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Dynamic evidential networks in system reliability analysis: A Dempster
Shafer Approach

Philippe WEBER and Christophe SIMON

Abstract— Nowadays, complex manufacturing processes have
to be dynamically modeled to estimate their reliability. More-
over the results computed with classical methods need to
be reinforced by managing the uncertainty. To address these
difficulties, this paper presents a new method for modeling and
analyzing the system reliability based on Dynamic Evidential
Networks (DEN). This method allows modeling the influence
of time and uncertainty on the failure and degradation of
the system. The DEN graphical structure provides an easy
way to specify the dependencies and, hence, to provide a
compact representation of the system based on the Dempster
Shafer theory. In addition, the DEN formalism is associated
to simulation tools that enable an efficient processing for the
models. A small system is used to compare the reliability
estimations obtained by the proposed DEN model and those
obtained by the classical Markov Chain.

I. I NTRODUCTION

One of the main challenges of the Extended Entreprise
is to maintain and optimize dynamically the quality of
the services delivered by industrial objects along their life
cycle. The goal is to design decision-making aid systems to
maintain the process in operation. Nevertheless, a decision
is taken without a perfect perception of all the system
states. This partial perception argues in favor of using a
probabilistic estimation of the system state. Nevertheless,
several alternatives mathematical representations of both
stochastic and epistemic uncertainties have been proposed,
including evidence theory, possibility theory and fuzzy set
theory [1], [2]. Evidence theory is a promising alternative
allowing a fuller representation of the implications of
the knowledge uncertainty than in the probabilistic
representation [3]. Works on system safety and Evidential
Networks (EN) have been developed recently [4]. The
authors used the exact inference algorithm proposed by
Jensen [5] to compute the marginal mass distributions in
the network.

The purpose of this paper is to introduce Dynamic
Evidential Networks (DEN) in a way similar to the Markov
Chains (MC) [6] to deals with epistemic uncertainty. The
considered problems are those involving systems whose
dynamics can be modeled as stochastic processes. The
current system state determine the probability distribution
over the next states. In the work reported here a study
dedicated to the comparison between MC and DEN for
system reliability estimation is proposed.

Section 2 presents the limits of MC model when epistemic
uncertainty is present in the knowledge. Section 3 presents

the Dempster Shafer theory and the new Dynamic Evidential
Network (DEN) formalism. The proposed methodology is
an original formalization of a system reliability model by
DEN proposed in section 4. A simulation of a classical
system is developed in section 4 to compare MC and
DEN models. Finally, section 5 presents conclusion and
perspectives.

II. PROBLEM STATEMENT

To take the uncertainty into account, it is possible
to consider the process state as a random variable that
takes its values from a finite state space corresponding
to the possible process states. A MC allows modeling
the dynamics of sequences taken by these states [7]. The
uncertainty taken into account by MC is the stochastic
one. But, as databases of reliability are used to define the
failure rates of the components [8]–[11], and the values of
failure rates are associated to several classes of components,
some databases [8], [12], [13] supply the lower and upper
values, mean or median values or error factors. Besides,
Kletz [14] pointed out that the parameter in reliability may
change with a factor 3 to 10. Some authors [15], [16]
recommend to introduce a correction coefficient to modify
the failure rate of the databases according to the operational
conditions of the component. This imprecision in the
knowledge of failure rates induces an epistemic uncertainty
which is not suitably managed by stochastic models like MC.

When upper and lower bounds of the failure rates(λ X,λ X)
of a componentX are given, it is easy to define the bounds
of the component reliability at a mission timeTi :

[

PX,PX
]

= 1−exp([λ X,λ X].Ti) (1)

WherePX is the lower probability of the hypothesis(X =
{U p}) andPX the corresponding upper probability.

In the following, a method based on Dempster Shafer
theory to manage the epistemic uncertainty is presented to
model system reliability. It is based on Dynamic Evidential
Networks.

III. E VIDENTIAL NETWORK THEORY

The Evidential Network model is based on graph theory
and Dempster Shafer theory. Each node represents a variable
and arcs indicate direct conditional relations between the
connected nodes. The Dynamic Evidential Network (DEN)
takes into account the time by defining different nodes to
model variables with respect to different time slices.



