| 6 4‖h‖∞

√
Var

[
d

2
E
(
(F ′ − F ) ×

(
(L′)−1F ′ − L−1F

)∣∣W
)]

+
d

2
‖h′‖∞E

[
(F ′ − F )2 × |(L′)−1F ′ − L−1F |

]
.Proof. Let h ∈ C1

b , and let g denote the solution of the Stein equation (2.22) for h. Usingantisymmetry, we have that for all smooth g,
0 = E

[(
g(F ) + g(F ′)

)
×
(
(L′)−1F ′ − L−1F

)]

= 2E
[
g(F )

(
(L′)−1F ′ − L−1F

)]
+ E

[(
g(F ′) − g(F )

)
×
(
(L′)−1F ′ − L−1F

)]

=
2

d
E
[
Fg(F )

]
+ E

[(
g(F ′) − g(F )

)
×
(
(L′)−1F ′ − L−1F

)]
; (3.35)the last equality oming from (3.34) as well as the de�nitions of (L′)−1 and L−1. Hene

E
[
g′(F ) − Fg(F )

]
= E

[
g′(F )

(
1 +

d

2
E
[
(F ′ − F ) ×

(
(L′)−1F ′ − L−1F

)∣∣W
])]

+ R,where by Taylor expansion
|R| 6

d

4
‖g′′‖∞E

[
(F ′ − F )2 × |(L′)−1F ′ − L−1F |

]
.From (3.35) with g(x) = x we obtain

E
[
E
(
(F ′ − F ) ×

(
(L′)−1F ′ − L−1F

)∣∣W)
]

= E
[
(F ′ − F ) ×

(
(L′)−1F ′ − L−1F

)]
= −2

d16



by our assumption that EF 2 = 1. We now only need to apply the Cauhy-Shwarz inequalityand use the bounds from Lemma 2.15 to omplete the proof.Equation (3.33) is key to answering the question on how to onstrut an exhangeable pair inthe ase of a random variable whih admits a �nite Rademaher haos deomposition. Indeed,one an proeed as follows. Firstly, use W = (J1(f1), . . . , Jd(fd)), where the omponents omefrom the haos deomposition. Then the results from [34℄ an be applied to assess the distane of
W to a normal distribution with the same ovariane matrix. Note that due to the orthogonalityof the integrals, the ovariane matrix will be zero o� the diagonal.Finally, note that formally, using (3.34) and that LF = limt→0

PtF−F
t ,

E(F (X′
d) − F (Xd)|W) =

1

d
lim
t→0

PtF (Xd) − F (Xd)

t
=

1

d
lim
t→0

1

t
[E(F (Xt

d)|Xd) − F (Xd)],where the notation is the same as in Remark 3.6. In this sense, our exhangeable pair an beviewed as the limit as t → 0 of the onstrution in Remark 3.6.3.4 From twie di�erentiable funtions to the Wasserstein distaneAlthough many of our results are phrased in terms of smooth test funtions, we an also obtainresults in Wasserstein distane by mimiking the smoothing in [35℄ used for Kolmogorov distane,but now apply it to Lipshitz funtions. Reall that the Wasserstein distane between the lawsof Y and Z is given by
dW (Y,Z) = sup

h∈Lip(1)
|E[h(Y )] − E[h(Z)]| ,where Lip(1) is the lass of all Lipshitz-ontinuous funtions with Lipshitz onstant less orequal to 1. Rademaher's Theorem states that a funtion whih is Lipshitz ontinuous on thereal line is Lebesgue-almost everywhere di�erentiable. For any h ∈ Lip(1) we denote by h′ itsderivative, whih exists almost everywhere.Corollary 3.8 Let Z ∼ N (0, 1) and let F ∈ domD be entered. Suppose that (3.25) holds forevery funtion h ∈ C2

b and that 4(B1 + B2) 6 5. Then
dW (F,Z) 6

√
2(B1 + B2)(5 + E|F |).Proof. Let h ∈ Lip(1) and, for t > 0, de�ne

ht(x) =

∫ ∞

−∞
h(
√

ty +
√

1 − tx)φ(y)dy,where φ denotes the standard normal density. Then we may di�erentiate and integrate by parts,using that φ′(x) = −xφ(x), to get
h′′

t (x) =
1 − t√

t

∫ ∞

−∞
yh′(

√
ty +

√
1 − tx)φ (y) dy.Hene for 0 < t < 1 we may bound

‖h′′
t ‖∞ 6

1 − t√
t
‖h′‖∞

∫ ∞

−∞
|y|φ(y)dy 6

1√
t
. (3.36)17



Taylor expansion gives that for 0 < t 6
1
2 so that √t 6

√
1 − t,

|E[h(F )] − E[ht(F )]| 6

∣∣∣∣E
∫ {

h(
√

ty +
√

1 − tF ) − h(
√

1 − tF )
}

φ(y)dy

∣∣∣∣

+E
∣∣h(

√
1 − tF ) − h(F )

∣∣

6 ‖h′‖∞
√

t

∫
|y|φ(y)dy + ‖h′‖∞

t

2
√

1 − t
E|F | 6

√
t

{
1 +

1

2
E|F |

}
.Here we used that ‖h′‖∞ 6 1 and that for 0 < θ < 1, we have (

√
1 − θt)−1 < (

√
1 − t)−1.Similarly, |Eh(Z)−Eht(Z)| 6 3

2

√
t. Using (3.25) with (3.36) together with the triangle inequalitywe have for all h ∈ Lip(1)

|E[h(F )] − E[h(Z)]| 6
1√
t
(B1(1) + B2(1)) +

1

2

√
t (5 + E|F |) .Minimising in t gives that the optimal is ahieved for t = 2(B1(1)+B2(1))/(5+E|F |), and usingthis t yields the assertion.To illustrate the result, for Example 3.4 we obtain dW (F,Z) 6

9√
n
(for n > 6) whih is ofthe expeted Berry-Esséen order.4 Normal approximation on a �xed haos4.1 Expliit upper bounds and CLTsWe now fous on random variables of the type F = Jq(f), where Jq(f) is the multiple integralde�ned in Formula (2.6), q > 2 and f ∈ ℓ2

0(N)◦q . Due to the de�nition of the derivative operator
D, as given in Setion 2.5, we know that F ∈ domD. Moreover, by ombining Theorem 3.1 withformulae (3.27)�(3.28) one infers that, for every h ∈ C2

b and for Z ∼ N (0, 1),
∣∣E[h(F )] − E[h(Z)]

∣∣

6 min(4‖h‖∞, ‖h′′‖∞)

√√√√E

[(
1 − 1

q
‖DF‖2

ℓ2(N)

)2
]

+
20

3q
‖h′′‖∞ E‖DF‖4

ℓ4(N). (4.37)The following statement provides an expliit bound of the two expetations appearing in(4.37).Theorem 4.1 Fix q > 2, let f ∈ ℓ2
0(N)◦q, and set F = Jq(f). Then

E

{(
1 − 1

q
‖DF‖2

ℓ2(N)

)2
}

=
∣∣∣1 − q!‖f‖2

ℓ2(N)⊗q

∣∣∣
2

+ q2
q−1∑

p=1

{
(p − 1)!

