
HAL Id: hal-00331236
https://hal.science/hal-00331236v1

Submitted on 15 Oct 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Photon Streaming for Interactive Global Illumination in
Dynamic Scenes

Daniel Meneveaux, Flavien Bridault

To cite this version:
Daniel Meneveaux, Flavien Bridault. Photon Streaming for Interactive Global Illumination in Dy-
namic Scenes. 2008. �hal-00331236�

https://hal.science/hal-00331236v1
https://hal.archives-ouvertes.fr


Photon Streaming for Interactive Global
Illumination in Dynamic Scenes

Daniel Meneveaux, Flavien Bridault
Laboratoire XLIM, département SIC, Université de Poitiers

October 15, 2008



Abstract

While many methods exist for physically computing diffuse light inter-reflexions, rel-
atively few of them are adapted to dynamic scenes. Despite many approximations
made on the formal rendering equation, managing dynamic environments at interac-
tive or real-time frame rates still remains one of the most challenging problem of these
years. This paper presents a lighting simulation system based on photon streaming,
performed continuously on the CPU. The energy corresponding to each photon im-
pact is associated to regions of space, defined by points and used during the rendering
phase as virtual surface element light sources (VSLs). The rendering process can be
performed interactively on the GPU, using several approximations. As shown in the
results, our method provides high framerates for dynamic scenes, with moving objects
or light sources.



3 images from our photon streaming rendering system: (a) the light source is close to the left red wall; (b) the light source

is centered in the scene; (c) the light source is close to the right green wall.

(a) (b) (c)

0.1 Introduction

Lighting simulation systems aim at estimating multiple reflections of light in a 3D en-
vironment. Even though many authors propose heuristics for reducing computing time,
managing moving lights and objects requires the computation of a global illumination
solution for each frame.

Our goal is to provide a system that handles dynamic scenes while updating global
illumination on the fly. Therefore, our method is based on a continuous stream of
photons emitted inside the environment, that can be considered as the light flux emitted
by a light source in the real world. For softening flickering during the rendering phase,
photon energy is cumulated onto virtual surface element light sources (VSLs), placed
a priori onto the scene geometry.

1



In this paper, our contributions include :

• continuous photon shooting in the environment, corresponding to the real world
lighting process;

• the accumulation of photons energy on pre-distributed points (placed indepen-
dently from lighting considerations) in the scene for representing indirect light-
ing;

• the use of these points as virtual surface element light sources (VSLs from now
on) during rendering, for reducing spot artifacts and flickering, instead of virtual
point light sources (VPLs);

• a method for rendering realistic images at interactive frame rates with dynamic
environments, though without taking VSLs shadows into account.

Figure 1: Results of images produced at about 20 frames per second with Sponza
Atrium, containing more than 66K triangles and 60K vertices.

This paper is organized as follows. Section 0.2 presents previous work related to
(interactive) global illumination in dynamic scenes. Section 0.3 provides an overview
of our lighting simulation and rendering system. Section 0.4 details the use of vir-
tual surface light sources. Section 0.5 shows how photon streaming can be used for
rapidly updating global illumination in dynamic scenes. Section 0.6 explains the ren-
dering phase and the assumptions we make for reducing computing time. Section 0.7
provides technical aspects about our data structure. Section 0.8 shows the results ob-
tained. Section 0.9 concludes and presents future work.

0.2 Related Work

Though radiosity have been largely employed for computing global illumination, in-
teractively updating dynamic scenes requires (re)meshing for each frame when objects

2



move. Wavelet radiosity can be effectively used for interactive rendering in static en-
vironments with moving light sources and glossy inter-reflexions [KTHS06], but the
problem remains difficult for moving objects.

Precomputed Radiance Transfer is often used for estimating reflected light around
an object [pSKS02, KAMJ05]. The drawback of this family of methods lies in the
pre-computing time and the memory required estimating incoming radiance, at many
points around each object, or in the scene, according to many incident light directions.

Radiance or irradiance caching has also successfully been used for global illumi-
nation, using temporal gradients [GKBP05], with low-frequency BRDFs when the an-
imation is known a priori. However, as shown in [KG05], interpolating values between
samples provide artifacts and should be carefully managed. In addition, computing
new caches using Monte-Carlo methods remains time consuming when the viewpoint
moves.

