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Czech Republic
14

Institute of Low Temperature Science, Hokkaido University, Nishi-8, Kita-19, Sapporo 060-

0819 Japan
15

CSC-Scientific Computing Ltd., Keilaranta 14, P.O. Box 405, 02101 Espoo, Finland

Received: 20 December 2007 – Accepted: 29 January 2008 – Published: 19 February 2008

Correspondence to: F. Pattyn (fpattyn@ulb.ac.be)

112

http://www.the-cryosphere-discuss.net
http://www.the-cryosphere-discuss.net/2/111/2008/tcd-2-111-2008-print.pdf
http://www.the-cryosphere-discuss.net/2/111/2008/tcd-2-111-2008-discussion.html
http://creativecommons.org/licenses/by/3.0/


TCD

2, 111–151, 2008

Benchmarks for

higher-order and full

Stokes ice-sheet

models

F. Pattyn et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

Abstract

We present the results of the first ice sheet model intercomparison project for higher-

order and full Stokes ice sheet models. These models are validated in a series of

six benchmark experiments of which one has an analytical solution under simplifying

assumptions. Five of the tests are diagnostic and one experiment is prognostic or time5

dependent, for both 2-D and 3-D geometries. The results show a good convergence

of the different models even for high aspect ratios. A clear distinction can be made

between higher-order models and those that solve the full system of equations. The

latter show a significantly better agreement with each other as well as with analytical

solutions, which demonstrates that they are hardly influenced by the used numerics.10

1 Introduction

According to the recent IPCC report (IPCC, 2007), dynamical processes related to ice

flow not included in current models but suggested by recent observations could in-

crease the vulnerability of the ice sheets to warming, increasing future sea level rise.

Understanding of these processes is limited and there is no consensus on their mag-15

nitude. It was also stressed that a net ice mass loss could occur if dynamical ice

discharge dominates the ice sheet mass balance (IPCC, 2007). Although the viscous

flow of ice is rather well understood on a theoretical level, the reason for the lack of

model confidence arises from the specification of stress boundary conditions and the

lack of understanding of the processes at the base and the seaward margin. Here, sev-20

eral stress components come into play in regions of high variability in basal topography

and/or basal slipperiness.

Despite the lack of comprehensive predictive ice-sheet modeling, the ice-sheet mod-

eling community has evolved considerably over the last decade. Increasing computa-

tional power has led to the development of more complex ice sheet models, with varying25

degrees in approximations to the Stokes equations. There is a need for validating these
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so-called higher-order models as analytical solutions are not always available. Simi-

lar benchmark exercises were done with large-scale ice sheet and ice shelf models in

the 1990s (Huybrechts et al., 1996; MacAyeal et al., 1996; Payne et al., 2000), mostly

based on zeroth-order approximations. Here, we present benchmark experiments that

are validated by 28 ice-sheet models of varying degrees of complexity. Besides bench-5

marking, the experiments described in this paper also allowed for distinguishing under

which conditions the approximations to the Stokes equations are viable and whether

numerical issues play a role in the result.

During the first and second EISMINT
1

model intercomparison exercises, a number of

benchmarks were proposed specifically for ice sheet models (Huybrechts et al., 1996,10

1998; Payne et al., 2000) and ice shelf models (MacAyeal et al., 1996). These ice-

sheet models were based on the zeroth-order “shallow-ice approximation” (SIA; Hutter,

1983), incorporating only vertical shear stresses in the force balance. The ISMIP–HOM

exercise focuses on so-called higher-order models, i.e. models that incorporate further

mechanical effects, principally longitudinal stress gradients, as well as those that solve15

the full system of equations of the linear Stokes problem.

The six experiments (A–F) presented in this benchmark are made accessible for

many types of models, i.e. flowline models, vertically integrated planform models, as

well as full three-dimensional models. They can be solved using a wide spread of

numerical techniques, such as finite difference (FD), finite element (FE) or finite volume20

(FV). With exception of Exp. F, all experiments are diagnostic, i.e. time evolution is not

considered. This means that for a given geometry of the ice mass, a Glen-type flow

law and given appropriate boundary conditions, the stress and velocity field can be

calculated. Exp. F considers time-dependent response (the experiment is run until

the free surface and velocity field reach a steady state) for a constant viscosity (linear25

flow law). For this experiment analytical solutions exist (Gudmundsson, 2003). All

thermomechanical effects are neglected and an isothermal ice mass is considered.