(
q − 1

p − 1

)2
}2

(2q − 2p)! ‖f̃ ⋆p
p f × 1∆2(q−p)

‖2
ℓ2(N)⊗2(q−p) (4.38)

6

∣∣∣1 − q!‖f‖2
ℓ2(N)⊗q

∣∣∣
2
+ q2

q−1∑

p=1

{
(p − 1)!

(
q − 1

p − 1

)2
}2

(2q − 2p)! ‖f ⋆p
p f × 1∆2(q−p)

‖2
ℓ2(N)⊗2(q−p) ,(4.39)18



and
E‖DF‖4

ℓ4(N) 6 q4
q∑

p=1

{
(p − 1)!

(
q − 1

p − 1

)2
}2

(2q − 2p)!‖f ⋆p−1
p f‖2

ℓ2(N)⊗(2(q−p)+1) . (4.40)Remark 4.2 Aording to Lemma 2.4, one has that
‖f ⋆0

1 f‖2
ℓ2(N)⊗(2q−1) = ‖f ⋆q−1

q f‖2
ℓ2(N) 6 ‖f‖2

ℓ2(N)⊗q × max
j

∑

b1,...,bq−1

f2(j, b1, ..., bq−1),and also, by ombining this relation with (2.4), for p = 2, ..., n − 1,
‖f ⋆p−1

p f‖2
ℓ2(N)⊗(2(q−p)+1) 6 ‖f‖3

ℓ2(N)⊗q

√
max

j

∑

b1,...,bq−1

f2(j, b1, ..., bq−1).These estimates imply that, one ‖f‖ℓ2(N)⊗q is given, the bound on the RHS of (4.40) an beassessed by means of a uniform ontrol on the �in�uene indies� ∑b1,...,bq−1
f2(j, b1, ..., bq−1),

j > 1. As shown in [21, Theorem 2.1 and Setion 3℄, when F = Jq(f) depends uniquely on a�nite number of omponents of X, these in�uene indies an be used to diretly measure thedistane between the law of F and the law of the random variable, say FG, obtained by replaingthe Rademaher sequene with a i.i.d. Gaussian one. This result roughly implies that the twoomponents of the bound (4.37) have a di�erent nature, namely: (4.40) ontrols the distanebetween F and its Gaussian-based ounterpart FG, whereas (4.38)-(4.39) assess the distanebetween FG and a standard Gaussian random variable.Proof of Theorem 4.1. Observe that, by a lassial approximation argument and by virtue ofLemma 2.6, it is su�ient to onsider kernels f with support in a set of the type {1, ..., N}q ,where N < ∞ (this is for onveniene only, sine it allows to freely apply some Fubini arguments).Sine DjF = qJq−1(f(j, ·)), one has that (due to the multipliation formula (2.11))
(DjF )2 = q2

q−1∑

r=0

r!

(
q − 1

r

)2

J2(q−1−r)

(
˜f(j, ·) ⋆r

r f(j, ·) × 1∆2(q−1−r)

)

= q2
q∑

p=1

(p − 1)!

(
q − 1

p − 1

)2

J2(q−p)

(
˜f(j, ·) ⋆p−1

p−1 f(j, ·) × 1∆2(q−p)

)
. (4.41)It follows that, by a Fubini argument,

1

q
‖DF‖2

ℓ2(N) = q

q∑

p=1

(p − 1)!

(
q − 1

p − 1

)2

J2(q−p)

(
f̃ ⋆p

p f × 1∆2(q−p)

)

= q!‖f‖2
ℓ2(N)⊗q + q

q−1∑

p=1

(p − 1)!

(
q − 1

p − 1

)2

J2(q−p)

(
f̃ ⋆p

p f × 1∆2(q−p)

)
,and the equality (4.38) is obtained by means of orthogonality and isometri properties of multipleintegrals. Inequality (4.39) is a onsequene of the fat that, for any kernel h, ‖h̃‖ 6 ‖h‖. To19



prove (4.40), use again (4.41) in order to write
E[(DjF )4] = q4

q∑

p=1

{
(p − 1)!

(
q − 1

p − 1

)2
}2

(2q − 2p)!

∥∥∥∥
˜f(j, ·) ⋆p−1

p−1 f(j, ·) × 1∆2(q−p)

∥∥∥∥
2

ℓ2(N)⊗2(q−p)

6 q4
q∑

p=1

{
(p − 1)!

(
q − 1

p − 1

)2
}2

(2q − 2p)!
∥∥∥f(j, ·) ⋆p−1

p−1 f(j, ·)
∥∥∥

2

ℓ2(N)⊗2(q−p)
.The onlusion is obtained by using the identity

∑

j∈N

∥∥∥f(j, ·) ⋆p−1
p−1 f(j, ·)

∥∥∥
2

ℓ2(N)⊗2(q−p)
=
∥∥f ⋆p−1

p f
∥∥2

ℓ2(N)⊗(2(q−p)+1) .We dedue the following result, yielding su�ient onditions for CLTs on a �xed haos.Proposition 4.3 Fix q > 2, and let Fk = Jq(fk), k > 1, be a sequene of multiple integrals suhthat fk ∈ ℓ2
0(N)◦q and E(F 2

k ) = q!‖fk‖ℓ2(N)⊗q → 1. Then, a su�ient ondition in order to havethat
Fk

Law→ Z ∼ N (0, 1) (4.42)is that
‖fk ⋆r

r fk‖ℓ2(N)⊗2(q−r) → 0, ∀r = 1, ..., q − 1. (4.43)Proof. One only needs to ombine Theorem 4.1 and Relation (4.37) with Point 3 of Lemma 2.4.Remark 4.4 The ontent of Proposition 4.3 ehoes the results proved in [27℄, where it is shownthat, on a �xed Gaussian haos of order q, the onvergene to zero of the ontrations ‖fk ⋆r
r fk‖,

r = 1, ..., q − 1, is neessary and su�ient in order to have the CLT (4.42). See also [22℄ forbounds, involving norms of ontrations, on the normal approximation of the elements of aGaussian haos. See [28℄ and [29℄ for analogous results onerning the normal approximation ofregular funtionals of a Poisson measure. Finally, observe that we do not know at the presenttime wether the ondition (4.43) is neessary in order to have the CLT (4.42).4.2 More on �nite quadrati formsWhen speialized to the ase of normalized double integrals, Theorem 3.1, Proposition 4.3 andRemark 2.5 yield the following result.Corollary 4.5 Let Fk = J2(fk), k > 1, be a sequene of double integrals suh that E(F 2
k ) =

2‖fk‖2
ℓ2(N)⊗2 = 1 (for simpliity). Let Z ∼ N (0, 1). Then, for every k > 1 and every h ∈ C2

b itholds that
∣∣E[h(Fk)] − E[h(Z)]

∣∣ (4.44)
6 4

√
2 min(4‖h‖∞, ‖h′′‖∞) × ‖fk ⋆1

1 fk × 1∆2‖ℓ2(N)⊗2 + 160‖h′′‖∞ × ‖fk ⋆1
2 fk‖2

ℓ2(N)