Photon tracing approaches [Jen01] are also used as a basis for computing light inter-
reflexions. For instance some authors [DBMS02] propose to selectively trace photons
into regions that require update, using priority criteria for tracing appropriate photons.
Perception is also used for guiding computations. This method implies constructing
regions with hierarchical photon shooting, using selective and perception criteria for
reducing artifacts. In [LC04], several photon-maps are used for reducing visual arti-
facts and selecting photons during lighting simulation. This approach also proposes
a hierarchical photon tracing system. However, constructing the photon-map remains
time-consuming due to balancing and should be reconstructed for each frame when
objects move.

Instant radiosity is often used as a basis for providing real-time rendering of com-
plex scenes [WBS03, GWS05]. However, these types of methods need attention be-
cause of flickering due to inhomogeneous redistribution of VPLs at each frame. VPLs
distribution can also be improved as shown in [LSK∗07], and the viewpoint can also be
taken into account [SIP07, SIP06]. Using resampling strategies can reduce processing
time and/or flickering, but still requires additional processing.

In [NPG03], interactive global illumination is performed using environment maps
distributed according to a regular grid. Several bounces of light inter-reflections can be
taken into account associating hemispherical harmonics to each location. However, the
number of environment maps should be increased according to the scene complexity,
also increasing sensibly the rendering time.

In this paper, we propose a lighting simulation system dedicated to diffuse inter-
reflexions in dynamic environments, without a priori knowledge. It can be seen as
a hybrid approach between photon-tracing and instant radiosity, that naturally solves
several drawbacks such as flickering and inter-reflection light spots. No photon map
balancing is required due to the use of virtual surface element light sources, that are
updated on the fly in O(1) complexity.

0.3 System Overview

Our lighting simulation system operates as follows:

3



• points defining virtual surface element light sources (VSLs) are distributed onto
the environment surfaces;

• photons are shot continuously and stored in a photon pool of fixed size;

• every time a new photon hits an object, it replaces the oldest photon in the pool
(queue)

• the new photon energy is associated with the closest VSL, and the oldest photon
energy is subtracted from its associated VSL.

The rendering phase relies on geometry and VSLs. It can be performed either
using ray tracing or GPU, but this paper rather focuses on GPU interactive rendering.
For each frame, direct shadows are estimated using shadow maps, direct lighting is
performed using fragment shaders, and indirect reflections are taken into account using
VSLs power (also using fragment shaders). Both direct and indirect illumination can
be estimated using deferred shading.

Figure 2 illustrates our main system. VSLs are placed in a few seconds when
loading the scene geometry (distribution criteria are discussed in section 0.4). Our
programs allows rendering immediately. Photon shooting can be done one time or
continuously (photon streaming) so as to update VSLs energy.

(1)

Preprocessing

Photon stream

Lighting simulation

(2)

3D Scene

VSLs
Shoot photons

and 
Update VSLs

Rendering

VSL
Distribution

Figure 2: System overview: VSLs are placed in the environment within a few seconds,
according to geometry; photon streaming can operate continuously for dynamic global
illumination while objects move.

0.4 Virtual Surface Light Sources

Instant radiosity have been used by several authors for describing light interreflexions
in diffuse environments [Kel97, WBS03, SIP06, SIP07]. This process produces virtual
point light sources (VPLs), which position remains difficult to control due to Monte-
Carlo distribution. Light spots may alter the images realism, for instance when a VPL
is located in a room corner or close to objects. In addition, for dynamic scenes, lighting
simulation implies tracing new samples, producing undesirable flickering artifacts.

4



0.4.1 VSLs Definition

In this paper, we propose several enhancements that highly reduce these artifacts. First,
we do not use VPLs as photons impacts because of flickering. We instead introduce
a precomputed repartition of points in the scene that define regions (and also VSLs
centers) used for collecting inter-reflections energy. The repartition heuristics are such
that these points are located far from polygons edges so as to avoid light spots (for
instance in room corners). During rendering, they are not considered as virtual point

light sources, but as virtual surface element light sources, highly reducing light spots.

dS

−→
ωo

x
′

x

−→
ωi

dωi

θiθo

r

θ′

dS′

Figure 3: Incident and outgoing light geometry for a given surface element dx.