1
EISMINT: European Ice Sheet Model INTercomparison; http://homepages.vub.ac.be/

∼phuybrec/eismint.html
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2 General model setup

2.1 Model physics, parameters and constants

Higher-order models are any type of ice sheet or glacier model that incorporate fur-

ther mechanical effects, principally longitudinal stress gradients apart from the two

horizontal plane shear components (Hindmarsh, 2004). Such models are based on5

conservation laws of mass and momentum, i.e.

∇ · v = 0 , (1)

ρ
dv

dt
= ∇ · T + ρg , (2)

where ρ is the ice density, g gravitational acceleration, v the velocity vector, and T the

stress tensor. Values for parameters and constants are given in Table 1. Generally,10

acceleration terms in Eq. (2) are neglected and ice incompressibility implies that the

stress tensor is split into a deviatoric part and an isotropic pressure P ,

T = T′ − P I . (3)

The constitutive equation for ice then links deviatoric stresses to strain rates:

T′
= 2η ė , (4)15

where T
′

and ė are the deviatoric stress and strain-rate tensor, respectively, and η is

the effective viscosity. Both linear and nonlinear ice rheology is considered. In the latter

case (Glen’s flow law), η is strain-rate dependent and defined by

η =
1

2
A−1/n ε̇

(1−n)/n
e , (5)

where ε̇e is the second invariant of the strain rate tensor. For the linear rheology case,20

Eq. (5) reduces to η=(2A)
−1

. The value for A is taken constant for the whole ice mass.

Neglecting acceleration terms, the linear momentum balance is written as:

div T + ρig = div T′ − grad P + ρg = 0 , (6)
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Since only acceleration due to gravity in the vertical is considered, this leads to

∂τ′xx
∂x

−
∂P

∂x
+

∂τ′xy

∂y
+

∂τ′xz
∂z

= 0 , (7)

∂τ′yx

∂x
+

∂τ′yy

∂y
−

∂P

∂y
+

∂τ′yz

∂z
= 0 , (8)

∂τ′zx
∂x

+
∂τ′zy

∂y
+

∂τ′zz
∂z

−
∂P

∂z
= ρg . (9)

By definition the isotropic pressure is equal to P=−1
3

∑

i τi i . Solving Eqs. (7–9) leads5

to the full Stokes solution. In higher-order models some simplifications are made to the

above system of equations.

2.2 Boundary conditions

In Exps. A, B, E1 and F1 the ice is frozen to the bed (vb=0). For the other experiments,

basal sliding is introduced through a friction law, characterized by a friction coefficient10

β2
. This friction law has the form of

β2t · v = t · (Tnb) = τb , (10)

where nb is the unit normal vector pointing into the bedrock, t the unit tangent vectors,

and β2
(Pa a m

−1
) is a scalar quantity and always positive (MacAyeal, 1993). Basal

shear stress τb is not equal to the driving stress, but part of the solution. At the surface15

of the ice mass (contact with air), a stress-free condition holds, which implies that

ns·(Tns)=Patm≈0.

Kinematic boundary conditions apply at the upper and lower surfaces of the ice

mass, i.e.

∂zi
∂t

+ vx(zi )
∂zi
∂x

+ vy (zi )
∂zi
∂y

− vz(zi ) = 0 , (11)20
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for i=(s, b). Since the vertical velocity field must obey the incompressibility condition

(1), and the surface accumulation/ablation is zero (M(s)=0), the vertical velocity at the

surface contains the local imbalance as well and becomes a model output.

2.3 Model domain

The model domain is square. The minimum number of grid points is not predefined and5

any type of discretization scheme can be used. Since this might be model dependent,

the number of grid points in the horizontal as well as in the vertical direction can be

chosen freely. The basic parameter for the experiments is the length scale of the

domain L, that applies to both horizontal directions. Exps. A–D are carried out for

L=160, 80, 40, 20, 10 and 5 km, respectively, which results in aspect ratios ǫ=H/L10

varying between 0.006 up to 0.2. A scaled horizontal distance is introduced for output,

varying between 0 and 1,

x̂ =
x

L
ŷ =

y

L
. (12)

Periodic boundary conditions are applied to the horizontal boundaries, so that the sim-

ulation domain is surrounded with an infinite number of copies of itself in the horizontal.15

3 Experiment description

3.1 Exp. A: ice flow over a bumpy bed

Exp. A considers a parallel-sided slab of ice with a mean ice thickness H=1000 m lying

on a sloping bed with a mean slope α=0.5
◦
. This slope is maximum in x and zero

in y . The basal topography is then defined as a series of sinusoidal bumps with an20

amplitude of 500 m (Fig. 1). The surface elevation is defined as

zs(x, y) = −x · tanα . (13)
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The basal topography is then given by

zb(x, y) = zs(x, y) − 1000 + 500 sin (ωx) · sin (ωy) , (14)

where x∈[0, L] and L=160, 80, 40, 20, 10 and 5 km, respectively. The basal bumps

have a frequency of ω=2π/L. The bed topography is shown in Fig. 2.

