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Abstract. Extreme Value Theory (EVT) is a useful tool to
describe the statistical properties of extreme events. Its un-
derlying assumptions include some form of temporal station-
arity in the data. Previous studies have been able to treat
long-term trends in datasets, to obtain the time dependence
of EVT parameters in a parametric form. Since there is
also a dependence of surface temperature and precipitation
to weather patterns obtained from pressure data, we deter-
mine the EVT parameters of those meteorological variables
over France conditional to the occurrence of North Atlantic
weather patterns in the summer. We use a clustering algo-
rithm on geopotential height data over the North Atlantic to
obtain those patterns. This approach refines the straightfor-
ward application of EVT on climate data by allowing us to
assess the role of atmospheric variability on temperature and
precipitation extreme parameters. This study also investi-
gates the statistical robustness of this relation. Our results
show how weather regimes can modulate the different be-
havior of mean climate variables and their extremes. Such a
modulation can be very different for the mean and extreme
precipitation.

1 Introduction

The impact of the atmospheric circulation on the tempera-
ture and precipitation conditions in the extra-tropics has been
documented in many studies (e.g. Hurrell et al., 2003, for
a review). Such a relation is well documented for the last
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50 years. It has also been argued that reorganizations of
the atmospheric circulation, related to natural variability or
caused by a forcing, can cause changes in midlatitude sur-
face temperature (Corti et al., 1999; Kageyama et al., 1999;
Palmer, 1999). This relation is also a basis for climate proxy
reconstructions (Bradley, 1999; Luterbacher et al., 1999) of
mean atmospheric flow or temperature. In many cases, eco-
systems are more sensitive to climate extremes than to its
mean variations. This calls for an evaluation of this relation
for temperature and precipitation extremes.

In this paper, we use the paradigm of weather regimes
to describe quasi-stationary states of the atmosphere (Cheng
and Wallace, 1993; Ghil and Robertson, 2002; Michelangeli
et al., 1995; Vautard and Legras, 1988; Vautard et al., 1988;
Vautard, 1990). Weather regimes emerge from a statistical
description of the atmosphere into discrete sets and are gen-
erally obtained from statistical classification or estimates of a
high dimensional probability density function. Hence, atmo-
spheric circulation can be viewed as a Markov process, with
state transitions with probability distributions to be evaluated
(Ghil and Robertson, 2002). The relation between weather
regimes and local extreme events of temperature or precipi-
tation has been investigated by a few authors (Cassou et al.,
2005; Plaut et al., 2001; Plaut and Simonnet, 2001; Robert-
son and Ghil, 1999; Yiou and Nogaj, 2004; Yiou et al., 2006).
In those studies, extreme events are defined as exceedances
of a fixed threshold, but in general the probability distribu-
tion of the extremes is not used to build the relation between
the circulation and surface extremes.

Extreme Value Theory (EVT) is a useful paradigm to
quantify the statistical properties of extreme events (Coles,
2001). EVT aims at describing the tail of the distribution
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Table 1. Table of acronyms and abbreviations.

Acronym Definition

BLO Blocking
ECA European Climate Assessment
EOF Empirical Orthogonal Function
EVT Extreme Value Theory
GA Greenland Anticyclone
GPD Generalized Pareto Distribution
IID Independent and Identically Distributed
JJA June–July–August
NAO North Atlantic Oscillation
NCEP National Centers for Environmental Prediction
PC Principal Component
POT Peak-Over-Threshold
RL Return Level
RR Daily precipitation
TG Daily mean temperature
TX Daily maximum temperature
z500 Geopotential height at 500 hPa

of random variables, and stems from a convergence theorem
stating that the distributions of extremes follow generic laws,
provided a few elementary hypotheses are verified (Lead-
better et al., 1982). EVT supersedes a Gaussian framework
when extreme values are treated and allows for much finer
data descriptions (Cooley et al., 2006; Naveau et al., 2005).
Hence we place this paper in the EVT framework to de-
scribe extremes of temperature and precipitation, which as
will be shown, do not follow Gaussian distributions. This
paper investigates the relation between the EVT parameters
of variables (temperature and precipitation) and a control-
ling variable acting like a Markov chain (atmospheric circu-
lation). The classification method, a stabilization procedure,
and EVT theory are exposed in Sect. 2. The data sets are de-
scribed in Sect. 3. Results of the analyses on temperature and
precipitation in France, including statistical tests, are given
in Sect. 4. Conclusions and perspectives appear in Sect. 5.
The acronyms and abbreviations used in the text are listed in
Table 1.

2 Methodology

2.1 Weather regimes and classification

It has been shown that surface temperature and precipitation
conditions depend on patterns of the atmospheric circula-
tion in the northern extra-tropics (Corti et al., 1999; Palmer,
1999; Robertson and Ghil, 1999). Moreover it has been ar-
gued that recent decadal changes in mean temperature can be
caused by circulation reorganizations only (Corti et al., 1999;
Palmer, 1999).