Let us consider the radiance equation (figure 3):

Lo(x,
−→ωo) = Le

o(x,
−→ωo)+

Z

Ω
Li(x,

−→ωi).R(x,−→ωi,
−→ωo).cosθi.dωi

with

dω =
dS′.cosθ′

r2

when considering surface elements. Consequently, the term
Z

Ω
Li(x,

−→ωi).R(x,−→ωi,
−→ωo).cosθi.dωi

can be rewritten as:
Z

x′∈scene
L′

o(x
′,−→ωi).R(x,−→ωi,

−→ωo).V (x,x′).
cosθi.cosθ′

r2 dS′

In addition, the radiosity exiting from a surface element dS′ is: B′ = dΦ′/dS′, where
dΦ′ is given by the light energy associated with each VSL (Φs). Thus, for diffuse
surfaces,

L′

o(x,
−→ω ) =

B′

π
=

Φs

dS′.π
.

In addition, R(x,−→ωi,
−→ωo) is constant and renamed R(x)=ρ(x)/π. ρ(x) being the surface

albedo at the given surface element around x and Φs being the surface light source
energy. Finally, considering that light inter-reflections can be concentrated at VSLs,
the integral becomes the following sum:

Lo(x,
−→ωo) = Le

o(x,
−→ωo)+ ∑

Φs∈V SLs

Φs.R(x).
cosθi.cosθ′

π.r2

5



Note that compared to instant radiosity, this formulation introduces the cosine term
cosθ′, depending on the surface light source orientation. This orientation can be taken
into account using the surface normal corresponding to each VSL. In practice, the
normal is stored in the VSL data structure.

0.4.2 VSLs Distribution

VSLs are placed randomly onto the scene surfaces as uniformly as possible, so as to
represent the overall global light inter-reflections in the scene. In addition, we wish the
pre-processing step be as fast as possible.

The number of VSLs Nv is a user-given parameter of our lighting simulation pro-
gram. Using the scene total surface area, a VSL density is estimated, providing for each
object the number of associated VSLs. Placing VSLs consists in randomly choosing a
triangle on the object and (also randomly) placing a point on its surface.

In order to move VSLs away from edges, a small scale is virtually applied to trian-
gles before distribution (see Figure 4.a).

VSL

(a) (b)

Figure 4: Distribution of VSL points onto scene surfaces: (a) for avoiding accumulation
of VSLs on triangle edges, a scale is applied to triangles; (b) the resulting distribution
may still contain several VSLs close to one another.

Unfortunately, distributing VSLs on surfaces independently using such a random
process may result in placing several VSLs very close to one another (Figure 4.b).
This is why we proceed in two steps. The first step consists in increasing the VSLs
density (computed from the number given by the user). Experimentally, an increase of
10% provides interesting results. This process generates too many VSLs. The second
step consists in iteratively removing close VSLs, until Nv is reached (Figure 5). The
naïve process requires to estimate the distance between all the pairs of VSLs points,
corresponding to a complexity in O(n2) every time a VSL has to be removed.

Instead of computing all the distances at every step, we maintain for each VSL
V two distances dmin1 and dmin2 corresponding respectively to the two closest VSLs
V1 and V2 (Figure 5), as detailed in Algorithm 1. dmin1 defines which is the closest
distance between two VSLs while dmin2 is used to determine which one should be
actually removed. This process only requires O(n) comparisons instead of O(n2) for
each removed VSL.

Note that: (i) VSLs are attached to the objects, so that when the user moves an
object, he also moves the corresponding VSLs; (ii) at least one VSL is attached to

6



objects; (iii) this process does not actually produce a uniform distribution of VSLs.

Algorithm 1 Additional VSLs removal

for all VSLs Vi do

compute Vi.dmin1 and Vi.dmin2 distances;
end for

while Nvsls > Nv do

let Vk be the VSL having the smallest dmin1 and dmin2 values
for all VSLs Vi do

if Vi.V1 = Vk or Vi.V2 = Vk then

update Vi.dmin1 and/or Vi.dmin2
end if

end for

end while

Active VSL

Etc.

(a) (b)

VSL to be removed

removed VSL

Figure 5: Removing additional VSLs is performed choosing the VSL having the closest
distance to its 2 closest neighbors: (a) first VSL removal; (b) removing a second VSL
requires updating all the distances dmin1 and dmin2.

0.5 Photon Streaming

Our photon streaming approach simulates light flux continuously emitted in the envi-
ronment. In practice, instead of re-computing the entire lighting simulation for every
frame, we use the VSLs energy corresponding to the photons stored in the pool. The
data structure associated with each photon contains a reference to the corresponding
closest VSL (figure 6).