3.2 Exp. B: ice flow over a rippled bed5

The only difference with Exp. A is that the basal topography does not vary with y , so

that the experiment is suitable for 2-D flowline models as well. The basal topography

is thus formed by a series of ripples with an amplitude of 500 m:

zs(x, y) = −x · tanα (15)

zb(x, y) = zs(x, y) − 1000 + 500 sin (ωx) . (16)10

Width variations along the flow line are not considered.

3.3 Exp. C: ice stream flow I

The experiment setup is similar to Exp. A, albeit that the bedrock topography is flat, so

that ice thickness remains constant for the whole domain (H=1000 m):

zs(x, y) = −x · tanα (17)15

zb(x, y) = zs(x, y) − 1000 , (18)

where x∈[0, L] and L=160, 80, 40, 20, 10 and 5 km, respectively, and where α=0.1
◦
.

The basal friction coefficient is prescribed as

β2(x, y) = 1000 + 1000 sin (ωx) · sin (ωy) . (19)

The β2
-field is shown in Fig. 3. The basal friction bumps have a frequency of ω=2π/L.20
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3.4 Exp. D: ice stream flow II

The only difference with Exp. C is that the basal friction coefficient does not vary with

y , so that the experiment is suited for 2-D flowline models as well. The basal friction

field is thus formed by a series of ripples defined as

β2(x, y) = 1000 + 1000 sin (ωx) . (20)5

3.5 Exp. E: Haut Glacier d’Arolla

Exp. E is a diagnostic experiment along the central flowline of a temperate glacier in the

European Alps (Haut Glacier d’Arolla), based on earlier experiments by Blatter et al.

(1998) and Pattyn (2002). Input for the model is formed by the longitudinal surface and

bedrock profiles of Haut Glacier d’Arolla, Switzerland, according to the Little Ice Age10

geometry (Fig. 4). The longitudinal profile of this glacier has a very simple geometry,

hence the resulting stress field is not influenced by geometrical perturbations such as

the presence of a steep ice fall. In a first experiment (E1), a zero basal velocity is

considered (β2
=∞), and the width of the drainage basin, is kept equal to 1 along the

whole flowline domain. The flow-law rate factor A is taken constant over the whole15

model domain, and equals A=10
−16

Pa
−n

a
−1

. Upstream and downstream boundary

conditions imply a zero ice thickness and zero ice velocity. The input file has a resolu-

tion of ∆x=100 m, but the authors were free to choose any grid/mesh resolution.

A second experiment (E2) considers a narrow zone of zero traction, similar to the

experiment described in Blatter et al. (1998):20

β2
= 0 for 2200 ≤ x ≤ 2500 m

vb = 0 otherwise
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3.6 Exp. F: prognostic experiment

Exp. F is a prognostic experiment for which the free surface is allowed to relax until a

steady state is reached for a zero surface mass balance:

lim
t→∞

∂H

∂t
= lim

t→∞



−∇h

zs
∫

zb

vhdz



 = 0 , (21)

where vh is the horizontal velocity vector (m a
−1

). Basic model setup differs from the5

setup in Exps. A and C. For instance, a slab of ice with mean ice thickness H (0)
=1000 m

is considered, resting on a sloping bed with a mean slope of α=3.0
◦

(Fig. 5). This

slope is maximum in x and zero in y . The bedrock plane is parallel to the surface plane

and perturbed by a Gaussian bump. Initial bedrock B(0)
and unperturbed surface S (0)

elevation are thus governed by10

S (0)(x, y) = 0 (22)

B(0)(x, y) = −H (0)
+ a0

(

exp

[

−(x2
+ y2

)

σ2

])

, (23)

where σ=10 000=10H (0)
and where x, y (m) are the horizontal coordinates with respect

to the center of the Gaussian bump. The basal perturbation has a maximum height of

one tenth of the mean ice thickness, i.e. a0=100=0.1H (0)
(Fig. 5). The domain size L15

is taken 100 H (0)
in x and y . The horizontal coordinates for output are scaled against

σ by

x̂ =
x

H (0)
ŷ =

y

H (0)
. (24)

Periodic boundary conditions are applied as well. The major difference with the previ-

ous experiments is that n=1 in Eq. (5), so that the effective viscosity is constant and20
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becomes η = (2A)
−1

