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Dynamic evidential networks in system reliability analysis: A Dempster
Shafer Approach

Philippe WEBER and Christophe SIMON

Abstract— Nowadays, complex manufacturing processes have the Dempster Shafer theory and the new Dynamic Evidential
to be dynamically modeled to estimate their reliability. More-  Network (DEN) formalism. The proposed methodology is
over the results computed with classical methods need to an original formalization of a system reliability model by

be reinforced by managing the uncertainty. To address these . . . . .
difficulties, this paper presents a new method for modeling and DEN proposed in section 4. A simulation of a classical

analyzing the system reliability based on Dynamic Evidential System is developed in section 4 to compare MC and
Networks (DEN). This method allows modeling the influence DEN models. Finally, section 5 presents conclusion and
of time and uncertainty on the failure and degradation of perspectives.

the system. The DEN graphical structure provides an easy

way to specify the dependencies and, hence, to provide a

compact representation of the system based on the Dempster Il. PROBLEM STATEMENT

Shafer theory. In addition, the DEN formalism is associated

to simulation tools that enable an efficient processing for the ~~ To take the uncertainty into account, it is possible

models. A small system is used to compare the reliability to consider the process state as a random variable that

estimations obtained by the proposed DEN model and those takes its values from a finite state space corresponding
obtained by the classical Markov Chain. to the possible process states. A MC allows modeling
the dynamics of sequences taken by these states [7]. The
uncertainty taken into account by MC is the stochastic

One of the main challenges of the Extended Entreprisene. But, as databases of reliability are used to define the
is to maintain and optimize dynamically the quality offailure rates of the components [8]-[11], and the values of
the services delivered by industrial objects along thde li failure rates are associated to several classes of comonen
cycle. The goal is to design decision-making aid systems &ome databases [8], [12], [13] supply the lower and upper
maintain the process in operation. Nevertheless, a decisigalues, mean or median values or error factors. Besides,
is taken without a perfect perception of all the systenKletz [14] pointed out that the parameter in reliability may
states. This partial perception argues in favor of using ehange with a factor 3 to 10. Some authors [15], [16]
probabilistic estimation of the system state. Nevertlglesrecommend to introduce a correction coefficient to modify
several alternatives mathematical representations ofi bahe failure rate of the databases according to the operdtion
stochastic and epistemic uncertainties have been proposednditions of the component. This imprecision in the
including evidence theory, possibility theory and fuzzy seknowledge of failure rates induces an epistemic uncestaint
theory [1], [2]. Evidence theory is a promising alternativewhich is not suitably managed by stochastic models like MC.
allowing a fuller representation of the implications of -
the knowledge uncertainty than in the probabilistic When upper and lower bounds of the failure rateg, Ax)
representation [3]. Works on system safety and Evidentiaf a componenX are given, it is easy to define the bounds
Networks (EN) have been developed recently [4]. Thef the component reliability at a mission tinTg
authors used the exact inference algorithm proposed by — -

Jensen [5] to compute the marginal mass distributions in [Px;Px] = 1—exp[Ax. Ax].Ti) @
the network. WherePy is the lower probability of the hypothesiX =
{Up}) andPyx the corresponding upper probability.

The purpose of this paper is to introduce Dynamic |n the following, a method based on Dempster Shafer
Evidential Networks (DEN) in a way similar to the Markov theory to manage the epistemic uncertainty is presented to
Chains (MC) [6] to deals with epistemic uncertainty. Themodel system reliability. It is based on Dynamic Evidential
considered problems are those involving systems who$@tworks.
dynamics can be modeled as stochastic processes. The
current system state determine the probability distrdyuti
over the next states. In the work reported here a study The Evidential Network model is based on graph theory
dedicated to the comparison between MC and DEN fagind Dempster Shafer theory. Each node represents a variable
system reliability estimation is proposed. and arcs indicate direct conditional relations between the

connected nodes. The Dynamic Evidential Network (DEN)

Section 2 presents the limits of MC model when epistemitakes into account the time by defining different nodes to
uncertainty is present in the knowledge. Section 3 presemsodel variables with respect to different time slices.