A. Evidence theory

In the Dempster-Shafer theory, let us consider the set ofr
mutual exclusive hypothesis called the frame of discernment:

Ω = {H1,H2, . . .Hr} (2)

The basic belief assignment follows the function:

m : 2Ω → [0,1] (3)

with

∑
Ai∈2Ω

m(Ai) = 1

and

2Ω = {{H1}, . . . ,{Hr},{H1,H2}, . . . ,{H1 . . .Hr},{ /0}}

Each Ai ∈ 2Ω with m(Ai) > 0 is call a focal element.
The constraintm( /0) = 0 is not necessary but this condition
supposes that all hypotheses are known. ThereforeΩ is
assumed to be exhaustive [17]. The epistemic uncertainty
is modeled by focal elements describing ambiguity between
several hypotheses. For instance,Ai = {H1,H2} denotes that
the hypothesisH1 or H2 is respected but it is not known
which one exactly.

B. Plausibility and belief functions

The belief mass distribution is used to compute the upper
and lower bounds of probability. This interval contains the
probability of a set of hypotheses (focal elements) and, is
limited by two non-additive measures: the belief (Bel) and
plausibility (Pls) of the focal element [18].

The measure of the beliefBel(Ai) in the focal elementAi

can be interpreted as the total amount of justified support
given to Ai . It defines the lower bound of probability that
the focal element exists. It is computed by the sum of all
belief masses of a subset of hypothesesB that contribute to
the existence ofAi with B included inAi .

Pls(Ai) = ∑
B|Ai∩B6= /0

m(B) (4)

The measure of plausibilityPls(Ai) quantifies the max-
imum amount of specific support that could be given to
Ai , if justified by additional information. This upper limit is
computed by the sum of all the belief masses of the subsets
of hypothesesB such that the intersection betweenB andAi

is not empty.

Bel(Ai) = ∑
B|B⊆Ai

m(B) (5)

As Dempster Shafer Theory defines capacities of order∞
and it verifies the assumptions of regular monotone measures
(see [2]), the following property is given:

Bel(Ai) ≤ P(Ai) ≤ Pls(Ai) (6)

The property eq.6 is well known, Shafer has already
defined it in his works in 1976 [19].

C. The Evidential Network

Evidential Networks are directed acyclic graphs used to
represent uncertain knowledge in Artificial Intelligence [4].
A EN is defined as a couple:G = ((N,A),M), where(N,A)
represents the graph;N is a set of nodes;A is a set of arcs;
M represents the set of conditional mass distributions that
quantify dependencies between the variables.

A discrete random variable is represented by a nodeX ∈N
with a finite number of focal elements. The focal set ofX
is defined bySX = {AX

1 ,AX
2 . . .AX

i . . .} with AX
i ∈ 2Ω∗ and

Ω∗ = {HX
1 , ...,HX

r }. The vectorm(X) denotes a belief mass
distribution over the focal setSX, wherem(AX

i ) is the belief
mass assignment to the focal elementAX

i . In the graph
depicted in figure 1, the nodesX andY are linked by an arc.
If (X,Y)∈ A and(Y,X) /∈ A thenX is considered as a parent
of Y. The parent set of a nodeY is defined aspa(Y) = X.

Fig. 1. A basic Evidential Network.

The setM represents the Conditional Mass distribution
Tables (CMT). Then, each node has an associated CMT.
For instance, in figure 1, the nodesX and Y are defined
over the focal setsSX : {AX

1 , ...,AX
Q} and SY : {AY

1 , ...,AY
P}.

Then, the CMT ofY is defined by the conditional belief
mass tablem(Y |X ) over eachY focal elements knowing the
focal elements of its parentX. This CMT is defined as a
matrix:

M (Y |pa(Y) ) =









m
(

AY
1

∣

∣AX
1

)

· · · m
(

AY
P

∣

∣AX
1

)

...
...

m
(

AY
1

∣

∣

∣
AX

Q

)

· · · m
(

AY
P

∣

∣

∣
AX

Q

)









(7)

Concerning the root nodes,i.e. the node without parents,
the CMT contains only one row describing thea priori mass
distribution of each focal element.