. Therefore, the unperturbed velocity field at the surface is defined

by

U (0)
= AH (0)τ

(0)

b
= ρgA

[

H (0)
]2

sinα , (25)

where τ
(0)

b
=ρgH (0)

sinα is the unperturbed basal shear stress, and

A=2.140373×10
−7

Pa
−1

a
−1

, so that U (0)
=100 m a

−1
.5

Experiments are carried out for different values for slip ratios c, that determine the

relation between the basal velocity and basal drag. The basal velocity is written in

terms of a basal friction coefficient β2
, or

Ub =
τb

β2
. (26)

Following the scalings given by Gudmundsson (2003), the basal friction coefficient is10

related to the slip ratio c by

β2
=

(

cAH (0)
)−1

. (27)

Experiments are run for slip ratios c=0 and 1 (F1 and F2, respectively). It is easily

demonstrated that U
(0)

b
=cU (0)

. Table 2 lists the main constants used for Exp. F. Using

these settings, the model should run until a steady state of the free surface is reached.15

4 Model classification

In total 27 numerical and 1 analytical model from 20 contributors participated in the

intercomparison exercise. A list of model characteristics and contributions is summa-

rized in Table 3. The different Stokes approximants all in some way start from the

shallow ice approximation (SIA; Hutter, 1983; Hindmarsh, 2004). We will follow here20

the classification scheme for higher-order models by Hindmarsh (2004), who gives a
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detailed description of the different “longitudinal stress schemes” widely used in ice

sheet modeling. The most common longitudinal stress approximations introduce the

two horizontal velocity components as field variables. This leads to an elliptic system

with two rather than four variables of the full system at points in three-dimensional

space (Pattyn, 2003; Hindmarsh, 2004), and the resultant linear systems are generally5

better conditioned than those resulting from the numerical analysis of the full system.

These models are termed “multilayer models”. A number of these models solve an

elliptic system at one elevation only (generally the upper surface), and the resulting

problem is therefore computationally two-dimensional. Besides the full Stokes system,

approximations are labeled L1L1, L1L2, LMLa and LTSML (Hindmarsh, 2004).10

The L1L1 approximation is a one-layer longitudinal stress scheme using τ′xx at the

surface computed by solving elliptic equations and identical to the approximation used

by MacAyeal (1989). An alternative approximation is the L1L2 approach or one-layer

longitudinal stress scheme using ε̇xx at the surface computed by solving elliptical equa-

tions with a vertical correction of τ′xx. Here, the surface velocities used in computing15

the non-horizontal plane stresses are computed using the shear stresses in the shear

strain relationship and in the sliding relationship.

The most common approximation is the LMLa or multilayer longitudinal stress

scheme. This is the classic longitudinal stress scheme as used by Blatter (1995) and

Pattyn (2003). Compared with L1L2, the longitudinal stresses use the velocity at the20

corresponding elevations rather than at the surface, and the stress-invariant calcula-

tions are self-consistent rather than using the SIA stress (Hindmarsh, 2004). Finally,

there is the LTSML or multilayer longitudinal stresses scheme with horizontal shear

stress gradients approximated by SIA. Here, horizontal gradients of the vertical ve-

locity are neglected. Horizontal plane shear stresses, when needed to calculate the25

horizontal gradient of such shear stresses, are approximated by SIA values. This ap-

proach is similar to an LMLa, but with inclusion of the vertical resistive stress Rzz, as

used by Van der Veen and Whillans (1989).
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5 Results

A graphical representation of all the results for each of the contributing au-

thors as well as the submitted data files are found in the supplemental files

(http://www.the-cryosphere-discuss.net/2/111/2008/tcd-2-111-2008-supplement.zip).

An analysis of the CPU performance of each of the experiments is presented in an5

accompagning paper by Gagliardini and Zwinger.

5.1 Experiments A and B

The results for Exps. A and B are shown in Figs. 6 and 7, respectively. Each graph dis-

plays the surface velocity across the bumps at y=L/4 for Exp. A and along the central

flowline for Exp. B, according to the different length scales and for the different partic-10

ipating models. The experiments were set up in such a way that for this longitudinal

profile the SIA gives a solution that is completely independent of L, which is not the

case for higher-order models. The surface velocity according to the SIA is given by

vx(zs) = vx(zb) +
2A

n + 1
(ρg tanα)n Hn+1 , (28)

where vx(zb)=0 is the basal velocity (Fig. 8). The maximum surface velocity according15

to the SIA remains constant for all length scales (119.69 m a
−1

). However, whenever

topographic differences occur, longitudinal stress gradients must develop which tend

to smooth out the velocity field. For high aspect ratios ǫ=H/L (hence low values of L)

this leads to a more or less constant surface velocity field as the ice sheet does not

“feel” the individual bedrock undulations anymore. Rather, it feels the fast sequence of20

large bed undulations as a viscous drag. The aspect ratio ǫ determines the amplitude

of the horizontal surface velocity field, and the surface velocity decreases from around

100 down to 10 m a
−1

(Fig. 9).