I. INTRODUCTION

IIl. EVIDENTIAL NETWORK THEORY



A. Evidence theory C. The Evidential Network

In the Dempster-Shafer theory, let us consider the set of Evidential Networks are directed acyclic graphs used to
mutual exclusive hypothesis called the frame of discernmerrepresent uncertain knowledge in Artificial Intelligeneh. [
A EN is defined as a coupl& = ((N,A),M), where(N,A)

Q= {Hy,Hz,...H} ) represents the grapil is a set of nodesA is a set of arcs;
The basic belief assignment follows the function: M represents the set of conditional mass distributions that
quantify dependencies between the variables.
m: 2% — [0,1] 3) A discrete random variable is represented by a nddeN
, with a finite number of focal elements. The focal set>of
with is defined bySc = {AX,AX...AX...} with AX € 2% and
> MA)=1 Qx = {HX,...,HX}. The vectorm(X) denotes a belief mass
A2 distribution over the focal se8, wherem(AX) is the belief
and mass assignment to the focal eleme¥t. In the graph
o depicted in figure 1, the nodésandY are linked by an arc.
2" = {{Ha},....{H},{H1,Hz},... {H1...H} {0} If (X,Y)€Aand(Y,X) ¢ AthenX is considered as a parent

Each A € 22 with m(A) > 0 is call a focal element. of Y. The parent set of a nodé is defined agpa(Y) = X.

The constrainm(0) = 0 is not necessary but this condition

supposes that all hypotheses are known. Thereforés

assumed to be exhaustive [17]. The epistemic uncertainty

is modeled by focal elements describing ambiguity between

several hypotheses. For instanée= {H1,H,} denotes that _ o

the hypothesisH; or H. is respected but it is not known Fig. 1. A basic Evidential Network.

hich one exactly. " o
whi xacty The setM represents the Conditional Mass distribution

B. Plausibility and belief functions Tables (CMT). Then, each node has an associated CMT.
For instance, in figure 1, the nodes andY are defined

The belief mass distribution is used to compute the upp%rver the focal setsSy : {AT,.--aAé} and S : {AI"'WA;}'

and Iov_ver bounds of probability. This interval contains th(.arhen, the CMT ofY is defined by the conditional belief
probability of a set of hypotheses (focal elements) and, is

limited by two non-additive measures: the belige() and mass tablen(Y [X ) over eachy focel eleme.nts knewmg the
o focal elements of its parerX. This CMT is defined as a
plausibility (Pls) of the focal element [18].

The measure of the beli@el(A) in the focal elemen#y matrix:
can be interpreted as the total amount of justified support v Iax v Inx
given to A. It defines the lower bound of probability that m(Af[AT) -+ m(AS|AT)

the focal element exists. It is computed by the sum of all , Y|paY)) = | : @)
belief masses of a subset of hypotheBethat contribute to AY | ax v | ax
the existence oy with B included inA;. m(Ay[as) - m(ag|ay)
PIS(A) = m(B) (4) Concerning t.he root nodese. the nede W|th01_Jt parents,
BIATE0 the CMT contains only one row describing thgriori mass

distribution of each focal element.

The measure of plausibilitls(Aj) quantifies the max-  various inference algorithms can be used to compute
imum amount of specific support that could be given tonarginal mass distributions in the Evidential Network. The
A;, if justified by additional information. This upper limit is most classical one relies on the use of a junction tree.
computed by the sum of all the belief masses of the subsetfjs algorithm is used in Bayesian Networks and more
of hypothese® such that the intersection betweBrandA;  explications can be found in [5, pp.76]. Inference in EN

is not empty. allows taking into account any focal element of a variable
observation (an event or knowledge) for the updating of the