6 4
√

2 min(4‖h‖∞, ‖h′′‖∞) × ‖fk ⋆1
1 fk × 1∆2‖ℓ2(N)⊗2 + 160‖h′′‖∞ × ‖fk ⋆1

1 fk × 1∆c
2
‖2

ℓ2(N)⊗2 ,and a su�ient ondition in order to have the CLT (4.42) is that ‖fk ⋆1
1 fk‖ℓ2(N)⊗2 → 0.20



Now onsider kernels fk ∈ ℓ2
0(N)◦2, k > 1, suh that for every k the following holds: (i)

2‖fk‖2
ℓ2(N)⊗2 = 1, and (ii) the support of fk is ontained in the set {1, ..., k}2 . Then, the randomvariables
Fk = J2(fk) =

∑

16i,j6k

fk(i, j)XiXj , k > 1, (4.45)are quadrati funtionals (with no diagonal terms) of the vetors (X1, ...,Xk). Limit theoremsinvolving sequenes suh as (4.45), for general vetors of i.i.d. random variables, have beenintensively studied in the probabilisti literature � see e.g. [9℄, [14℄ and the referenes therein.The following result, providing a omplete haraterization of CLTs for sequenes suh as (4.45),an be dedued from the main �ndings ontained in [9℄ (but see also [10℄ for extensions to generalmultilinear funtionals).Proposition 4.6 Let X be the Rademaher sequene onsidered in this paper, and let Fk begiven by (4.45). For every k > 1, write [fk] for the k× k square symmetri matrix {fk(i, j) : 1 6

i, j 6 k}. Then, the following three onditions are equivalent as k → ∞:(a) Fk
Law→ Z ∼ N (0, 1);(b) Trace{[fk]

4} = ‖fk ⋆1
1 fk‖2

ℓ2(N)⊗2 → 0;() E(F 4
k ) → E(Z4) = 3.Remark 4.7 Condition (b) in the previous statement is often replaed by the following:

(b′) Trace{[fk]
4} → 0 and max

j6k

k∑

i=1

fk(i, j)
2 → 0.However, Relation (2.5) shows that the seond requirement in (b′) is indeed redundant.In [5℄, Chatterjee proves that, in Wasserstein distane,

dW (Fk, Z) 6

√
1

2
Trace{[fk]4} +

5

2

k∑

j=1

[ k∑

i=1

fk(i, j)
] 3

2 . (4.46)Note that
max
j6k

[ k∑

i=1

fk(i, j)
2
] 3

2 6

k∑

j=1

[ k∑

i=1

fk(i, j)
2
] 3

2 6
1

2
max
j6k

[ k∑

i=1

fk(i, j)
2
] 1

2 , (4.47)and due e.g. to (2.5), Relation (4.46) gives an alternate proof of the impliation (b) → (a) inProposition 4.6. Another proof of the same impliation an be dedued from the following result,whih is a diret onsequene of Corollary 4.5 and Lemma 2.4 (Point 3).Corollary 4.8 Let the notation and assumptions of this setion prevail. Then, for every k andfor every h ∈ C2
b , one has that

|E[h(Fk)] − E[h(Z)]|
6 4

√
2 min(4‖h‖∞, ‖h′′‖∞)‖fk ⋆1

1 fk × 1∆2‖ℓ2(N)⊗2 + 160‖h′′‖∞‖fk ⋆1
1 fk × 1∆c

2
‖2

ℓ2(N)⊗2

6 4
√

2 min(4‖h‖∞, ‖h′′‖∞)
√

Trace{[fk]4} + 160‖h′′‖∞Trace{[fk]
4}.21



5 Sums of single and double integrals and appliations to weightedruns5.1 Motivation: in�nite weighted runsDue to their simple dependene struture, runs lend themselves as good test examples for normalapproximations; for appliations see for example [1℄. The �rst Berry-Esséen bound for overlap-ping suess runs was derived in [12℄. A multivariate normal approximation for the ount runsof �nite length in the ontext of Stein's method an be found for example in [34℄. Weighted runsan be viewed as a speial ase of weighted U-statistis; a normal approximation using Stein'smethod is available for example in [36℄. Typially these studies fous on ounting runs in a �nitewindow of a possibly in�nite sequene, see for example [1℄ for details. In ontrast, our methodallows to onsider in�nite weighted sums of runs.Let ξ = {ξn : n ∈ Z} be a standard Bernoulli sequene. This means that ξ is a olletionof i.i.d. random variables suh that P [ξ1 = 1] = P [ξ1 = 0] = 1/2. In the sequel, we willsuppose without loss of generality that ξ = 1
2 (1 + X) where X = {Xn : n ∈ Z} is a two-sidedRademaher sequene, obtained e.g. by juxtaposing two independent Rademaher sequenesof the kind introdued in Setion 2.1. Note that we hose Z as a parameter set, in order tosimplify the forthoming disussion. Also, in what follows we will impliitly use the fat thatall the results and bounds established in the previous setions extend to this setting, by simplyreplaing sums over N with sums over Z (the proof of this elementary fat is left to the reader).Now �x an integer d > 1 as well as a sequene {α(n) : n > 1} of elements of ℓ2(Z). In thissetion, we study the normal approximation of the sequene {Gn : n > 1} de�ned by

Gn =
∑

i∈Z

α
(n)
i ξi . . . ξi+d. (5.48)We all Gn an in�nite weighted d-run. Atually, we will rather fous on the normalized versionof Gn, namely

Fn =
Gn − E(Gn)√

VarGn
. (5.49)Observe that, in order to apply Theorem 3.1, one needs to �nd the haoti expansion of Fn or,equivalently, that of Gn. Using the identity ξ = 1

2 (1 + X), it is immediately dedued, see alsoSetion 2.4-(ii), that
Gn = 2−(d+1)

∑

i∈Z

α
(n)
i (1 + Xi) . . . (1 + Xi+d)

= 2−(d+1)
∑

i∈Z

α
(n)
i

∑

I⊂{i,...,i+d}
Xi1 . . . Xi|I| (with I = {i1, . . . , i|I|})

= 2−(d+1)
d+1∑

r=0

∑

i∈Z

α
(n)
i

∑

I⊂{i,...,i+d}
|I|=r

Xi1 . . . Xir

= E(Gn) +

d+1∑

r=1

Jr


2−(d+1)

∑

i∈Z

α
(n)
i

∑

I⊂{i,...,i+d}
|I|=r

˜1{i1} ⊗ . . . ⊗ 1{ir}


 , (5.50)22



where the tilde indiates a symmetrization. In partiular, it is now immediate to ompute DGnand DL−1Gn, by using the de�nitions given in Setion 2.5. However, sine the analysis of (5.48)is meant to be only an illustration, from now on we will fous on the ase where d = 1 (2-runs).The general ase ould be handled in a similar way (at the ost of a quite umbersome notation).5.2 Normal approximation of sums of single and double integralsWe will dedue a bound for the quantity ∣∣E[h(Fn)] − E[h(Z)]
∣∣ (where Z ∼ N (0, 1) and Fn isgiven by (5.49)) from the following result, whih an be seen as a partiular ase of Theorem 3.1.Proposition 5.1 (Sum of a single and a double integral) Let F = J1(f) + J2(g) with f ∈ ℓ2(Z)and g ∈ ℓ2

0(Z)◦2. Assume that ∑i∈Z

∣∣g(i, k)
∣∣ < ∞ for all k ∈ Z. Also, suppose (for simpliity)that VarF = 1, and let h ∈ C2

b . Then
∣∣E[h(F )] − E[h(Z)]