Full Stokes models closely agree with each other when calculating the velocity field

for different length scales, compared to the larger spread of solutions for the higher-25

order approximations. L1L1 and L1L2 models display by far the lowest accuracy. The
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larger spread for LMLa, LTSML, L1L1 and L1L2 models is due to the fact that (i) more

models are participating and that (ii) at the highest aspect ratios the different approx-

imations are not valid anymore, so that the full stress field needs to be solved. For

the smallest length scales the full Stokes models standard deviation reduces to <1%

(Table 4).5

The flowline experiments (Exp. B) show similar results as the 3-D experiments

(Exp. A). Differences are related to the lack of developing transverse stress gradients

and ice flow speeds are generally higher for the flowline case. A particularity is ob-

served in the surface horizontal velocity for the smallest length scale L=5. The surface

velocity according to all full Stokes models is larger over the bump than over the trough,10

hence anti-correlated with ice thickness (Fig. 7). All the other approximations (LMLa,

LTSML, L1L2 and L1L1) predict a velocity to ice thickness correlation for all length

scales. The marked difference can be attributed to mass conservation, as at such high

aspect ratios the horizontal ice flux cannot be balanced anymore by the vertical flux

at the free surface since the vertical velocity would be too large for the given depth.15

The horizontal ice flux is therefore more or less constant inducing larger velocities for

smaller depth and vice versa. The feature is only noticeable for the flowline experi-

ments as in 3-D the ice flow is allowed to flow around the bumps. The flow inversion

is considered as an artifact stemming from the diagnostic nature of the experiments

and would disappear if the free surface was allowed to respond to the applied stress20

field. Higher-order models fail to produce the velocity inversion, since the stress field

is solely determined from horizontal strain rate components and vertical velocities are

an a posteriori model result (e.g. Pattyn, 2003).

5.2 Experiments C and D

In this series of experiments, variations in basal conditions (slipperiness) determine25

when longitudinal stress gradients must develop. Due to the importance of basal slid-

ing, the ice behaves as in an ice stream, in which vertical shearing is present, though

minimal. Ice flow in this experiment can be considered as ice shelf flow with minimal
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basal traction. The invalidity of the SIA solution is shown in Fig. 8, where the analytical

SIA solution is plotted for a simplified basal sliding relationship in which the basal shear

stress is supposed to balance the driving stress, hence without longitudinal stress gra-

dients, so that

vx(zb) = (ρgH tanα)β−2 , (29)5

in Eq. (28). However, a singularity occurs in Eq. (29) for β2
=0 (not all velocities are

therefore plotted in Fig. 8). As for Exps. A and B, the SIA solution is independent

of L. Again, full Stokes models are definitely more accurate than the higher-order

approximations (Figs. 10–11 and Table 4). The SIA solution is definitely not suited

for simulating this type of ice flow where longitudinal controls dominate over vertical10

shearing (compare with Fig. 8). Similar to the results of Exps. A–B, the amplitude of the

surface velocity field decreases with increasing aspect ratio ǫ (Fig. 9). At the smallest

length scales the surface velocity field is almost constant as the change between high

and low friction areas is smoothed out due to longitudinal stress transmission. Similar

to Exp. B, an inversion of the surface velocity field anti-correlated to basal friction is15

observed for full Stokes models and not for the other higher-order approximations (due

to the larger disparity in solutions, this effect is unnoticeable in Fig. 11).

In general, the accuracy of the modeled velocity field is lower than for the experi-

ments over the bumps. The highest accuracies are obtained with full Stokes models

and the accuracy increases with increasing ǫ, contrary to the results from Exps. A–B.20

Accuracies for Exp. D are the lowest and the disparity of results is most pronounced for

higher-order models. The results of L1L1 and L1L2 models lie the furthest away from

the full Stokes solutions.

An apparent discontinuity in the model results and a difference between full Stokes

and higher-order model solutions can be seen from the difference between the isotropic25

pressure at the base and the hydrostatic pressure PH , i.e.