Bel(A)= > m(B) (5)  mass distribution of each variable.
BIBCA Inference computes node mass distributions knowing the

As Dempster Shafer Theory defines capacities of osder focal set of one or several variables. Without any event
and it verifies the assumptions of regular monotone measur@aservation, the computation is based on ahpriori mass

(see [2]), the following property is given: distribution of the root nodes. When observations are made,
the knowledge is integrated in the network and the mass
Bel(A) < P(A) < PIS(A) (6) distributions over the variables focal elements are ughate

Knowledge is formalised as evidence.hard evidenceof
The property eq.6 is well known, Shafer has alreadyhe random variable&X indicates that the mass assigned to
defined it in his works in 1976 [19]. its focal elements is concentred only to one focal element of



Sc: {A,....,A§}. For instancem(A{) = 1 andm(A},;) =0.  D. Dynamic Evidential Network
Nevertheless, when this knowledge is uncertaaft evidence A Dynamic Evidential Network is an EN including a

can be used (seg [20]). A soft evidence for a nOdgis temporal dimension. This new dimension is managed by
defined as any evidence that enables to update the prior Msse indexed variables. The variable is represented a tim
distribution values for the focal elementsf For example, stepk by a nodeX, € N with a finite number of focal

the belief mass is assigned to the focal elem@htand Aj elementsSy, : {Afk,...,Aék}. m(A%) denotes the belief mass

with the same mass and not in the other focal elementgSsigned to the focal elemehf at time stegk. Several time

m(A>1() =05, m(Aé)_: 0.5 and m(Af_];_{ _LQ}) =0. stages are represented by several sets of Hggles. , Ni. N
To compute belief and plausibility measures, we Usg,qges all the random variables relative to the time stice
equations 5 and 4. As_ these measures are non addltllv_es, the)&n arc linking two variables belonging to different time
can'n.ot. be cgmputeq in one node if the tool used verifies ths‘ﬁces represents a temporal variation of the belief mads an
additivity axioms. Simon and Webgr [4] _have proposed t.?nodels the dependence between these variables. Then, DEN
compute these measures on a yarl_able in the network WIH“OWS to model random variables and their impacts on the
two separated nodes as shown in figure 2. future distribution of other variables. Defining these irtiiga
) astransition-belief massesetween the focal elements of the
Bl (4f) variable at time stefx and those at time stefp+ 1 leads to
the definition of CMT relative to inter-time slices, as it is
defined in eq.7.

m (A A
( )

A>1<k) m(,o\ék+1
M (Xir1 [Xe) = :

m (At

X (% | p
AQ) m(AQHAQ) 8)
With this model, the future slicek{+ 1) is conditionally
dependent of the past given the presdagt yhich means
at the CMTM (Xi11|pa (X«y1)) respects properties similar

Fig. 2. Computing nodes dBel and Pls measures

The conditional mass table of a belief node follows the

table | where we introduce the doubt modality as the contralltg

of believe. X
to the Markov properties.

TABLE | Starting from an observed situation at time skep 0, the

CMT oF Bel(AY) belief mass distributiom(Xy) overn; focal sets is computed

by the DEN inference. To comput@(X,T), the proposed
AX solution keeps a compact network form. This solution is
A € 2% Believe | Doubt based on iterative inferences. The notion of time is intro-
1o C A% 0 if AX C A% duced through inference. Indeed, it is possible to compute

A { 0 else { 1 else the belief mass distribution of any variablg at time step
k+ 1 based on the belief mass distribution corresponding

to time stepk. The belief mass distributions at time step

...k+2... are computed using successive inferences. Then, a
On the same way the node that computes the plau5|b|llﬁ/+ P 9 X

measure contains the conditional mass table given in table etwork with only two time slices is defined. The first slice
. e 9 .. ... _contains the nodes corresponding to the current time step
where disbelief is introduced as the contrary of plaugibili

(k), the second one those of the following time st&g-1).
Observations, introduced as hard evidence or belief mass