Various inference algorithms can be used to compute
marginal mass distributions in the Evidential Network. The
most classical one relies on the use of a junction tree.
This algorithm is used in Bayesian Networks and more
explications can be found in [5, pp.76]. Inference in EN
allows taking into account any focal element of a variable
observation (an event or knowledge) for the updating of the
mass distribution of each variable.

Inference computes node mass distributions knowing the
focal set of one or several variables. Without any event
observation, the computation is based on thea priori mass
distribution of the root nodes. When observations are made,
the knowledge is integrated in the network and the mass
distributions over the variables focal elements are updated.

Knowledge is formalised as evidence. Ahard evidenceof
the random variableX indicates that the mass assigned to
its focal elements is concentred only to one focal element of



SX : {AX
1 , ...,AX

Q}. For instancem(AX
1 ) = 1 andm(AX

q6=1) = 0.
Nevertheless, when this knowledge is uncertain,soft evidence
can be used (see [20]). A soft evidence for a nodeX is
defined as any evidence that enables to update the prior mass
distribution values for the focal elements ofX. For example,
the belief mass is assigned to the focal elementAX

1 andAX
Q

with the same mass and not in the other focal elements:
m(AX

1 ) = 0.5, m(AX
Q) = 0.5 andm(AX

q6={1,Q}) = 0.
To compute belief and plausibility measures, we use

equations 5 and 4. As these measures are non additives, they
cannot be computed in one node if the tool used verifies the
additivity axioms. Simon and Weber [4] have proposed to
compute these measures on a variable in the network with
two separated nodes as shown in figure 2.

Fig. 2. Computing nodes ofBel andPls measures

The conditional mass table of a belief node follows the
table I where we introduce the doubt modality as the contrary
of believe.

TABLE I

CMT OF Bel(AX
j )

AX
j

AX
i ∈ 2ΩX Believe Doubt

. . . . . . . . .

AX
i

{

1 if AX
j ⊆ AX

i ;
0 else

{

0 if AX
j ⊆ AX

i ;
1 else

. . . . . . . . .

On the same way the node that computes the plausibility
measure contains the conditional mass table given in table II
where disbelief is introduced as the contrary of plausibility.

TABLE II

CMT OF Pls(HX
i )

AX
j

AX
i ∈ 2ΩX Plausibility Disbelie f

. . . . . . . . .

AX
i

{

1 if AX
j ∩AX

i 6= /0
0 else

{

0 if AX
j ∩AX

i 6= /0
1 else

. . . . . . . . .

Besides, we can note that these tables can be used to
compute plausibility and belief measures on each state of
a component or node of the network in order to give
information on probability boxes that bound the real value
of the probability for components or subsystems (cf. eq.6).

D. Dynamic Evidential Network

A Dynamic Evidential Network is an EN including a
temporal dimension. This new dimension is managed by
time-indexed variables. The variable is represented at time
step k by a nodeXk ∈ N with a finite number of focal
elementsSXk : {AXk

1 , ...,AXk
Q }. m(AXk

1 ) denotes the belief mass
assigned to the focal elementAX

1 at time stepk. Several time
stages are represented by several sets of nodesN0, . . . ,Nk. Nk

includes all the random variables relative to the time slicek.
An arc linking two variables belonging to different time

slices represents a temporal variation of the belief mass and
models the dependence between these variables. Then, DEN
allows to model random variables and their impacts on the
future distribution of other variables. Defining these impacts
astransition-belief massesbetween the focal elements of the
variable at time stepk and those at time stepk+1 leads to
the definition of CMT relative to inter-time slices, as it is
defined in eq.7.