∣∣ 6 min(4‖h‖∞, ‖h′′‖∞)
(
2
√

2‖g ⋆1
1 g1∆2‖ℓ2(Z)⊗2 + 3‖f ⋆1

1 g‖ℓ2(Z)

)

+
160

3
‖h′′‖∞

∑

k∈Z


f4(k) + 16

(
∑

i∈Z

|g(i, k)|
)4

 . (5.51)Remark 5.2 By applying suessively Fubini and Cauhy-Shwarz theorems, one has that

‖f ⋆1
1 g‖2

ℓ2(Z) =
∑

i,j∈Z

f(i)f(j) g ⋆1
1 g(i, j) 6 ‖f‖2

ℓ2(Z)‖g ⋆1
1 g‖ℓ2(Z)⊗2 . (5.52)This inequality has an interesting onsequene. Suppose indeed that the sequenes J1(fn) and

J2(gn), n > 1, are suh that, as n → ∞: (a) ‖fn‖ℓ2(Z) → 1, (b) 2‖gn‖2
ℓ2(Z)⊗2 → 1, ()

∑
k∈Z

f4
n(k) → 0, (d) ∑k∈Z

(∑
i∈Z

|gn(i, k)|
)4 → 0, and (e) ‖gn ⋆1

1 gn‖ℓ2(Z)⊗2 → 0. Then theestimate (5.52) and Proposition 5.1 imply that, for every (α, β) 6= (0, 0), the sequene
αJ1(fn) + βJ2(gn)√

α2 + β2
, n > 1,onverges in law to Z ∼ N (0, 1), and therefore that the vetors (J1(fn), J2(gn)), n > 1, jointlyonverge in law towards a two-dimensional entered i.i.d. Gaussian vetor with unit varianes.Note that eah one of onditions (a)�(e) involves separately one of the two kernels fn and gn. See[24℄ and [28, Setion 6℄, respetively, for several related results in a Gaussian and in a Poissonframework.Proof of Proposition 5.1. Firstly, observe that DkF = 2J1

(
g(·, k)

)
+ f(k) = 2

∑
i∈Z

g(i, k)Xi +
f(k) so that, using (a + b)4 6 8(a4 + b4),

E
∣∣DkF |4 6 128E

(
∑

i∈Z

g(i, k)Xi

)4

+ 8f4(k) 6 128

(
∑

i∈Z

∣∣g(i, k)
∣∣
)4

+ 8f4(k) < ∞.We are thus left to bound B1 and B2 in Theorem 3.1, taking into aount the partiular formof F . We have −L−1F = 1
2J2(g) + J1(f) so that −DkL

−1F = J1

(
g(·, k)

)
+ f(k). Consequently,23



with the multipliation formula (2.11), we get
〈DF,−DL−1F 〉ℓ2(Z)

= 2
∑

k∈Z

J1

(
g(·, k)

)2
+ 3

∑

k∈Z

f(k)J1

(
g(·, k)

)
+ ‖f‖2

ℓ2(Z)

= 2
∑

k∈Z

J2

(
g(·, k) ⊗ g(·, k)1∆2

)
+ 3

∑

k∈Z

f(k)J1

(
g(·, k)

)
+ ‖f‖2

ℓ2(Z) + 2‖g‖2
ℓ2(Z)⊗2

= 2J2(g ⋆1
1 g1∆2) + 3J1(f ⋆1

1 g) + ‖f‖2
ℓ2(Z) + 2‖g‖2

ℓ2(Z)⊗2so that
E
∣∣〈DF,−DL−1F 〉ℓ2(Z) − VarF

∣∣2 = E
∣∣2J2(g ⋆1

1 g1∆2) + 3J1(f ⋆1
1 g)
∣∣2

= 8‖g ⋆1
1 g1∆2‖2

ℓ2(Z)⊗2 + 9‖f ⋆1
1 g‖2

ℓ2(Z).Hene,
B1 6

√
8‖g ⋆1

1 g1∆2‖2
ℓ2(Z)⊗2 + 9‖f ⋆1

1 g‖2
ℓ2(Z)

6
(
2
√

2‖g ⋆1
1 g1∆2‖ℓ2(Z)⊗2 + 3‖f ⋆1

1 g‖ℓ2(Z)

)
.Now, let us onsider B2. We have

∣∣DkF
∣∣ 6 |f(k)| + 2

∑

i∈Z

|g(i, k)|.Similarly,
∣∣DkL

−1F
∣∣ =

∣∣f(k) + J1

(
g(·, k)

)∣∣ =
∣∣∣∣∣f(k) +

∑

i∈Z

g(i, k)Xi

∣∣∣∣∣

6 |f(k)| +
∑

i∈Z

|g(i, k)| 6 |f(k)| + 2
∑

i∈Z

|g(i, k)|.Still using (a + b)4 6 8(a4 + b4), we dedue
∑

k∈Z

∣∣DkL
−1F

∣∣×
∣∣DkF

∣∣3 6
∑

k∈Z

(
|f(k)| + 2

∑

i∈Z

|g(i, k)|
)4

6 8
∑

k∈Z


f4(k) + 16

(
∑

i∈Z

|g(i, k)|
)4

 .Hene

B2 6
160

3

∑

k∈Z


f4(k) + 16

(
∑

i∈Z

|g(i, k)|
)4

and the desired onlusion follows by applying Theorem 3.1.
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5.3 Bounds for in�nite 2-runsWhen d = 1, Proposition 5.1 allows to dedue the following bound for the normal approximationof the random variable Fn de�ned in (5.49).Proposition 5.3 Let {Fn : n > 1} be the sequene de�ned by Fn = Gn−E(Gn)√
VarGn

with
Gn =

∑

i∈Z

α
(n)
i ξiξi+1.Here, ξ = {ξn : n ∈ Z} stands for the standard Bernoulli sequene and {α(n) : n > 1} is a givensequene of elements of ℓ2(Z). Consider a funtion h ∈ C2

b . Then, for Z ∼ N (0, 1),
∣∣E[h(F )] − E[h(Z)]

∣∣ 6
7

16
× min(4‖h‖∞, ‖h′′‖∞)

VarGn
×
√∑

i∈Z

(α
(n)
i )4 (5.53)

+
35

24
× ‖h′′‖∞

(VarGn)2
×
∑

i∈Z

(α
(n)
i )4with

VarGn =
3

16

∑

i∈Z

(α
(n)
i )2 +

1

8

∑

i∈Z

α
(n)
i α

(n)
i+1. (5.54)It follows that a su�ient ondition to have Fn

Law→ Z is that
∑

i∈Z

(α
(n)
i )4 = o

(
(VarGn)2

) as n → ∞.Proof. Identity (5.54) is easily veri�ed. On the other hand, by (5.50), we have
Fn =

Gn − E(Gn)√
VarGn

= J1(f) + J2(g),with
f =

1

4
√

VarGn

∑

a∈Z

α(n)
a

(
1{a} + 1{a+1}

)

g =
1

8
√

VarGn

∑

a∈Z

α(n)
a

(
1{a} ⊗ 1{a+1} + 1{a+1} ⊗ 1{a}

)
.Now, let us ompute eah quantity appearing in the RHS of (5.51). If i 6= j then