TABLE I o . : ;
CMT oF PIs(HX) dlstrlputlons, are only reallz_ed in the current time sliég.
The time increment is carried out by setting the computed
AX marginal belief masses of the node at time skepl as
AX € 2% Plausibility | Disbelie f observations for its corresponding node in the previoug tim
slice.
A { 1 ifIA?(“AﬂX #0 { 0 ”IATWA.'X #0 Moreover, the CMT is equivalent to the Markovian model
0 else 1oelee of the variableX if pa(Xc.1) = Xc and Sq = Sx., and
without mass assignment to epistemic focal elements.
Besides, we can note that these tables can be used to IV. DEN TO MODEL RELIABILITY

compute plausibility and belief measures on each state of _ ) N
a component or node of the network in order to givéA' Evidential Network to model system reliability

information on probability boxes that bound the real value As mentioned previously, the probist reliability [21] of a
of the probability for components or subsystems (cf. eq.6)system with low complexity may be modeled by a variable



Time feedback the belief mass that the component is down we pro-
pose to model the uncertainty using the epistemic hy-
i pothesis{U p,Down}. Then the transition belief mass

5 m({Down}*+1 |{U p}¥) = Ay corresponds to the mini-
mum of belief that the component fall down (it is sure
that the component is down after the transition time).

The transition massm({U p, Down}**1|{U p}¥) =

Ax — Ay corresponds to the uncertainty of the com-
ponent hypothesis after the transition time. There is an
ambiguity between the hypothesgid p} and{Down}.
Thereforem({U p}**1 |{U p}¥) = 1—Ax corresponds
Fig. 3. A DEN for the random variable X. to the belief mass transition that it is sure that there is
no failure. This mass is computed by:

Inference

X with two hypotheses. The corresponding frame of discern- m({U p}<+? ’{U pI) = 1-Ax+Ax—2Ay)
ment is then described by: —
= 1-Ax (12)
Q = {Up, Down} 9) . L )
. _ 2) When the component is down, it is impossible
The set of focal elements is defined by® 2- that the component becomes up because no repa-
{{Up},{Down}, {U p,Down}, {0} }. ration is considered in reliability analysis. There-
In probist reliability, the constrainn(@) = 0 is assumed, fore, m{Up} = 0, m({U p}k+1 |{Down}'<) =0 and

thus the possibility to allocate a quantity to the focal set m({Down}k”]{Down}k) =1.
{Up,Down} softens the probability framework. The role of 3) In the epistemic uncertainty, the component is up or
this focal element is to characterize the ignorance on the  down. Let us consider that the component is up. There

real probability distribution over the system states witho exists a transition mass modeling the failure of the
commitment. It means that the system can be in the state  component after the transition time and leading to the
{Up} or {Down}. Of course, it should not be considered hypothesis{Down}. This belief transition mass allo-

that the system can be in the two states simultaneously. This  ¢cated to{ Down} corresponds to the minimum of belief

ignorance is an epistemic uncertainty and is described éy th that the component fail dowire. A . If the component

epistemic statgU p, Down}. is down then the component stay down. This is the
WhenPy is the lower probability of the hypothes{8) p} reason whym({Down}*+1 HU p,Downt) = Ay and

and Px the corresponding upper probability, the upper and m({U p}k+1‘{u p,Down}k) = 0.

lower bounds of the reliabilityPy, Px) are easily translated

in the EN to define the priori belief mass assignment of C- EN to model independent failure of components

X: A Fault Tree (FT) allows describing the logic of the
propagation of failures through the system. This method

m{Up})=Px allows to model the reliability of the system assuming the
m({Down}) = 1—Px (20)  hypothesis of independence between the events (failures)

m({U p,Down}) = Px — Py affecting the entities. The paper [4] shows the equivalence
Then applied the eq.4 and PIs({Up}) = Px and between FT and EN in the case of uncertainty. The CMTs