M (Xk+1 |Xk ) =











m
(

A
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1

∣

∣

∣
AXk

1

)

· · · m
(

A
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Q

∣

∣

∣
AXk

1

)
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...

m
(

A
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1

∣

∣
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Q

)
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(
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Q

∣

∣
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AXk

Q

)











(8)
With this model, the future slice (k+ 1) is conditionally

independent of the past given the present (k), which means
that the CMTM(Xk+1 |pa (Xk+1)) respects properties similar
to the Markov properties.

Starting from an observed situation at time stepk = 0, the
belief mass distributionm(Xk) overni focal sets is computed
by the DEN inference. To computem(Xk+T), the proposed
solution keeps a compact network form. This solution is
based on iterative inferences. The notion of time is intro-
duced through inference. Indeed, it is possible to compute
the belief mass distribution of any variableXi at time step
k+ 1 based on the belief mass distribution corresponding
to time stepk. The belief mass distributions at time step
k+ 2. . . are computed using successive inferences. Then, a
network with only two time slices is defined. The first slice
contains the nodes corresponding to the current time step
(k), the second one those of the following time step(k+1).
Observations, introduced as hard evidence or belief mass
distributions, are only realized in the current time slice(k).
The time increment is carried out by setting the computed
marginal belief masses of the node at time stepk+ 1 as
observations for its corresponding node in the previous time
slice.

Moreover, the CMT is equivalent to the Markovian model
of the variableX if pa(Xk+1) = Xk and SXk = SXk+1 and
without mass assignment to epistemic focal elements.

IV. DEN TO MODEL RELIABILITY

A. Evidential Network to model system reliability

As mentioned previously, the probist reliability [21] of a
system with low complexity may be modeled by a variable



Fig. 3. A DEN for the random variable X.

X with two hypotheses. The corresponding frame of discern-
ment is then described by:

Ω = {U p,Down} (9)

The set of focal elements is defined by 2Ω =
{{U p},{Down},{U p,Down},{ /0}}.

In probist reliability, the constraintm( /0) = 0 is assumed,
thus the possibility to allocate a quantity to the focal set
{U p,Down} softens the probability framework. The role of
this focal element is to characterize the ignorance on the
real probability distribution over the system states without
commitment. It means that the system can be in the state
{U p} or {Down}. Of course, it should not be considered
that the system can be in the two states simultaneously. This
ignorance is an epistemic uncertainty and is described by the
epistemic state{U p,Down}.

WhenPX is the lower probability of the hypothesis{U p}
and PX the corresponding upper probability, the upper and
lower bounds of the reliability(PX,PX) are easily translated
in the EN to define thea priori belief mass assignment of
X:

m({U p}) = PX
m({Down}) = 1−PX

m({U p,Down}) = PX −PX

(10)

Then applied the eq.4 and 5Pls({U p}) = PX and
Bel({U p}) = PX.

B. Dynamic Evidential Network to model entities Markovian
behavior

The reliability is modeled as a DEN made of two nodes
as presented in figure 3. A model of componentX reliability
with uncertainty in failure rate is easily translated into aDEN
model. Two nodes are defined to model the random variable
at time slices(k) and (k+ 1) : Xk and Xk+1 with the focal
sets{{U p},{Down},{U p,Down}}.

The upper and lower bounds of the failure rates(λ X,λ X)
of the componentX are used to define the Conditional belief
Mass Table:M(Xk+1 |Xk ). The parameters ofM(Xk+1 |Xk ) are
defined from the failure rates(λ X,λ X) (eq.11).

Explanations:

1) If the component is up then it may fall down but there
is uncertainty in the failure probability. To determine

the belief mass that the component is down we pro-
pose to model the uncertainty using the epistemic hy-
pothesis{U p,Down}. Then the transition belief mass
m({Down}k+1

∣

∣{U p}k ) = λ X corresponds to the mini-
mum of belief that the component fall down (it is sure
that the component is down after the transition time).
The transition massm({U p,Down}k+1

∣

∣{U p}k ) =

λ X − λ X corresponds to the uncertainty of the com-
ponent hypothesis after the transition time. There is an
ambiguity between the hypotheses{U p} and{Down}.
Thereforem({U p}k+1