(g ⋆1
1 g)(i, j) =

1

64VarGn

∑

a,b,k∈Z

α(n)
a α

(n)
b

(
1{a}(i)1{a+1}(k) + 1{a+1}(i)1{a}(k)

)

×
(
1{b}(j)1{b+1}(k) + 1{b+1}(j)1{b}(k)

)

=
1

64VarGn

(
α

(n)
i α

(n)
i+11{j=i+2} + α

(n)
j α

(n)
j+11{j=i−2}

)
.25



Hene
‖g ⋆1

1 g1∆2‖ℓ2(Z)⊗2

=
1

64VarGn

√∑

i,j∈Z

[
(α

(n)
i )2(α

(n)
i+1)

21{j=i+2} + (α
(n)
j )2(α

(n)
j+1)

21{j=i−2}
]

=

√
2

64VarGn

√∑

i∈Z

(α
(n)
i )2(α

(n)
i+1)

2.We have
(f ⋆1

1 g)(i) =
1

32VarGn

∑

a,b,k∈Z

α(n)
a α

(n)
b

(
1{a}(k) + 1{a+1}(k)

)

×
(
1{b}(i)1{b+1}(k) + 1{b+1}(i)1{b}(k)

)

=
1

32VarGn

(
α

(n)
i α

(n)
i+1 + (α

(n)
i−1)

2 + (α
(n)
i )2 + α

(n)
i−1α

(n)
i−2

)
.Hene, using (a + b + c + d)2 6 4(a2 + b2 + c2 + d2),

‖f ⋆1
1 g‖ℓ2(Z)

=
1

32VarGn

√∑

i∈Z

[
α

(n)
i α

(n)
i+1 + (α

(n)
i−1)

2 + (α
(n)
i )2 + α

(n)
i−1α

(n)
i−2

]2

6
1

16VarGn

√∑

i∈Z

(α
(n)
i )2(α

(n)
i+1)

2 +
∑

i∈Z

(α
(n)
i−1)

4 +
∑

i∈Z

(α
(n)
i )4 +

∑

i∈Z

(α
(n)
i−1)

2(α
(n)
i−2)

2

=

√
2

16VarGn

√∑

i∈Z

(α
(n)
i )2(α

(n)
i+1)

2 +
∑

i∈Z

(α
(n)
i )4.We have, using (a + b)4 6 8(a4 + b4),

∑

k∈Z

f4(k) =
1

256(VarGn)2

∑

k∈Z

[
∑

a∈Z

α(n)
a

(
1{a}(k) + 1{a+1}(k)

)
]4

=
1

256(VarGn)2

∑

k∈Z

(
α

(n)
k + α

(n)
k−1

)4

6
1

16(VarGn)2

∑

k∈Z

(
α

(n)
k

)4
.
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Finally, still using (a + b)4 6 8(a4 + b4),
∑

k∈Z

[
∑

i∈Z

|g(i, k)|
]4

6
1

4096(VarGn)2

∑

k∈Z



∑

i,a∈Z

∣∣α(n)
a

∣∣∣∣1{a}(i)1{a+1}(k) + 1{a+1}(i)1{a}(k)
∣∣



4

=
1

4096(VarGn)2

∑

k∈Z

[∣∣α(n)
k−1

∣∣+
∣∣α(n)

k

∣∣
]4

6
1

256(VarGn)2

∑

k∈Z

(α
(n)
k )4.Now, the desired onlusion follows by plugging all these estimates in (5.51), after observing that∑

i∈Z
(α

(n)
i )2(α

(n)
i+1)

2 6
∑

i∈Z
(α

(n)
i )4, by the Cauhy-Shwarz inequality.Example 5.4 1. Choose α
(n)
i = 1{1,...,n}(i). Then ∑i∈Z

(α
(n)
i )4 = n and

VarGn >
3

16

∑

i∈Z

(α
(n)
i )2 =

3n

16
,so that (5.53) gives a bound of order n−1/2 overall. This is the same order as obtained in[34℄, also for smooth test funtions, while [36℄ obtain a bound of this order in Kolmogorovdistane under suitable onditions on the weights.2. Choose α

(n)
i = i−1 1{n,n+1,...}(i). Then ∑i∈Z

(α
(n)
i )4 = O(n−3) and

VarGn >
3

16

∑

i∈Z

(α
(n)
i )2 ∼n→∞

3

16nso that (5.53) also gives a bound of order n−1/2 overall.6 Multiple integrals over sparse sets6.1 General resultsFix d > 2. Let FN , N > 1, be a sequene of subsets of Nd suh that the following three propertiesare satis�ed for every N > 1: (i) FN 6= ∅, (ii) FN ⊂ ∆N
d (as de�ned in (2.2)), that is, FN isontained in {1, . . . , N}d and has no diagonal omponents, and (iii) FN is a symmetri set, inthe sense that every (i1, ..., id) ∈ FN is suh that (iσ(1), ..., iσ(d)) ∈ FN for every permutation σof the set {1, ..., d}. Let X be the in�nite Rademaher sequene onsidered in this paper. Givensets FN as at points (i)�(iii), we shall onsider the sequene of multilinear forms

S̃N = [d! × |FN |]− 1
2

∑

(i1,...,id)∈FN

Xi1 · · · Xid = Jd(fN ), N > 1, (6.55)
27



where |FN | stands for the ardinality of FN , and
fN (i1, ..., id) := [d! × |FN |]− 1

2 × 1FN
(i1, ..., id).Note that E(S̃N ) = 0 and E(S̃2

N ) = 1 for every N . In the paper [4℄, Blei and Janson studied theproblem of �nding onditions on the set FN , in order to have that the CLT
S̃N

Law→ Z ∼ N (0, 1), N → ∞, (6.56)holds.Remark 6.1 Stritly speaking, Blei and Janson use the notation FN in order to indiate therestrition to the simplex {(i1, ..., id) : i1 < i2 < ... < id} of a set verifying Properties (i)�(iii)above.In order to state Blei and Janson's result, we need to introdue some more notation.Remark on notation. In what follows, we will write ak to indiate vetors ak = (a1, ..., ak)belonging to a set of the type {1, ..., N}k =: [N ]k, for some k,N > 1. We will regard theseobjets both as vetors and sets, for instane: an expression of the type ak ∩ il = ∅, means thatthe two sets {a1, ..., ak} and {i1, ..., il} have no elements in ommon; when writing j ∈ ak, wemean that j = ar for some r = 1, ..., k; when writing ak ⊂ il (k 6 l), we indiate that, for every
r = 1, ..., k, one has ar = is for some s = 1, ..., l. When a vetor ak enters in a sum, we will avoidto speify ak ∈ [N ]k, whenever the domain of summation [N ]k is lear from the ontext.Given N > 1 and an index j ∈ [N ], we set

F ∗
N,j = {id ∈ FN : j ∈ id}.For every N , the set F#

N ⊂ FN × FN is de�ned as the olletion of all pairs (id,kd) ∈ FN × FNsuh that: (a) id ∩ kd = ∅, and (b) there exists p = 1, ..., d − 1, as well as i′p ⊂ id and k′
p ⊂ kdsuh that