∆P (zb) = P (zb) − PH (zb) = −
1

3

∑

i

τi i (zb) − ρgH (30)
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(Fig. 12). Contrary to the previous experiments, the discontinuity is not a function of

aspect ratio, but most pronounced at a length scale L=10 km. It shows up at x=3L/4

and only for full Stokes models. However, the value of ∆P produced by the higher-

order models is an a posteriori calculation, as by definition these models suppose

hydrostatic approximation in the vertical, so that ∆P (zb)=0. Sudden changes in ∆P5

may occur when the ice flow changes from one regime to another, i.e. from no sliding to

sliding and vice versa (see for instance Exp. E). However, in this series of experiments,

changes in basal friction are smooth and even the high friction area is still dominated

by basal sliding, as is the case for an ice stream. It is therefore not clear why the small

bump in ∆P occurs in the full Stokes model solutions.10

5.3 Experiment E: Haut Glacier d’Arolla

Although the input file lists the bedrock and surface data along the flowline of Haut

Glacier d’Arolla with a fixed grid spacing of ∆x=100 m, most participants interpolated

this dataset at a higher resolution to obtain more accurate results (Fig. 13). The resolu-

tion dependence of the results is captured in Fig. 14, where the oscillations in the basal15

shear stress along the flowline are either jagged when undersampled or smoothed

when a sufficiently small grid size is chosen. Most models simulate the surface velocity

field along the flow line accurately, albeit that between higher-order model approxima-

tions the discrepancy is somewhat higher than for the full Stokes models.

Experiments with the sliding zone (area of zero basal friction) leads to much more20

discrepancy between the different participating models, and also the full Stokes mod-

els show a much larger range of solutions. Here, increasing resolution results in other

caveats compared to the no-sliding case, such as the occurrence of oscillations in the

basal shear stress. The slip/no slip boundaries are very sensitive to model resolu-

tion, as they can be regarded as singularities when the friction parameter β2
suddenly25

jumps from zero to infinity and vice versa. Especially the linear interpolation that was

applied leads to break points in basal and surface topography that influence the result.

The results of the sliding experiment underline the difficulty to simulate end-member
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behavior in basal sliding (no slip/slip).

5.4 Experiment F: prognostic run

Real benchmarking of numerical ice sheet models is only possible when analytical

solutions for a particular problem exists. Furthermore, this experiment is the only time-

dependent experiment and therefore very interesting to evaluate the transient behavior5

of the participating models. For this experiment, only few models participated, which

underlines the present-day lack of time-dependent higher-order ice sheet models. The

objective of the test was to run the models forward in time until a steady state was

reached. The definition of steady state (precision at which no rate of change of vari-

ables in time is considered) was left to the interpretation of each participant. Results of10

the steady-state surface elevation and velocity are shown in Figs. 15–16.

The analytical solution is only available for a simple case, i.e. linear rheology and

without basal sliding. The full Stokes numerical ice sheet models show a very good

agreement with the analytical solution, although only two models are participating in

the excercise. Higher-order model solutions fit also very well, but show a slightly larger15

variability, especially on behalf of velocities. This variability is emphasized when basal

sliding is introduced. However, an analytical solution is lacking here. The fact that

numerical solution of the full Stokes models lies closer to the analytical solution, com-

pared to the higher-order solutions, is due the fact that both solve the same equations,

which is not the case for the higher-order models.20

6 Conclusions

In this paper we present the results of the first intercomparison exercise of higher-order

and full Stokes ice sheet models. In total, 27 different numerical models participated

in this benchmarking effort. A series of six experiments were designed to evaluate

complex ice flow with high basal topographic variability and variations in slipperiness.25
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All experiments were designed in such a way that the Shallow-Ice Approximation (SIA)

is not valid anymore, especially at high aspect ratios.

Compared to previous benchmark experiments (Huybrechts et al., 1996; MacAyeal

et al., 1996; Payne et al., 2000), a significantly higher number of ice-sheet models par-

ticipated in this benchmark, augmenting the representativity of the evaluation. Despite5

the higher complexity of the problem (compared to the SIA solution), all models pro-

duce results that converge even under extreme conditions of high aspect ratios. This

shows that over the last decade numerical ice sheet models have improved consider-

ably and are capable of simulating different types of ice flow, where longitudinal stress

gradients are important.10

As compared to full Stokes models, higher-order model approximations show a

stronger deviation from the exact solution and a larger disparity. At least two rea-

sons can be put forward. First, at high aspect ratios all stress components become

important and the approximations offered by higher-order solutions are not sufficient.