Every time a new photon Pn impact is computed, the following operations are per-
formed:

Algorithm 2 New photon Pn impact

- Let Vo be the VSL corresponding to the oldest photon Po

- Vo.Φ -= Po.Φ
- remove Po from the pool (queue)
- find the VSL Vn closest to Pn

- Vn.Φ += Pn.Φ

Let us consider a light source emitting a given light power (in Watts), corresponding

7



VSL

Photon pool

Link photon-VSL

New photon
Oldest photon

Figure 6: Links between photons and VSLs. When a new photon impact is computed,
the photon pool is updated as well as the energy of the VSLs. Each photon has a link
to its associated VSL allowing O(1) complexity update. Note that a VSL can receive
light flux from 0 or several photons.

to the energy emitted per time unit. The overall lighting in the scene at a given frame
should be represented by the overall energy distributed in the scene.

The photon pool corresponds to an approximation of this energy. Physically, this
value should be entirely re-computed for every frame (which is the case for many
existing methods). However, the entire photon pool is rapidly updated, producing a
slight latency when objects move. In addition, when the viewpoint is changed while
the scene remains static, photon streaming can be interrupted.

0.6 Rendering Process

The photon pool is not directly used for rendering so as to avoid splatting noise or long
final gather. We instead use VSLs irradiance. We have implemented a GPU rendering
program using OpenGL. For each frame, our program computes shadow maps and
estimates direct lighting with fragment shaders; indirect lighting is computed using
VSLs energy only. We have decided not to take VSLs shadows into account so as to
accelerate rendering process as much as possible. Consequently, some regions in the
images might be sensibly over-illuminated (figure 7).

For estimating the impact of indirect shadows, we have used several photographs
of the real world (figure 8). Figure 9 gives the (inverted) image differences for natural
lighting (left) and using a light spot pointing the upper left corner of the box (right).
The darker pixels correspond to regions where the radiance difference is high with
and without the object in the scene. Note that on these photographs, many pixels are
different because of indirect lighting (not only shadows). However, main (visible)
indirect shadows are projected onto surfaces that are close to the considered object.

Any method usually used for virtual point light sources (instant radiosity) render-
ing can replace our GPU rendering system for indirect shadows, since photon tracing
remains independent of rendering. Another solution could be to use ambient occlusion
computations.

Our GPU rendering process requires several passes, that can benefit from deferred

8



Figure 7: Worst case when VSL shadows are not taken into account: the arch is illumi-
nated by VSLs from below the floor.

Figure 8: Photographs of indirect shadows: (left) Nicolas bedroom experimentation
place; (top-right) photograph with indirect natural lighting without object; (bottom-
right) same lighting conditions with an object. Note the shadows on the box floor.

9



(a) (b)

Figure 9: Inverted difference photographs between with and without the object, the
darker the image, the higher the difference: (a) with indirect illumination of natural
light, coming from the window; (b) with a light spot pointing to the upper-left corner,
with a bright region in the back due to residual direct lighting compensated by inter-
reflexions.

shading: (i) render the scene for deferred shading; (ii) for each light source, compute
the corresponding shadow map and estimate direct light contribution; (iii) for each VSL
cumulate light contributions, using the G-buffer.

0.7 Technical aspects

0.7.1 Photon Streaming

Lighting simulation is achieved using photon tracing, requiring an acceleration struc-
ture. We have chosen to define a bounding box and a kd-tree for each object in the
scene, so that moving one object does not require any kd-tree reconstruction. We also
make the assumption that the number of object is not very high, so that no additional
accelerating structure is needed for ray-object intersection.

In practice, our algorithm shoots photons carrying all the same energy, using usual
photon tracing described in [Jen01]. The initial energy is defined by the light sources
power; a Russian Roulette is performed for each impact for determining if the photon
path should be interrupted.

0.7.2 Multi-Thread Processing

The rendering process using photon streaming can be completely separated from the
rendering phase. We thus can benefit from from today computer multi-core architec-
tures. Our program is built in two main threads. The first one performs lighting sim-
ulation while the second one achieves rendering. VPLs are shared by the two threads.
They are updated continuously by the first thread, and read when necessary for each
frame computation.