The hemispheric atmospheric circulation varies on time
scales of days. Many arguments have been proposed to
project this variability in the Northern Hemisphere onto a
small number of quasi-stationary states (Cheng and Wallace,
1993; Ghil and Robertson, 2002; Vautard and Legras, 1988;
Vautard, 1990). Such states are called weather regimes and
provide a discrete description of the atmospheric circulation.
The determination of those states is a statistical problem of
classification: the weather regimes are the centroids of a
cloud of points in an ad hoc phase space (Cheng and Wallace,
1993; Michelangeli et al., 1995). The attribution of each at-
mospheric circulation observation to a centroid defines the
clusters of the classification.

A classical way of performing this classification is to
use a k-means algorithm (Hartigan and Wong, 1979). This
straightforward classification method partitions a dataset into
a predefined set ofk clusters, such as to minimize the spread
within them. The algorithm then iteratively searches for the
best partition, given random initial centroids. Hence, the re-
sulting classification is a priori random. Repeating this clas-
sification procedure with random initializations and checking
for the reproducibility of the centroids can provide a heuristic
criterion to assess the validity of the partitioning into distinct
k clusters (Michelangeli et al., 1995).

Other classification methods have been used on atmo-
spheric circulation data (Beck et al., 2007; Corti et al., 1999;
Smyth et al., 1999; Vrac et al., 2007), but results are gener-
ally consistent from one method to another. The advantage of
the k-means algorithm is that its straightforward application
is computationally efficient.

Atmospheric circulation datasets over the North Atlantic
region generally contain≈103 grid points on a daily time
scale (see Sect. 3.1). In order to maintain a convergence of
the classification algorithms, it is necessary to highly reduce
the number of variables. This is done with a principal compo-
nent (PC) analysis (von Storch and Zwiers, 2001) and keep-
ing the firstP modes that represent, for instance, more than
90% of the variance. Thus the corresponding empirical or-
thogonal functions (EOFs) contain the reduced phase space
on which the classifications are performed.

Winter atmospheric circulation around the North Atlantic
is generally classified into four weather regimes (Corti et al.,
1999; Kimoto and Ghil, 1993a,b; Michelangeli et al., 1995),
regardless of the method used to determine the classification.
This is due to the large daily variability of the circulation,
which yields important swings that are physically and sta-
tistically identifiable. In the summer, the circulation of the
North Atlantic has less variability and the classification of
atmospheric circulation data is generally less clear, if not in-
valid. In this paper we do not attempt to prove that the sum-
mer circulation is classifiable or to find the “best” number of
clusters that describes it. Visual inspections of projections
of atmospheric circulation data onto two of the main PCs do
not suggest that there exist clearcut clusters. Thus the crite-
rion devised by Michelangeli et al. (1995) would reject the
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data classifiability for summer atmospheric circulation. Our
choice is rather to “cut the cake” into a small number of parts
(for instancek=4 regimes) which make statistical sense in a
way defined below.

Our strategy is to perform a large number (typically,
n=100) of k-means classifications of the data with different
initializations and the same number (k=4 ) of clusters. Then
we determine the most probable set of centroids found by the
classifications. To do this, we classify the set ofkn(=400)
clusters with a mixture modelling algorithm that determines
an optimal number of centroids (Smyth et al., 1999; Vrac
et al., 2007). Hence we obtain a set ofk′≥4 meta-clusters
for thekn clusters obtained by k-means. The most frequent
meta-cluster then is determined. We then compute a compos-
ite centroid from the population of this most frequent meta-
cluster. This multi-step procedure ensures that the obtained
k-means classification is stable in a quantifiable sense, al-
though it is acknowledged that the data are not necessarily
classifiable. We conjecture that this procedure takes into ac-
count local irregularities of the data outer boundaries but this
discussion is beyond the scope of this paper. An alterna-
tive method was proposed to define modes of variability of
continuously varying data (Bernacchia and Naveau, 2007).
We stress that the key to this stabilization procedure is that
the number of clusters has to be specified in advance. For
the summer data,k=4 clusters are specified for the North
Atlantic atmospheric circulation, which is physically reason-
able (Cassou et al., 2005).

In this study, we consider a classification of the atmo-
spheric circulation which is by no means unique, but which
is the most probable with a k-means algorithm. The clusters
of this classification are the so-called weather regimes.