∣

∣{U p}k ) = 1−λ X corresponds
to the belief mass transition that it is sure that there is
no failure. This mass is computed by:

m({U p}k+1
∣

∣

∣
{U p}k ) = 1− (λ X +λ X −λ X)

= 1−λ X (12)

2) When the component is down, it is impossible
that the component becomes up because no repa-
ration is considered in reliability analysis. There-
fore, m{U p} = 0, m({U p}k+1

∣

∣{Down}k ) = 0 and
m({Down}k+1

∣

∣{Down}k ) = 1.
3) In the epistemic uncertainty, the component is up or

down. Let us consider that the component is up. There
exists a transition mass modeling the failure of the
component after the transition time and leading to the
hypothesis{Down}. This belief transition mass allo-
cated to{Down} corresponds to the minimum of belief
that the component fail downi.e. λ X. If the component
is down then the component stay down. This is the
reason whym({Down}k+1

∣

∣{U p,Down}k ) = λ X and
m({U p}k+1

∣

∣{U p,Down}k ) = 0.

C. EN to model independent failure of components

A Fault Tree (FT) allows describing the logic of the
propagation of failures through the system. This method
allows to model the reliability of the system assuming the
hypothesis of independence between the events (failures)
affecting the entities. The paper [4] shows the equivalence
between FT and EN in the case of uncertainty. The CMTs
are used to define the OR/AND gates.

V. A PPLICATION

The proposed method is applied to a classical example
of reliability analysis. This example allows comparing easily
the proposed method based on DEN with those using MC.

Figure 4 describes the system. Three valvesVi are used
to distribute a fluid. Each valve has one failure modes. The
upper and lower bounds of the failure rates are given below:

λ 1 = 2.10−3 λ 2 = 3.10−3 λ 3 = 4.10−3

λ 1 = 1.10−3 λ 2 = 2.10−3 λ 3 = 3.10−3

An equivalent model of this MC is realized by means of
the DEN depicted in figure 6 including the uncertainty on
failure rates.

Following equation 11 for temporal nodes, the temporal
conditional mass table of each valves is computed. Figure 7
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
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 (11)

Fig. 4. Valve system.

Fig. 5. Markov Chain of the system.

shows the CMT for the temporal node betweenVk
1 andVk+1

1 .

The propagation through the Dynamic Evidential Network
model allows taking into account the dependency between
the failure modes for the computation of the system reliabil-
ity R(k). Thus, the nodeR(k) computes the reliability of the
system from the mass distributions over the states of valves
according to the conditional mass table given in figure 8.

Inferences are realized thanks to BayesiaLabc© software

Fig. 6. DEN model.

Fig. 7. Temporal CMT ofVk+1
1 .

that uses an iterative procedure (http://www.bayesia.com).
BayesiaLabc© is used to simulate the DEN modelingR(k)
of the system over 1200 time steps depicted in figure 9. The
results of MC are also added to this figure for comparison.

The results obtained by means of DEN are close to those
obtained with two different simulations of the MC model, the
first simulation with lower bound of the failure rates and the
second with the upper bound of the failure rates. They are in
fact more precise in DEN. Indeed, the differences are due to
the approximation made assuming in the Markov model that
the simultaneous failures cannot occurred, this hypothesis is
not assumed in the DEN model.



Fig. 8. CMT of R(k).

Fig. 9. DEN vs MC simulations.

VI. CONCLUSION AND FURTHER WORK

In this paper, we have presented Evidential Networks
based on the Dempster Shafer theory to model the reliability
of systems. A dynamic approach is derived to model the
temporal evolution of complex systems with uncertainty.
The correspondence between Markov Chain and DEN is
presented and applied to the system reliability estimation.

The proposed method seems to be a good solution to
model the reliability of complex systems. Indeed, the number
of states needed to model a complex system with MC
increases exponentially (a state for each combination of
elementary states). As the DEN representation is based on
the modeling of process entities, the obtained model is more

compact and readable than MC. This paper shows that DEN
represents a very powerful tool for decision-making aid in
maintenance. This modeling method is very interesting when
human are taking into account in the model as human actions
introduce uncertainty.
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