Second, most of the full Stokes models are NOT completely coded by the authors but15

rely for large parts on commercially available or open source software. Most of them

are solved using finite elements. The results are therefore numerically more stable

and accurate. The higher-order models on the other hand, are mostly solved using

home-made code and are based on a wider variety of numerical methods. None of the

participating models show real coding errors.20

Although a limited number of L1L1 and L1L2 models participated, they perform gen-

erally better (larger spread in solutions) for basal topographic perturbations than for

basal sliding perturbations, for which they were designed in the first place (i.e. simulat-

ing ice stream flow). LMLa models give valid results, but are significantly less accurate

for very high aspect ratios or when basal sliding variability is important, compared to full25

Stokes models. All models (including full Stokes) poorly agree when sudden variations

in basal friction are considered, such as the slip/no slip jumps in Exp. E.

Finally, the full Stokes models presented in this intercomparison give the most con-

sistent results. They show a very low disparity of results and are well validated by the
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analytical solution for linear rheology. For most experiments a clear distinction can be

made between results from full Stokes and higher-order approximants, which gives us

confidence that the solutions are less biased by numerical approaches than previous

benchmarks experiments (Huybrechts et al., 1996).
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Table 1. Constants for the numerical model.

Constant Value Units

A Ice-flow parameter 10
−16

Pa
−n

a
−1

ρ Ice density 910 kg m
−3

g Gravitational constant 9.81 m s
−2

n Exponent in Glen’s flow law 3

Seconds per year 31 556 926 s a
−1
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Table 2. Constants for the model setup according to Exp. F.

Constant Value

A Ice-flow parameter 2.140373×10
−7

Pa
−1

a
−1

n Flow law exponent 1

α Mean surface slope 3
◦

a0 Amplitude Gaussian bump 100 m

σ Width Gaussian bump 10 000 m

133

http://www.the-cryosphere-discuss.net
http://www.the-cryosphere-discuss.net/2/111/2008/tcd-2-111-2008-print.pdf
http://www.the-cryosphere-discuss.net/2/111/2008/tcd-2-111-2008-discussion.html
http://creativecommons.org/licenses/by/3.0/


TCD

2, 111–151, 2008

Benchmarks for

higher-order and full

Stokes ice-sheet

models

F. Pattyn et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

Table 3. List with the 28 participating models. Model: model acronym based on the initials of

each author; Type: the model type (see text for description); Dims: model dimensions; Method:

numerical method (FE = finite elements, FD = finite differences, Sp = spectral method, FV =

finite volume, An = analytical); A–F participation in the different experiments is marked with an

×.

Model Type Dims Method A B C D E F Reference

aas1 Full Stokes 2-D FE × × × unpublished

aas2 Full Stokes 3-D FE × × ×
a

× unpublished

ahu1 LMLa 3-D FD ×
a

×
a

×
a

×
a

× Hubbard et al. (1998); Nienow et al. (2005)

ahu2 LMLa 2-D FD × Hubbard et al. (1998); Nienow et al. (2005)

bds1 LMLa 2-D FE × × × unpublished

cma1 Full Stokes 3-D FE × × × × × × Martin et al. (2003)

cma2 LMLa 3-D FE × × × × × unpublished

dpo1 L1L2 2-D FD × × Pollard and DeConto (2007)

fpa1 LMLa 3-D FD × × × × × × Pattyn (2003)

fpa2 Full Stokes 3-D FD ×
c

×
b

Pattyn (2008)

fsa1 LMLa 3-D FD × × × × based on Pattyn (2003); Colinge and Rappaz (1999)

ghg1 Full Stokes 3-D An ×
d

Gudmundsson (2003)

jvj1 LMLa 3-D FE ×
b

× × × Johnson and Staiger (2007)

lpe1 L1L1 2-D FD × based on MacAyeal (1989); Pattyn (2003)

mbr1 LMLa 3-D FD ×
b

×
b

×
c

×
c

× × Breuer et al. (2006)

mmr1 Full Stokes 3-D FE × × × × unpublished

mtk1 LTSML 3-D FD × × × based on Blatter (1995); Hindmarsh (2004)

oga1 Full Stokes 3-D FE × × × × × × Zwinger et al. (2007); Gagliardini and Zwinger (2008)

oso1 SIA’ 3-D ×
a

×
a

unpublished

rhi1 Full Stokes 3-D Sp × × × × Hindmarsh (2004)

rhi2 LMLa 3-D Sp × × × × Hindmarsh (2004)

rhi3 Full Stokes 3-D Sp × × × × Hindmarsh (2004)

rhi4 L1L2 3-D Sp ×
a

×
a

× × Hindmarsh (2004)

rhi5 L1L1 2-D Sp × × × × Hindmarsh (2004)

spr1 Full Stokes 2-D FV ×
a

×
d

Price et al. (2007)

ssu1 Full Stokes 2-D FE × × × Sugiyama et al. (2003)

tpa1 LMLa 3-D FD × × × × × based on Pattyn (2003); Hindmarsh (2004)

yko1 Full Stokes 3-D FD × ×
d

unpublished

a
not for L=5 km

b
not for L=5 and 10 km

c
not for L=5, 10 and 20 km

d
only no sliding case
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Table 4. Mean values (µ), standard deviation (σ) and number of participating models (n) of the

maximum horizontal ice velocity at the surface in the direction of the flow. Results are listed for

Exp. A–D and for each length scale. Units are m a
−1

.