2.2 EVT and POT

Analysis of the distribution of extremes is an important di-
agnostic tool for investigating the occurrence of rare events
(Gumbel, 1958; Coles, 2001; Leadbetter et al., 1982; Naveau
et al., 2005) This statistical approach was pioneered by Gum-
bel (1958), and has proved to be efficient in the fields of fi-
nance (Embrechts et al., 1997), hydrology (Katz, 1999; Katz
et al., 2002; Yiou et al., 2006) and climatology (Kharin and
Zwiers, 2000; Naveau and Moncrieff, 2003; Nogaj et al.,
2006). The general idea of the Extreme Value theory (EVT)
is to parameterize the tail of the distribution of climate vari-
ables, which contains information about the distribution of
extremes (Gumbel, 1958). For instance, a Gaussian distri-
bution has a thin tail with a “low” probability of observing
large events, whereas a distribution with a heavy tail yields a
relatively high probability of having large values and has in-
finite higher moments. We summarize hereafter the general
properties of extreme values.

The Peak-Over-Threshold (POT) method describes the
probability density function of a variable when it exceeds a
high threshold. Considering an independent identically dis-

tributed (IID) random variableX, of continuous distribution
F , a given fixed thresholdu and any numberx the condi-
tional probabilityFu(x) thatX exceedsx, given thatX ex-
ceedsu is:

Fu(x) = P(X > x|X > u) =
1 − F(x)

1 − F(u)
, for x > u. (1)

The aim of the POT method is to describeFu(x) indepen-
dently of the a priori unknownF . Under conditions of con-
vergence and proper normalization (Embrechts et al., 1997),
and for large enoughu, this distribution can be approximated
by the generalized Pareto distribution (GPD) with parameters
σ (scale parameter) andξ (shape parameter):

H(x) = 1 −

(

1 +
ξ(x − u)

σ

)−1/ξ

, for x > u (2)

defined forξ 6=0 . If ξ=0, the GPD estimate becomes an
exponential distribution:

H(x) = 1 − exp

(

−
x − u

σ

)

, for x > u. (3)

Those parameters relate closely to the usual extreme value
parameters that describe the distribution of maxima ofX

(Coles, 2001). In this paper, we estimate the GPD parameters
by a classical maximum likelihood method (Coles, 2001).
Confidence intervals obtained from this procedure are used
to assess the significance of parameter estimates. The choice
of the thresholdu is a compromise between the convergence
of Eqs. (2), (3) toward a GPD distribution, and the number
of data to estimate the GPD parameters. Heuristic (and nec-
essary arbitrary) procedures can be devised for this choice
(Coles, 2001). Here we use as thresholdu the upper 90th per-
centile of the data, implying that the parameters in Eqs. (2),
(3) are estimated with 10% of the data. We verified that tak-
ing the 95th percentile does not significantly change our re-
sults.

The main caveat of this approach is that the conditions
of convergence toward a GPD distribution are not necessar-
ily met, because this mathematical result is asymptotic for
large datasets and large thresholdu. It is possible to check
the goodness of fit of the model of Eqs. (2), (3) with clas-
sical quantile-quantile (Q-Q) plots (Coles, 2001). Hence we
checked that the Q-Q plots of time series we analyzed are
significant within 95% confidence intervals.

The climate variables, daily temperature and precipitation,
are generally correlated from one day to the next and are not
independent. Hence the POT method cannot be applied in a
straightforward way to such data (Coles, 2001; Nogaj et al.,
2006). For a given variableX, we thus determine clusters of
exceedances ofX above a thresholdu. The maxima of each
cluster can be considered independent (and identically dis-
tributed). Hence we apply the POT method on declustered
data. In this study we assume that clusters of exceedances
are separated by at least one day under the threshold. Other,
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more sophisticated definitions for clusters can be used, but
we chose the simplest one for illustration purposes. An ex-
tremal indexθ can be defined to measure the short-term de-
pendence of data. This index is a normalizing exponent for
which the distribution of extremes of the dependent data con-
verges to a GPD distribution (Coles, 2001). It can be esti-
mated by

θ̂ =
nc

nu

, (4)

wherenc is the number of clusters andnu is the number of
exceedances of the thresholdu. The parameterθ is equal to 1
when the data are independent and decreases with the typical
size of clusters.

In this study, we assume for simplicity that the processes
and their extremes are stationary, although trends have been
identified in temperature extremes (Nogaj et al., 2006) in Eu-
rope. High summer temperatures in France do not seem to
yield such trends in GPD parameters (Nogaj et al., 2006),
therefore this technical hypothesis is reasonable if we restrict
our analysis to meteorological data in France (see Sect. 3).