((k′
p, id \ i′p), (i′p, kd \ k′

p)) ∈ FN × FN ,where id \ i′p represents the element of [N ]d−p obtained by eliminating from id the oordinatesbelonging to i′p, and (k′
p, id \ i′p) is the element of [N ]d obtained by replaing i′p with k′

p in id (ananalogous desription holds for (i′p, kd \ k′
p)). In other words, the 2d indies i1, . . . , id, j1, . . . , jdan be partitioned in at least two ways into elements of FN .Theorem 6.2 ([4, Th. 1.7℄) Let the above notation and assumptions prevail, and suppose that

lim
N→∞

max
j6N

|F ∗
N,j |

|FN | = 0, and (6.57)
lim

N→∞
|F#

N |
|FN |2 = 0. (6.58)Then Relation (6.56) holds, with onvergene of all moments.Remark 6.3 As pointed out in [4℄, Condition (6.58) an be desribed as a weak �sparsenessondition� (see e.g. [3℄). See also [4, Th. 1.7℄ for a onverse statement.28



The prinipal ahievement of this setion is the following re�nement of Theorem 6.2.Theorem 6.4 Under the above notation and assumptions, onsider a funtion h ∈ C2
b . Thenthere exist two universal onstants C1 and C2, depending only on d, ‖h‖∞ and ‖h′′‖∞, suh that,for every N > 1 and for Z ∼ N (0, 1),

|E[h(Z)] − E[h(S̃N )]| 6 C1
|F#

N | 12
|FN | + C2

[
max
j6N

|F ∗
N,j |

|FN |

] 1
4

. (6.59)Proof. By ombining (4.37) with Theorem 4.1, we know that there exist universal ombinatorialonstants αd
p > 0, p = 1, ..., d − 1 and βd

l > 0, l = 1, ..., d, suh that
∣∣E[h(S̃N )] − E[h(Z)]

∣∣ 6 ‖h‖∞
d−1∑

p=1

αd
p ‖fN ⋆p

p fN 1∆N
2(d−p)

‖ℓ2(N)⊗2(d−p) (6.60)
+‖h′′‖∞

d−1∑

l=1

βd
l ‖fN ⋆l−1

l fN‖2
ℓ2(N)⊗2(d−l)+1 . (6.61)We now evaluate eah norm appearing in (6.60)�(6.61). Aording to the seond and the thirdpoints of Lemma 2.4 and using the fat that ‖fN‖2

ℓ2(N)⊗d = (d!)−1, one has that
‖fN ⋆0

1 fN‖2
ℓ2(N)⊗(2d−1) = ‖fN ⋆d−1

d fN‖2
ℓ2(N)

6
1

d!
max
j6N

∑

bd−1

fN (j,bd−1)
2 =

1

d × d!
max
j6N

|F ∗
N,j |

|FN | . (6.62)Also, by ombining the two inequalities in the seond point of Lemma 2.4, we dedue that, forevery l = 2, ..., d − 1,
‖fN ⋆l−1

l fN‖2
ℓ2(N)⊗2(d−l)+1 6

1

d!
‖fN ⋆d−1

d fN‖ℓ2(N) (6.63)
6

1

(d!)3/2
√

d

[
max
j6N

|F ∗
N,j |

|FN |

] 1
2

6
1

(d!)3/2
√

d

[
max
j6N

|F ∗
N,j |

|FN |

] 1
4

.Now �x p = 1, ..., d − 1. One has that
‖fN ⋆p

p fN 1∆N
2(d−p)

‖2
ℓ2(N)⊗2(d−p) (6.64)

=
1

(d!|FN |)2
∑

ad−p,bp
xd−p,yp

1FN
(ad−p,bp)1FN

(xd−p,bp)1FN
(xd−p,yp)1FN

(ad−p,yp)1{ad−p∩xd−p=∅}

=

p∑

γ=0

γ!

(
p

γ

)2 Uγ

(d!|FN |)2 ,where
U0 =

∑

ad−p, bp
xd−p, yp

1FN
(ad−p,bp)1FN

(xd−p,bp)1FN
(xd−p,yp)1FN

(ad−p,yp)1{ad−p∩xd−p=∅}1{bp∩yp=∅}

6 |F#
N |, 29



and
Up =

∑

ad−p, bp
xd−p

1FN
(ad−p,bp)1FN

(xd−p,bp)1{ad−p∩xd−p=∅}

6
∑

bp



∑

ad−p

1FN
(ad−p,bp)




2

6 |FN | × max
j6N

|F ∗
N,j |,and �nally, for γ = 1, ..., p − 1,

Uγ =
∑

ad−p,uγ , bp−γ
xd−p, yp−γ

1FN
(ad−p,uγ ,bp−γ)1FN

(xd−p,uγ ,bp−γ) ×

×1FN
(xd−p,uγ ,yp−γ)1FN

(ad−p,uγ ,yp−γ)1{ad−p∩xd−p=∅}1{bp−γ∩yp−γ=∅}

6
∑

ad−p,uγ , bp−γ
xd−p, yp−γ

1FN
(ad−p,uγ ,bp−γ)1FN

(xd−p,uγ ,bp−γ) ×

×1FN
(xd−p,uγ ,yp−γ)1FN

(ad−p,uγ ,yp−γ)1{bp−γ∩yp−γ=∅}

6 |FN |2 × ‖fN ⋆d−p
d−p+1 fN‖2

ℓ2(N)⊗2p−1 .The proof is onluded by using the estimates (6.62) (for p = 1) and (6.63) (for p = 2, ..., d − 1).We shall now state a generalization of Theorem 6.4, providing an expliit upper bound forthe normal approximation of multiple integrals de�ned over in�nite sets. This result showsone again that our approah allows to deal diretly with the Gaussian approximation of randomvariables that are funtions of the whole in�nite sequene X. Consider a sequene of real numbers
β = {βi : i > 1} ∈ ℓ2(N), and de�ne the �nite measure on N

mβ(A) =
∑

i∈A

β2
i , A ⊂ N. (6.65)We denote by md

β (d > 2) the anonial d-produt measure assoiated with mβ. For every d > 2and for every set F ⊂ Nd, we de�ne the sets F# ⊂ F × F and F ∗
j , j = 1, 2, ... as before. Inpartiular, F ∗

j is the olletion of all (i1, ..., id) ∈ F suh that j = ik for some k. For β asbefore, and F ∈ ∆d (possibly in�nite) suh that mβ(F ) > 0, we are interested in the normalapproximation of the random variable
J(β, F ) =

1

[d!mβ(F )]1/2

∑

(i1,...,id)∈F

βi1 · · · βidXi1 · · · Xid .The following statement, whose proof (omitted) follows along the lines of that of Theorem 5.4,provides an upper bound for the normal approximation of J(β, F ).Proposition 6.5 Let Z ∼ N (0, 1). Under the above notation and assumptions, for every h ∈ C2
bone has that there exist positive onstants K1 and K2, depending uniquely on d, ‖h‖∞ and ‖h′′‖∞,suh that

∣∣E[h(Z)] − E[h(J(β, F ))]
∣∣ 6 K1

m2d
β (F#)

1
2

md
β(F )

+ K2

[
sup
j>1

md
β(F ∗

j )

md
β(F )