L(km) 160 80 40 20 10 5

µ ( σ ) n µ ( σ ) n µ ( σ ) n µ ( σ ) n µ ( σ ) n µ ( σ ) n

Exp. A

LM/L1 104.95 ( 5.11 ) 11 88.24 ( 2.21 ) 11 64.39 (4.79) 11 40.48 ( 3.67 ) 11 25.15 (3.36) 9 15.33 ( 1.76 ) 8

FS 105.45 ( 1.69 ) 7 88.99 ( 0.87 ) 7 65.06 (0.55) 7 40.46 ( 0.20 ) 6 24.56 (0.10) 6 14.71 ( 0.12 ) 6

Exp. B

LM/L1 109.30 ( 4.34 ) 14 96.34 ( 5.53 ) 14 74.90 (5.12) 14 47.77 (3.989) 14 23.46 (4.10) 13 11.40 ( 1.71 ) 11

FS 108.34 ( 0.84 ) 8 95.12 ( 1.01 ) 8 73.81 (0.99) 8 46.99 ( 1.01 ) 8 22.87 (0.80) 8 11.60 ( 0.52 ) 7

Exp. C

LM/L1 150.10 (19.45) 11 62.55 ( 3.51 ) 11 29.69 (3.51) 11 18.57 ( 0.59 ) 10 15.73 (1.02) 10 12.14 ( 5.22 ) 9

FS 145.82 (11.02) 7 60.37 ( 2.11 ) 7 29.09 (0.92) 7 19.10 ( 0.59 ) 7 16.52 (0.31) 6 15.99 (0.005) 5

Exp. D

LM/L1 229.79 (29.97) 12 92.72 (12.50) 12 40.49 (2.98) 12 20.60 ( 3.42 ) 11 16.01 (2.54) 11 13.26 ( 4.73 ) 10

FS 238.46 ( 1.30 ) 7 97.62 ( 1.61 ) 7 41.46 (1.00) 7 21.24 ( 0.55 ) 7 17.05 (0.27) 7 16.44 ( 0.14 ) 7
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Fig. 1. Cartesian coordinate system used for Exp. A–D.
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Fig. 2. Basal topography zb (m) for Exp. A according to Eq. (14) for L=80 km. Ice flow is from

left to right.
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Fig. 3. Basal friction coefficient β2
for Exp. C.
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Fig. 6. Results for Exp. A. Surface velocity across the bump at y=L/4 for different length scales

L.
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Fig. 7. Results for Exp. B. Surface velocity for different length scales L.
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Exps. A–D, based on Eqs. (28) and (29). Results are independent of L.
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Fig. 9. Maximum surface velocity in the direction of the ice flow for Exp. A (top) and C (bottom)

as a function of length scale L. Graphs for Exps. B and D are similar.
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Fig. 10. Results for Exp. C. Surface velocity across the bump at y=L/4 for different length

scales L.
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Fig. 11. Results for Exp. D. Surface velocity for different length scales L.
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Fig. 12. Basal pressure difference according to Exp. C for L=10 and 5 km, respectively.
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Fig. 13. Surface velocity in the direction of the ice flow for Exp. E for the no-sliding (top) and

sliding (bottom) experiment.
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Fig. 14. Basal shear stress in the direction of the ice flow for Exp. E for the no-sliding (top) and

sliding (bottom) experiment.
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Fig. 15. Steady state surface elevation along the central flowline for Exp. F for the no sliding

(top) and sliding (bottom) experiment.
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Fig. 16. Steady state surface velocity along the central flowline for Exp. F for the no sliding

(top) and sliding (bottom) experiment.

151

http://www.the-cryosphere-discuss.net
http://www.the-cryosphere-discuss.net/2/111/2008/tcd-2-111-2008-print.pdf
http://www.the-cryosphere-discuss.net/2/111/2008/tcd-2-111-2008-discussion.html
http://creativecommons.org/licenses/by/3.0/