Rather than looking only at the scale and shape parameters
of the GPD distributions, it is sometimes more practical to
compute return levels associated with a return period. We
define a return level (RL)zT corresponding to a return period
of T years by the expectation of the event “to exceed the RL”
to be equal to one during that period (Yiou et al., 2006). For
an IID process, the RL is determined from the inversion of
Eqs. (2), (3):

zT = u +
σ

ξ

[

(T nXζu)
ξ − 1

]

, for ξ 6= 0, (5)

and

zT = u + σ log(T nXζu), for ξ = 0, (6)

where nX is the number of observations ofX per year
(N=T nX is the total number of observations) andζu is the
probability of exceeding the thresholdu (Coles, 2001). If
seasonal extrema are considered, for instance summer ex-
treme hot temperatures,nX is set to 92, the number of days
from June to August. The probabilityζu is estimated by
ζ̂u=

nu

N
, nu being the number of exceedances ofu. The non-

stationary case, i.e. with time varying GPD parameters, is
much more complicated to deal with (Nogaj et al., 2006). If
the data is dependent and clusters of extremes are found, the
RL estimatezT has to be rectified to:

zT = u +
σ

ξ

[

(T nXζuθ)ξ − 1
]

, for ξ 6= 0, (7)

because the EVT is applied on the cluster maxima instead of
the whole dataset.

The variations of RLzT as a function of the return period
T depend on the shape parameterξ which controls the con-
vexity of this relation Eq. (5). The relation of Eqs. (5), (6) can
be used to extrapolate RLs to return periods that are longer

than the period of observation. This illustrates the predictive
virtue of EVT, although it should be noted that confidence
intervals grow rapidly with the return periodT . In the fol-
lowing, we will compute RLs associated with return periods
of 50 years, i.e. levels exceeded on average once during the
observation period.

2.3 Imposing regime dependence

With the hypothesis that weather regimes represent differ-
ent climatic states affecting mean temperature and precipi-
tation, we investigate the extreme properties during weather
regimes. Thus we determine the probability of the variable
X exceeding a valuex, given thatX is larger than a thresh-
old u and an exogenous variableY (i.e. the weather regime to
which belongs the daily atmospheric circulation) is in a state
k. If the marginal probability density function ofX whenY

is in statek is denotedF (k)(x), we want to estimate:

F (k)
u = P

(

X > u|X > u(k), Y = k
)

=
1 − F (k)(x)

1 − F (k)(uk)
, for x > u(k). (8)

In Eq. (8),u(k) is a state-dependent threshold, which could be
set to a high value independent ofY . Under IID hypotheses
onX, we can hence determine GPD parametersσ (k) andξ (k)

for each statek. Confidence intervals are obtained in the
same fashion as for the classical case.

Return levels of extremes ofX can be estimated by a slight
modification of Eq. (7) taking into accountπ (k), the mean
frequency of weather regimek, which is its probability of
occurrence. We obtain:

z
(k)
T = u(k) +

σ (k)

ξ (k)

[

(T nXζu(k)θ
(k))ξ

(k)

− 1
]

, (9)

for ξ (k) 6= 0,

whereθ (k) andζu(k) are respectively the extremal index for
regimek and probability of exceeding the thresholdu(k). The
RL equation forξ (k)=0 is obtained from Eq. (6).

It is useful to test the significance of the dependence of the
parametersu(k), σ (k) andξ (k) to the regimek, i.e. their dif-
ference with the parametersu, σ andξ obtained from Eq. (2)
without taking weather regimes into account. To this end, the
null hypothesis of no weather regime dependence is intro-
duced and tested. Hence we determine the probability den-
sity function of each GPD parameter, given a random regime
distribution. This is performed by bootstrap simulations of
the regime attributionY (Efron and Tibshirani, 1993). This
approach circumvents the problem that the probability dis-
tribution of the GPD parameters is unknown, and has to be
estimated empirically. Here,S=100 random shuffles of the
daily weather regime attribution are performed, in order to
erase the potential weather regime dependence of tempera-
ture or precipitation extremes. This procedure preserves the
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frequenciesπ (k). The parametersu(k), σ (k) andξ (k) are es-
timated for each bootstrap simulation. From this set of ex-
periments, we can estimate the probability distribution of
the parameters with a null hypothesis of no weather regime
dependence. The null hypothesis can be rejected when the
weather regime dependent GPD parameters (Eq. 8) are out-
side of chosen quantiles of the bootstrap experiments (e.g.
the 1st and 99th quantiles, or other quantiles).

A convenient way of visualizing the distribution of the
GPD parameters with the bootstrap experiments is to use
box-and-whisker plots featuring quantiles of the empirical
probability distributions. The box-and-whisker plots we use
in this paper feature the 25th, 50th and 75th quantiles of the
distribution of estimated parameters (resp.q25, q50 andq75).
Such plots also represent the values ofq25−1.5×(q75−q25)

and q75+1.5×(q75−q25), which are proxies for extremes.
Since the distribution of the parametersu(k), σ (k) and ξ (k)

are approximately Gaussian (Embrechts et al., 1997), the two
latter values encompass the 0.5 and 99.5th quantile. There-
fore, if the regime dependent estimate of a parameter falls
outside those “whiskers”, it can be considered significantly
different from the “non dependent” estimate.