Synchronization is performed using mutual exclusion, so that red, green and blue
values remain coherent for each VSL on each frame. However, VSLs are only read
by the rendering thread and updated only on the lighting simulation thread. Without
synchronization, the worst error is bounded by the energy of one photon for all the
VSLs. In addition, we have made some tests without mutual exclusion and did not
notice any difference.

10



0.7.3 Deferred Shading and Culling

First, the geometry is rendered for storing depth and normals for each frame pixel in
the G-buffer. Second, we perform shadow mapping corresponding to each light source
(our program handles point light sources and spot light sources). Third, each VSL
is rendered as a sphere, which radius corresponds to the distance above which light
contribution can be greater than ε = 10−6.

Φs.R(x)

π.r2 < ε ⇔ r >

√

Φs.R(x)

π.ε

The sphere projection consequently updates only the image pixels under the (po-
tential) influence of this VSL.

A bounding sphere is also associated with each object in the environment, for both
kd-tree construction and frustum culling.

0.8 Results

The following results have been produced with an AMD Athlon(tm) 64 x2 dual core
processor 3800+, with a Nvidia GeForce 8600GT.

We have applied photon streaming and rendering to various test scenes, 4 of them
have been illustrated through this paper. Note that frame rates depend on both the
number of VSLs and the image resolution, while photon streaming latency depends on
the photon pool size and the number of VSLs.

Table 1 provides the description of the four scenes corresponding to the images in
this paper, with the number of polygons and the number of vertices. The results given
in this paper have been provided with one spot light source.

Scenes #Polygons #Vertices

Cornell Box 2 006 1 042
Dragon 100 010 50 022
Sponza 66 453 60 898
Sibenik 80 359 75 596

Table 1: Characteristics of four test scenes, giving the number of polygons and vertices.
The Cornell Box contains a parallelepipedic box and a sphere; Dragon is also a Cornell
Box containing a dragon; Sponza Atrium and Sibenik Cathedral are free models with
textures.

Tables 2 and 3 provide framerates for rendering each scene using various number
of VSLs, with two different image resolutions. The first value in each box corresponds
to the number of images per second using deferred shading while the second value
corresponds to rendering the whole scene for each VSL. Note that we did not introduce
the photon pool size as a parameter since it does not influence rendering time (but the
latency).

11



Scenes w/wo 10 50 100 200
defered shading VSLs VSLs VSLs VSLs

Cornell Box 140/195 48/40 36/19 21/10
Dragon 90/50 43/9 35/5 21/2
Sponza 115/115 39/20 32/15 19/6
Sibenik 140/90 83/24 58/11 36/6

Table 2: Average fps for each scene, according to the number of VSLs, with 800x600
image resolution the first value in each box has been obtained with deferred shading
while the second one has been obtained rendering the whole geometry for each render-
ing pass.

Scenes w/wo 10 50 100 200
defered shading VSLs VSLs VSLs VSLs

Cornell Box 55/75 19/16 15/7 8/4
Dragon 45/86 19/7 15/4 8/1
Sponza 45/55 16/11 15/4 7/2
Sibenik 62/45 35/11 25/5 15/3

Table 3: Average fps for each scene, according to the number of VSLs, with 1280x1024
image resolution, with and without deferred shading.

Figure 10 provides two images inside Sibenik Cathedral. The top image shows an
image rendered without indirect lighting, with a powerful spot light source. The bottom
image provides the result obtained using our system, rendered at 15 frames per second.

Figure 11 provides for images of a Cornell Box, while moving the (spot) light
source and the blue sphere, rendered at 20 frames per second.

0.9 Conclusions and future work

This paper presents a methods for interactively handling diffuse inter-reflections with
photon streaming. We propose a system that simulates continuous photon shooting,
and associates light energy to virtual points that are used during rendering as virtual
elementary surface light sources (VSLs).

0.9.1 Limitations

Lighting simulation is performed continuously, and rendering each frame corresponds
to taking a photograph at a given instant, with photons that can be older than the current
frame, thus introducing some latency when moving light sources or objects.

Our method does not provides an exact solution at each frame. These errors can be
reduced using usual VPLs approaches, using shadow maps for instance. Latency can be
also avoided by replacing the whole photon pool at each frame, providing consequently
much lower frame rates (depending on the photon pool size). However, our system is
rather dedicated to rapid (pre-)visualization systems.