] 1
4

. (6.66)30



6.2 Frational Cartesian produtsIn this setion, we desribe an expliit appliation of Theorem 6.4. The framework and notationare basially the same as those of Example 1.2 in [4℄. Fix integers d > 3 and 2 6 m 6 d − 1,and onsider a olletion {S1, ..., Sd} of distint non-empty subsets of [d] = {1, ..., d} suh that:(i) Si 6= ∅, (ii) ⋃i Si = [d], (iii) |Si| = m for every i, (iv) eah index j ∈ [d] appears in exatly
m of the sets Si, and (v) the over {S1, ..., Sd} is onneted (i.e., it annot be partitioned intotwo disjoint partial overs). For every i = 1, ..., d and every yd = (y1, ..., yd) ∈ Nd, we use thenotation πSi

y = (yj : j ∈ Si). Note that the operator πSi
transforms vetors of Nd into vetors of

Nm. For every N > dm, write n = ⌊N1/m⌋, that is, n is the largest integer suh that n 6 N1/m.Now selet a one-to-one map ϕ from [n]m into [N ], and de�ne
F ∗

N = {(ϕ(πS1kd), ..., ϕ(πSd
kd)) : kd ∈ [n]d} ⊂ [N ]d,(note that, in general, F ∗

N is not a symmetri set), F ∗∗
N = F ∗

N ∩ ∆d
N , and also

FN = sym(F ∗∗
N ), (6.67)where sym(F ∗∗

N ) indiates the olletions of all vetors yd = (y1, ..., yd) ∈ Nd suh that
(yσ(1), ..., yσ(d)) ∈ F ∗∗

Nfor some permutation σ.Proposition 6.6 Let Z ∼ N (0, 1), and let FN and S̃N , N > dm, be respetively de�ned aord-ing to (6.67) and (6.55). Then, for every h ∈ C2
b , there exists a onstant K > 0, independent of

N , suh that
∣∣E[h(S̃N )] − E[h(Z)]

∣∣ 6
K

N1/4
.Proof. The omputations ontained in [4, p. 16℄ an be straightforwardly adapted to our setting,so that we dedue that the sequene {FN : N > dm} has ombinatorial dimension α = d/m.Reall that this means that there exist �nite onstants 0 < Q2 < Q1 < ∞ (independent of

N) suh that: (a) |FN | > Q2N
α, and (b) for every A1, ..., Ad ⊂ [N ], |FN ∩ (A1 × · · ·Ad)| 6

Q1(max16j6d |Aj |)α. Thanks to Theorem 6.4, to onlude the proof it is therefore su�ient tohek that, as N → ∞,
max
j6N

|F ∗
N,j | = O(Nα−1) and |F#

N | = O(N2α−1). (6.68)Start by observing that every element (z1, ..., zd) of FN has the form
(z1, ..., zd) = (ϕ(πSσ(1)

kd), ..., ϕ(πSσ(d)
kd)), (6.69)where kd = (k1, ..., kd) ∈ [n]d and σ is a permutation of [d]. Sine ϕ is one-to-one, it followsthat, for every j 6 N , there are at most d!d × nd−m elements of the set FN,j . To see this, justobserve that, every (z1, ..., zd) ∈ FN,j is ompletely spei�ed by the following three elements: (i)a permutation σ of d, (ii) the index a = 1, ..., d suh that za = j, and (iii) the values of thoseoordinates kb suh that b 6∈ Sσ(a). Sine n 6 N1/m by onstrution, one immediately obtainsthe �rst relation in (6.68). 31



To prove the seond part of (6.68), we shall �rst show that, if ((z1, ..., zd), (z
′
1, ..., z

′
d)) ∈ F#

N aresuh that (z1, ..., zd) is as in (6.69), and (z′1, ..., z
′
d) = (ϕ(πSσ′(1)

k′
d), ..., ϕ(πSσ′(d)

k′
d)) (k′

d ∈ [n]d)then kd and k′
d must have m oordinates in ommon. The de�nition of F#

N implies indeed that,for suh a vetor ((z1, ..., zd), (z
′
1, ..., z

′
d)), there exists

(u1, ..., ud) = (ϕ(πSρ(1)
id), ..., ϕ(πSρ(d)

id)) ∈ FN ,suh that, for some p = 1, ..., d − 1: (a) there exist indies a1, ..., ap and b1, ..., bp suh that
πSρ(ai)

id = πSσ(bi)
kd for every i = 1, ..., p, and (b) there exist indies v1, ..., vd−p and w1, ..., wd−psuh that πSρ(vi)
id = πSσ′(wi)

k′
d for every i = 1, ..., d − p. Note that then we neessarily have

{a1, ..., ap, v1, ..., vd−p} = {b1, ..., bp, w1, ..., wd−p} = [d]. By onnetedness, there exists at leastone q ∈ [d] suh that iq (i.e., the qth oordinate of id) belongs both to one of the sets πSρ(ai)
id andto one of the sets πSρ(vi)

id. We shall say that suh a q veri�es property D. The fat that thereexists at least one q verifying property D implies, in partiular, that kd and k′
d have at leastone oordinate in ommon. We will now show that there exist neessarily m indies q verifyingproperty D, and therefore that kd and k′

d have m oordinates in ommon. To see this, we reasonby ontradition and suppose that there were only a < m indies with property D. Sine eahblok Sx has size m, this would imply that it is possible to partition a set of size mp − a intodisjoint subsets of size m. But this is absurd, and we therefore dedue that kd and k′
d have moordinates in ommon. This last property implies that there exists a onstant L, independentof N , suh that |F#

N | 6 Ln2d−m 6 LN2α−1. This onludes the proof.Remark 6.7 Note that the ombinatorial dimension α = d/m, as appearing in the proof ofProposition 6.6, is an index of interdependene between the oordinates of the sets FN . See Ch.XIII in [3℄ for more details on this point.6.3 Beyond the Rademaher ase: a question by Blei and JansonNow we go bak to the framework and notation of Setion 6.1, so that, in partiular, the sequene
S̃N , N > 1, is de�ned aording to (6.55). For every N de�ne S̃G

N to be the random variableobtained from (6.55) by replaing the sequene X with a i.i.d. Gaussian sequene G = {Gi : i >

1}, where eah Gi has mean zero and unit variane. A natural question, whih has been left openby Blei and Janson in [4, Remark 4.6℄, is whether under the onditions (6.57)�(6.58) the sequene
S̃G

N , N > 1, onverges in law towards a standard Gaussian distribution. Note that this problemould be takled by a diret omputation, based for instane on [22℄ or [27℄. However, the resultsof this paper, ombined with those of [21℄, allow to elegantly dedue a more general result, whihwe provide in the forthoming statement. In what follows, we write V = {Vi : i > 1} to indiatea entered i.i.d. sequene, with unit variane and suh that E|V1|3 = η < ∞ (note that theresults of [21℄ would allow to obtain similar results in even more general frameworks, but we donot look for generality here). We also denote by S̃V
N the random variable obtained from (6.55)by replaing X with V .Proposition 6.8 Under the above notation and assumptions, onsider a funtion h ∈ C3

b . Then,there exist two universal onstants B1 and B2, depending uniquely on d, η, ‖h‖∞, ‖h′′‖∞ and
‖h′′′‖∞, suh that, for every N > 1 and for Z ∼ N (0, 1),