This approach of weather regime dependence is similar to
the mixture model of Vrac et al. (2007) who used a Bayesian
model for precipitation taking into account weather typing.
Our study focuses on the extremes and tries to assess their
weather regime dependence.

3 Data

3.1 Atmospheric circulation

The weather regimes were determined from the National
Centers for Environmental Prediction (NCEP) reanalysis
data between 1948 and 2007 (Kalnay et al., 1996). We used
the daily mean geopotential height at 500 hPa (z500) during
the summer season (June–July–August, JJA). The horizontal
resolution of z500 is 2.5◦ by 2.5◦ in longitude and latitude.

We removed the seasonal cycle by simply computing daily
averages for each day of the year over the whole period and
for each gridpoint. The obtained seasonal cycle is generally
irregular and we smooth it with a cubic spline smoothing al-
gorithm (Green and Silverman, 1994; Hastie and Tibshirani,
1990). We hence treat anomalies of the atmospheric circula-
tion with respect to an idealized seasonal cycle.

The atmospheric patterns that control European climate
generally cover the North Atlantic region. Thus, we focused
on the region between 80◦ W and 50◦ E in longitude, and
25◦ N and 70◦ N in latitude. Since the surface of grid cells
depends on latitude, the z500 data was normalized by the co-
sine of latitude. We kept 14 PCs of z500, hence capturing
90% of the total variance. We imposed a number of weather
regimes for the JJA data, to be consistent with Cassou et al.
(2005); Vautard et al. (2007).
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Fig. 1. Quantile-quantile (Q-Q) plots for the Generalized Pareto
Distribution (GPD) model of anomalies of summer (June to August)
mean daily temperature (TG) in Paris from the ECA data (Klein-
Tank et al., 2002) (panela) and the closest gridpoint from the NCEP
reanalysis (Kalnay et al., 1996) (panelb). Crosses (×) indicate data
points. 95% confidence intervals are indicated in dashed lines.

3.2 Temperature and precipitation

We used the European Climate Assessment (ECA) dataset
(Klein-Tank et al., 2002) for temperature and precipitation.
We took daily maximum temperature (TX), mean tempera-
ture (TG) and daily cumulative precipitation (RR) for station
data. Many datasets of the ECA database start before 1900.
In this study, we focus on stations in France because it was
shown earlier (Nogaj et al., 2006) that the GPD parameters
of temperatures do not have a trend, and hence the EVT can
be applied in a simple stationary framework.

We filtered out stations with more than a total of five years
of missing data before 1948. Hence we retained 11 stations
for RR and 27 stations for TX (and TG).

The use of observed temperature or precipitation rather
than reanalysis data is made necessary because NCEP re-
analysis precipitation extremes seem to be biased toward thin
tailed distributions. We illustrate this by looking at the Paris
data as an example. We isolate the closest gridpoint to Paris
of the NCEP reanalysis and compute the daily JJA total. Note
that the closest gridpoint is not the same for temperature and
precipitation, because the grids are not the same for those
two variables. In this first illustration, we used the TG series
rather than TX because the NCEP reanalysis does not sim-
ulate TX, but has a 6-hourly or daily resolution. Hence for
this comparison exercise, it is preferable to use variables that
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Fig. 2. Return levels for anomalies of summer (June to August)
mean daily temperature (TG) in Paris from the ECA data (Klein-
Tank et al., 2002) between 1948 and 2007 (panela) and the closest
gridpoint from the NCEP reanalysis (Kalnay et al., 1996) (panelb).
Return periods are expressed in years, and return levels in◦C.
Crosses (×) indicate data points. For comparison purposes, hori-
zontal and vertical axes have the same range for both panels. Gen-
eralized Pareto Distribution (GPD) parameters (thresholdu, scaleσ
and shapeξ ) are indicated in each panel. 95% confidence intervals
are indicated in dashed lines.

have similar meanings, namely the mean daily temperature.
We removed the seasonal cycle in both temperature series
and treated anomalies with respect to this cycle.