Bel({Up}) = Px. are used to define the OR/AND gates.
B. Dynamic Evidential Network to model entities Markovian V. APPLICATION
behavior The proposed method is applied to a classical example

The reliability is modeled as a DEN made of two node®f reliability analysis. This example allows comparingigas
as presented in figure 3. A model of compon¥nteliability —the proposed method based on DEN with those using MC.
with uncertainty in failure rate is easily translated intb&N Figure 4 describes the system. Three valVesire used
model. Two nodes are defined to model the random variable distribute a fluid. Each valve has one failure modes. The
at time slices(k) and (k+ 1) : Xc and X, 1 with the focal upper and lower bounds of the failure rates are given below:
sets{{U p},{Down}, {U p,Down}}. — — _

The upper and lower bounds of the failure ratés,Ax) A= 21&2 Ao = 3-1072 Az= 4102
of the componenK are used to define the Conditional belief A1 =110 A;=210" A3=310
Mass TableM (Xc;1[X« ). The parameters &fl (X1 [Xc) are  An equivalent model of this MC is realized by means of
defined from the failure rate@\ y,Ax) (eq.11). the DEN depicted in figure 6 including the uncertainty on

Explanations: failure rates.

1) If the component is up then it may fall down but there Following equation 11 for temporal nodes, the temporal

is uncertainty in the failure probability. To determineconditional mass table of each valves is computed. Figure 7



m({up)* [{up}*) m ({Down}*"* [{up}* ) m ({Up. Down}*** [{Up}*
m ({U pptt ‘{Down}k) m ({Down}k+1 ‘ {Down}k) m ({U p, Down}k+1 ‘{Down}k)
m ({U p+t ’{U P, Down}k) m ({Down}k+1 ’{U P, Down}k) m ({U p, Down}**1 ‘{U P, Down}k>

1-Ax Ax Ax—Ax
- o 1 0 (11)
0 Ay 1-Ay

M X+ [ %)

e I 3 3

- ka) V2
I r

V1 (k+1) V2 (k+1) 3 (k1)
V3,
A Funcion_ [Pheussili]
Bel({Up} R(k) Pis({Up})

Fig. 6. DEN model.

Vi (k) Up Down UpDawn
Up 99,3800 0,100 0,100
Down 0,000 100,000/ 0,000
UpDown 0,000 0,100 99,900

Fig. 7. Temporal CMT of/f*2.

Fig. 5. Markov Chain of the system. that uses an iterative procedure (http://www.bayesia)com
BayesiaLal is used to simulate the DEN modelirig(k)
of the system over 1200 time steps depicted in figure 9. The
shows the CMT for the temporal node betweémndvl"“. results of MC are also added to this figure for comparison.

The results obtained by means of DEN are close to those
The propagation through the Dynamic Evidential Networlobtained with two different simulations of the MC model, the
model allows taking into account the dependency betwesditst simulation with lower bound of the failure rates and the
the failure modes for the computation of the system rekabilsecond with the upper bound of the failure rates. They are in
ity R(k). Thus, the nod&(k) computes the reliability of the fact more precise in DEN. Indeed, the differences are due to
system from the mass distributions over the states of valvéise approximation made assuming in the Markov model that
according to the conditional mass table given in figure 8. the simultaneous failures cannot occurred, this hypahissi
Inferences are realized thanks to Bayesid®asoftware not assumed in the DEN model.



V1 (k1) V2 (k+1) V3 (k1) Up Down UpDown H
— — o e compact and readable than MC. This paper shows that DEN
Up Down 100,000 0,000 0,000 represents a very powerful tool for decision-making aid in
S i o s maintenance. This modeling method is very interesting when
Up Dawn Dawin 0,000 100,000 0,000 human are taking into account in the model as human actions
UpDaown 0,000 0,000 100,000 . .
Up 100,000 0,000 0,000 IntI’OdUCG uncerta|nty
UpDawn Down 0,000 0,000 100,000
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