∣∣E[h(Z)] − E[h(S̃V
N )]
∣∣ 6 B1

|F#
N | 12

|FN | + B2

[
max
j6N

|F ∗
Nj |

|FN |

] 1
4

. (6.70)32



In partiular, if (6.57)�(6.58) take plae, then S̃V
N onverges in law towards Z.Proof. One has that

∣∣E[h(Z)] − E[h(S̃V
N )]
∣∣ 6

∣∣E[h(Z)] − E[h(S̃N )]
∣∣+
∣∣E[h(S̃N )] − E[h(S̃V

N )]
∣∣,and the onlusion is obtained by ombining Theorem 6.4 with the fat that, aording to [21,Theorem 3.18, ase H2℄, there exists a onstant Q, depending only on ‖h′′′‖∞ and η, suh that

∣∣E[h(S̃N )] − E[h(S̃V
N )]
∣∣ 6 Q

[
max
j6N

|F ∗
Nj |

|FN |

] 1
2
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Appendix: Some tehnial proofsProof of Lemma 2.4In what follows, for k > 1, we shall write ak to indiate the generi vetor ak = (a1, ..., ak) ∈ Nk.We start by proving the �rst point. To do this, just write, using the Cauhy-Shwarz inequality,
‖f ⋆l

r g‖2
ℓ2(N)⊗(n+m−r−l) =

∑

im+n−r−l

f ⋆l
r g (im+n−r−l)

2

=
∑

in−r

∑

jm−r

∑

kr−l

(
∑

al

f(in−r,kr−l,al)g(jm−r,kr−l,al)

)2

6
∑

in−r

∑

kr−l

∑

al

f2(in−r,kr−l,al)
∑

jm−r

∑

bl

g2(jm−r,kr−l,bl)

6
∑

in−r

∑

kr−l

∑

al

f2(in−r,kr−l,al)
∑

jm−r

∑

lr−l

∑

bl

g2(jm−r, lr−l,bl)

= ‖f‖2
ℓ2(N)⊗n‖g‖2

ℓ2(N)⊗m .The �rst part of the seond point is obtained by writing
max

j



∑

bn−1

f2(j,bn−1)




2

6
∑

j



∑

bn−1

f2(j,bn−1)




2

= ‖f ⋆n−1
n f‖2

ℓ2(N)

6 max
j

∑

bn−1

f2(j,bn−1) ×
∑

j′

∑

b′
n−1

f2(j,bn−1)

= max
j

∑

bn−1

f2(j,bn−1) × ‖f‖2
ℓ2(N)⊗n .For the seond part, we have, by applying (in order) the Cauhy-Shwarz inequality, as well
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as the previous estimate,
‖f ⋆l−1

l g‖2
ℓ2(N)⊗(n+m−2l+1)

=
∑

j

∑

kn−l

∑

lm−l



∑

il−1

f(j, il−1,kn−l)g(j, il−1, lm−l)
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=
∑

j

‖f(j, ·) ⋆l−1
l−1 g(j, ·)‖2

ℓ2(N)⊗(n+m−2l)
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∑
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f2(j,bn−1)




2

× ‖g‖2
ℓ2(N)⊗m = ‖f ⋆n−1

n−1 f‖ℓ2(N) × ‖g‖2
ℓ2(N)⊗m .Finally, for the third part, just observe that

‖f ⋆0
1 f‖2
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= ‖f ⋆n−1
n f‖2

ℓ2(N)and, for 2 6 l 6 n:
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= ‖f ⋆l−1
l−1 f × 1∆c

2n−2l+2
‖2

ℓ2(N)⊗(2n−2l+2) .Proof of Lemma 2.6We have, by bilinearity and using the �rst point of Lemma 2.4,
‖fk ⋆r

r gk − f ⋆r
r g‖ℓ2(N)⊗(m+n−2r) = ‖fk ⋆r

r (gk − g) + (fk − f) ⋆r
r g‖ℓ2(N)⊗(m+n−2r)

6 ‖fk ⋆r
r (gk − g)‖ℓ2(N)⊗(m+n−2r) + ‖(fk − f) ⋆r

r g‖ℓ2(N)⊗(m+n−2r)

6 ‖fk‖ℓ2(N)⊗n‖gk − g‖ℓ2(N)⊗m + ‖fk − f‖ℓ2(N)⊗n‖g‖ℓ2(N)⊗m −→
k→∞

0.
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Proof of Proposition 2.9We assume, without loss of generality, that m 6 n. We �rst prove (2.11) for funtions f and gwith support, respetively, in ∆N
n and ∆N

m, for some �nite N . One has that
Jn (f)Jm (g) =

∫

∆N
n ×∆N

m

{
f ⋆0

0 g
}

dµ⊗n+m
X =

∫

∆N
n ×∆N

m

{f ⊗ g} dµ⊗n+m
X .For r = 0, ...,m, we denote by Πr (n,m) the set of all partitions π of {1, ...., n + m} omposed ofi) exatly r bloks of the type {i1, i2}, with 1 6 i1 6 n and n + 1 6 i2 6 n + m,ii) exatly n + m − 2r singletons.For instane: an element of Π2 (3, 2) is the partition

π = {{1, 4} , {2, 5} , {3}} ; (6.71)the only element of Π0 (n,m) is the partition π = {{1} , {2} , ..., {n + m}} omposed of all sin-gletons; an element of Π3 (4, 4) is the partition
π = {{1, 5} , {2, 6} , {3, 7} , {4} , {8}} . (6.72)It is easily seen that Πr (n,m) ontains exatly r!

(
n
r

)(
m
r

) elements (to speify an element of
Πr (n,m), �rst selet r elements of {1, ..., n}, then selet r elements in {n + 1, ..., n + m} , thenbuild a bijetion between the two seleted r-sets). For every r = 0, ...,m and every π ∈ Πr (n,m),we write BN

n,m (π) to denote the subset of {1, ..., N}n+m given by
{
(i1, ..., in, in+1, ..., in+m) ∈ {1, ..., N}n+m : ij = ik i� j and k are in the same blok of π

}(note the �if and only if� in the de�nition). For instane, for π as in (6.71), an element of B3
3,2 (π)is (1, 2, 3, 1, 2); for π as in (6.72), an element of B5

4,4 (π) is (1, 2, 3, 4, 1, 2, 3, 5). The following twofats an be easily heked;A)
∆N

n × ∆N
m =

m⋃

r=0

⋃

π∈Πr(n,m)

BN
n,m (π) ,where the unions are disjoint;B) For every r = 0, ...,m, and every π ∈ Πr (n,m),

∫

BN
n,m(π)
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0 g
}

dµ⊗n+m
X =

∫

∆n+m−2r

{f ⋆r
r g} dµ⊗n+m−2r

X .(note that the last expression does not depend on the partition π, but only on the lass
Πr (n,m)). 38



It follows that
Jn (f)Jm (g) =

∫
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n ×∆N
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0 g
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r g
)
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]
,whih is the desired onlusion. We stress that the equality (∗) has been obtained by using thesymmetry of the measure µ⊗n+m

X . The result for general f, g is dedued by an approximationargument and Lemma 2.6. This onludes the proof.
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