The GPD parameters for the ECA (TG) and NCEP tem-
perature and precipitation time series between 1948 and 2007
are then computed. The temperature data for the two datasets
have a high linear correlation (r=0.92, p-value<10−5). Thus
it can be considered that the NCEP temperature data provides
a faithful representation of daily variability. As expected,
the GPD parameters are very close between the two time se-
ries, with a consistently negative shape parameter, indicating
a finite tailed distribution. A comparison with other stations
gives similar results for temperature (not shown). The Q-
Q plots for the ECA TG and NCEP reanalysis indicate that
the temperature anomaly extremes are well represented by
the POT model within ad hoc confidence intervals (Fig. 1)
The return level plots of the two series are shown in Fig. 2,
indicating the same type of variability. This suggests that
the NCEP reanalysis provides a good representation of tem-
perature extremes. A systematic “proof” involving the com-
parison between temperature minima, and other seasons is
beyond the scope of the paper.
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Fig. 3. Return levels for summer (June to August) precipitation
(RR) in Paris from the ECA data (Klein-Tank et al., 2002) between
1948 and 2007 (panela) and the closest gridpoint from the NCEP
reanalysis (Kalnay et al., 1996) (panelb). Return periods are ex-
pressed in years, and return levels in mm/day. Crosses (×) indicate
data points. For comparison purposes, horizontal and vertical axes
have the same range for both panels. Generalized Pareto Distribu-
tion (GPD) parameters (thresholdu, scaleσ and shapeξ ) are in-
dicated in each panel. Data points are indicated by crosses. 95%
confidence intervals are indicated in dashed lines.

For the precipitation (RR) time series between 1948 and
2007, the shape parameter of the ECA Paris data is signif-
icantly positive, indicating a heavy tail, while the same pa-
rameter for the NCEP data is undistinguishable from 0, i.e. an
exponential distribution. For illustration purposes, the return
level plots for RR are shown in Fig. 3. This figure shows that
reanalysis precipitation data tend to be “normalized”, which
can be acceptable for mean values, but not for the study of
extremes. Hence, it is unlikely that “extreme” precipitation
events can be correctly estimated with NCEP data.

In order to illustrate the role of weather regimes on sea-
sonal climate variations, we determined the ten warmest Eu-
ropean summers by the procedure developed by Vautard et al.
(2007) on TX data. This procedure takes the average Euro-
pean temperature for the summer (JJA) and determines the
ten hottest years. The use of European stations (rather than
French stations only) is motivated by the fact that European
summer heatwaves generally develop in southern France and
reach a climax in eastern France and central Western Europe.
Since this area is not well covered in the ECA database, we
prefer to extend the definition of European heatwaves. We
used the same procedure to select the ten coldest and ten
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Fig. 4. Top panels(a–d): four weather regimes obtained with a k-means classification of daily summer geopotential height at 500 mb (z500)
of the NCEP reanalysis (Kalnay et al., 1996) between 1948 and 2007. Bottom panel(e): box and whisker plots of the frequency of each
regime (“All”, wide boxes). The thin colored boxes indicate the regime frequencies during the 10 hottest summers (“HW”, red), 10 coolest
summers (“CW”, blue) and 10 wettest summers (“WW”, green).

wettest summers in Europe from the TX and RR data, re-
spectively.

It is a priori not obvious whether the warmest summers on
average yield the highest daily temperatures, or whether the
wettest summers have the highest daily precipitation. Our
paper aims at clarifying this connection.

4 Results

4.1 Classification

The classification procedure explained in Sect. 2.1 was ap-
plied to z500 summer anomalies over the North Atlantic.
The four weather regimes are shown in Fig. 4a–d. The first
regime is reminiscent of the negative phase of the North
Atlantic Oscillation (NAO−) and contains a strong posi-
tive z500 anomaly over the North Atlantic, with a negative

anomaly over northern Europe. The second regime is the
positive phase of the NAO (NAO+) and yields positive z500
anomalies extending from the US East coast to Western Eu-
rope. The third regime (Greenland Anticyclone, GA) shows
a positive anomaly over Greenland and negative anomalies
over the central North Atlantic. The fourth regime (Block-
ing, BLO) shows a strong positive anomaly over Scandi-
navia. Regimes 2 and 4 yield an anticyclonic circulation over
western Europe, while regimes 1 and 3 favor cyclonic circu-
lations. The four summer weather regimes differ from the
ones of Cassou et al. (2005) because we use more PCs and
our criterion to determine the most probable classification is
not the same. However, we find consistent NAO phases and
the blocking regimes.

The frequencies of those four weather regimes are shown
in Fig. 4e (wide boxplots). The fat box and whisker plots
indicate the 10, 25, 50, 75 and 90th quantiles of the seasonal
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Fig. 5. GPD parameters of daily maximum summer temperature (TX) anomalies for the French ECA stations (Klein-Tank et al., 2002)
between 1948 and 2007. Panel(a): thresholdu in ◦C; (b) scaleσ in ◦C; (c) shapeξ ; (d) return level for 50 year period RL50 in ◦C added to
the mean summer value.

regime frequency distribution. Overall, regimes 2 (NAO+)
and 4 (BLO) are the most frequent on average (higher medi-
ans), but there is a high interannual variability in the regime
frequency.