12



Figure 10: Two images of Sibenik Cathedral lit by a powerful spot light (top) without
indirect illumination and (bottom) with indirect illumination with our rendering system.

13



(a) (b)

(c) (d)

Figure 11: Several images of cornell box during interactive rendering, (a,b,c) while
moving light source (d) while moving the blue sphere.

0.9.2 Future work

In the future, we aim at taking glossy inter-reflections with our system. Presently,
VSLs do not provide direct information for introducing high-frequency BRDFs in the
materials we use. In addition, we aim at introducing ambient occlusion and estimate
the actual visual difference compared to using VSL (hard) shadows.

14



Bibliography

[DBMS02] DMITRIEV K., BRABEC S., MYSZKOWSKI K., SEIDEL H.-P.: Interac-
tive global illumination using selective photon tracing. In EGRW ’02: Pro-

ceedings of the 13th Eurographics workshop on Rendering (Aire-la-Ville,
Switzerland, Switzerland, 2002), Eurographics Association, pp. 25–36.

[GKBP05] GAUTRON P., KŘIVÁNEK J., BOUATOUCH K., PATTANAIK S.: Radi-
ance cache splatting: A GPU-friendly global illumination algorithm. In
Proceedings of Eurographics Symposium on Rendering (June 2005).

[GWS05] GÜNTHER J., WALD I., SEIDEL H.-P.: Precomputed Light Sets for Fast
High Quality Global Illumination. In ACM SIGGRAPH 2005: Sketches

and Applications (2005).

[Jen01] JENSEN H. W.: Realistic image synthesis using photon mapping. A. K.
Peters, Ltd., Natick, MA, USA, 2001.

[KAMJ05] KRISTENSEN A. W., AKENINE-MÖLLER T., JENSEN H. W.: Precom-
puted local radiance transfer for real-time lighting design. ACM Trans.

Graph. 24, 3 (2005), 1208–1215.

[Kel97] KELLER A.: Instant radiosity. ACM SIGGRAPH Computer Graphics

(1997), 49–56.

[KG05] KRIVANEK J., GAUTRON P.: Radiance caching for efficient global il-
lumination computation. IEEE Transactions on Visualization and Com-

puter Graphics 11, 5 (2005), 550–561. Member-Sumanta Pattanaik and
Member-Kadi Bouatouch.

[KTHS06] KONTKANEN J., TURQUIN E., HOLZSCHUCH N., SILLION F.: Wavelet
radiance transport for interactive indirect lighting. In Rendering Tech-

niques 2006 (Eurographics Symposium on Rendering) (jun 2006), Hei-
drich W., Akenine-Möller T., (Eds.), Eurographics.

[LC04] LARSEN B. D., CHRISTENSEN N.: Simulating photon mapping for real-
time applications. In Eurographics Symposium on Rendering (jun 2004),
Henrik Wann Jensen A. K., (Ed.).

15



[LSK∗07] LAINE S., SARANSAARI H., KONTKANEN J., LEHTINEN J., AILA T.:
Incremental instant radiosity for real-time indirect illumination. In Pro-

ceedings of Eurographics Symposium on Rendering 2007 (2007), Euro-
graphics Association, pp. xx–yy.

[NPG03] NIJASURE M., PATTANAIK S., GOEL V.: Interactive global illumina-
tion in dynamic environments using commodity graphics hardware. In PG

’03: Proceedings of the 11th Pacific Conference on Computer Graphics

and Applications (Washington, DC, USA, 2003), IEEE Computer Society,
p. 450.

[pSKS02] PIKE SLOAN P., KAUTZ J., SNYDER J.: Precomputed radiance transfer
for real-time rendering in dynamic, low-frequency lighting environments.
In ACM Transactions on Graphics (2002), pp. 527–536.

[SIP06] SEGOVIA B., IEHL J.-C., PÉROCHE B.: Bidirectional Instant Radiosity.
In Proceedings of the 17th Eurographics Workshop on Rendering (June
2006).

[SIP07] SEGOVIA B., IEHL J., PÉROCHE B.: Metropolis instant radiosity. In
EUROGRAPHICS proceedings (2007).

[WBS03] WALD I., BENTHIN C., SLUSALLEK P.: Interactive Global Illumination
in Complex and Highly Occluded Environments. In Proceedings of the

14th Eurographics Workshop on Rendering (2003).

16