From the ECA temperature and precipitation dataset, we
picked the ten hottest, coldest and wettest summers over
summer. The weather regime frequencies were determined
for those three types of extreme summers. They are denoted
in Fig. 4e by red, blue and green boxes, respectively, and cor-
responding box and whisker plots. We hence illustrate that
cold and wet summers are generally associated with cyclonic
weather regimes (Regimes 1 and 3), and hot summers are as-
sociated with anti-cyclonic regimes, especially the Blocking
regime 4 (Cassou et al., 2005). We find that extreme sum-
mers experience all the weather regimes, but their relative
frequencies bear a signature of the type of extreme.

4.2 EVT and its dependence on weather regimes

We performed POT analyses on the TX seasonal anomalies
and RR for the French stations. The threshold parameters
were taken as the 90th quantile of each data set. The GPD
parameters of TX summer anomalies for stations in France
between 1948 and 2007 are shown in Fig. 5. This figure also
shows the return levels (RL) of summer TX for a return pe-
riod of 50 years. This RL is estimated by adding the mean
summer TX to the RL of the anomaly. Such values might
be more meaningful to policymakers who have to consider
actual temperatures rather than anomalies. The shape pa-
rameters of temperature are all negative, indicating a short
tailed distribution (Parey et al., 2007). The scale parameter
σ indicates a gradient of increasing temperature variability
from the south east to the north west of France. This gradient
translates into a gradient in RLs across France. Hence, apart
from a couple of Mediterranean stations, return levels of high
TX anomalies are higher in north western France than in
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Fig. 6. Generalized Pareto Distribution (GPD) parameters of daily summer precipitation (RR) for the French ECA stations (Klein-Tank et al.,
2002) between 1948 and 2007. Panel(a): thresholdu in mm/day;(b) scaleσ in mm/day;(c) shapeξ ; (d) return level for 50 year period
RL50 in mm/day.

the south east. Generally warm summer temperatures every
year in southern France can explain this, implying little in-
terannual variability (and small return levels for TX anoma-
lies). On the other hand, summer temperature variability is
higher in western France, with the possibility of heatwaves
as well as cold temperatures, implying high return levels for
TX anomalies.

The GPD parameters of summer RR for stations in France
between 1948 and 2007 are shown in Fig. 6. The shape pa-
rameters of precipitation are all positive, indicating a heavy
tailed distribution for daily precipitation. Thus, as suspected
from observation, summer precipitation yields an important
variability for its extremes.

We do not find significant changes in the GPD parameters
of TX or RR when considering the whole time series, i.e.
starting before 1948 (not shown) and since 1948. Thus, those
estimates are stable in time, which comforts our stationary
hypothesis.

For further simplification purposes, we chose four stations
(Paris, Perpignan, Rennes and Strasbourg) to illustrate the
changes in GPD parameters when the EVT analysis is done
with weather regime conditioning (Sect. 2.3). The GPD pa-
rameters for TX of those stations are shown in Fig. 7. For
those stations, the weather regimes yield significant changes
in the extreme parameter estimates.

We observe that the return levels associated to weather
regimes can be significantly different from the raw ones. For
TX data, the shape parameters do not change much (Fig. 7).
Thus the RL estimates for TX, although sometimes signif-
icant (e.g. Paris, Rennes, Bourges, and Lyon), do not de-
pend systematically on the weather regimes. Over the 27
stations in France, we find that 26 show a regime depen-
dence for the thresholdu, 11 stations for the scale param-
eterσ and 14 stations for the shape parameterξ (not shown).
This can translate into changes that can be as large as 4◦C
in the thresholdu, and hence in a return level estimate (ev-
ery other GPD parameter being equal). We note that the
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Fig. 7. Weather regime dependence of Generalized Pareto Distribution (GPD) parameters (threshold, scale and shape) of daily maximum
temperature (TX) anomalies for four French stations (Perpignan, Paris, Rennes and Strasbourg) from the ECA dataset (Klein-Tank et al.,
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four weather regimes.

difference in RLs between weather regime dependent esti-
mates and raw estimates is overall positive for anticyclonic
regimes (regimes 2 and 4) and negative for cyclonic regimes
(regimes 1 and 3), especially for small return periods. In
combination with Fig. 4e, this suggests that warm summers
on average (with anticyclonic regimes) experience hot ex-
treme temperatures. Conversely, cold summers with cyclonic
conditions yield lower temperature extremes. Although this
is close to a physical intuition, we note that this relation
should be interpreted with care because it obviously depends
on ocean proximity and altitude.

The same analysis was performed on precipitation (RR)
data. It appears that the shape parameter can switch signs
with the regime conditioning with statistical significance
(e.g. Paris, see Fig. 8c). Over the 11 stations in France, we
also find that 11 show a regime dependence for the thresh-
old u, 8 stations for the scale parameterσ and 5 stations for
the shape parameterξ (not shown). This has important con-
sequences on the return level estimates which are sensitive
to this parameter (Fig. 9). For the Paris data, we note that
the heavier precipitations occur during regimes 1 (NAO−)
and 4 (BLO). This is not surprising for regime 1, which is
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Fig. 8. Weather regime dependence of Generalized Pareto Distribution (GPD) parameters of daily precipitation (RR) for four French stations
(Perpignan, Paris, Rennes and Strasbourg) from the ECA dataset (Klein-Tank et al., 2002) between 1948 and 2007. Panels and lines are the
same as for Fig. 6.

cyclonic over Western Europe and is associated with most
wet summers. But regime 4 is rarer than usual during gen-
erally wet summers and is often encountered during Euro-
pean droughts and heatwaves (Cassou et al., 2005; Fischer
et al., 2007). Thus this analysis suggests that in Paris (and
Lyon), generally dry summers can yield heavy precipitation
(e.g. in the form convective episodes) which have daily time
scales. Moreover, generally wet summers associated with
the cyclonic regime 3 (GA) do not yield such heavy pre-
cipitation. During such years, precipitation is steady (with
rather cool temperatures) throughout the summer, but there
are no (or few) convective episodes bring intense precipita-
tion. Thus, in a station like Paris, the most intense precipi-
tation can be found during summers dominated by a block-

ing regime, which tends to favor overall dry and warm sum-
mers, or those with lasting depressions over northern Europe
(which is the case for the summer 2007, for example).

5 Conclusions

In this paper, we presented a heuristic methodology to model
the dependence of climate extremes to a physically relevant
variable like the atmospheric circulation, generalizing previ-
ous approaches (Plaut et al., 2001; Plaut and Simonnet, 2001;
Robertson and Ghil, 1999; Simonnet and Plaut, 2001; Yiou
and Nogaj, 2004) by using the extreme value theory.
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Fig. 9. Return levels (RLs) as functions of return periods, for Paris daily summer precipitation (RR; ECA dataset (Klein-Tank et al., 2002))
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weather regime dependent RLs, the dotted lines are the 95% confidence intervals. The colored crosses (×) represent the data. The thick
dashed lines represent the RL of RR without weather regimes (see Fig.3a).

We focused on observations of daily maximum temper-
ature (TX) and daily precipitation (RR) (Klein-Tank et al.,
2002) in France and related their extremes to weather
regimes obtained from the daily geopotential height at
500 mb from the NCEP reanalysis (Kalnay et al., 1996).

We find that the hottest summers in Europe (which gen-
erate high temperature anomalies over France) are consis-
tent with anticyclonic conditions over Western Europe. Our
analysis suggests that the corresponding weather regimes en-
hance the probability of daily temperature extremes. This
weather regime enhancement can be as large as 4◦C (e.g. in
Paris) and this should be taken into account in operational
extreme weather alerts. The close relation between the mean
behavior of temperature and its extremes can be explained
by its bounded tail (with negative shape parameters) which
forces the extremes to vary like the center of the distribution
(Nogaj et al., 2007). Hence we can claim that hot summers
generally bear hot extreme temperatures.

On the other hand, wet European summers are generally
associated with cyclonic conditions (bringing moist air from
the ocean) over Western Europe. Our results show that, un-
like temperature, the behavior of extreme precipitation is
strongly affected by weather regime conditioning. In partic-
ular, the shape parameter of the GPD distribution can change
signs with the weather regime dependence, from heavy tail to
short tail distribution. We observe that the most intense ex-
tremes for precipitation seem to coincide with anticyclonic
conditions (which tend to favor dry summers). We observe
that the most intense extreme precipitation coincides with
regime 1 (NAO−) related to cyclonic conditions, but also
with regime 4 (Blocking), which tends to favor dry sum-
mers and is characterized by an anticyclonic pattern. We ex-
plain this by the fact that intense convective episodes, bring-
ing flash precipitation, often occur at the end of heatwaves,
which bear dry conditions in Europe. Hence, overall dry
and hot summers in France can yield episodes of extreme
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precipitation. In contrast, generally wet summers do not nec-
essarily have extreme precipitation and might be due to mod-
erate but steady rains (like the seasons dominated by regime 3
(Greenland Anticyclone)).

Our approach completes the analysis of Vrac and Naveau
(2007) who modeled the dependence of precipitation over
the US by taking the atmospheric circulation into account.
Our study justifies that such modeling can be applied on pre-
cipitation and temperature by assessing the statistical signif-
icance of this dependence. In this paper, we find some spa-
tial coherence for the extreme parameters of temperature, but
we did not consider joint extreme distribution or spatial ex-
tremes for which EVT requires further developments (e.g.
Vannitsem and Naveau, 2007).

Methodological refinements could be added to this
promising but heuristic approach. In particular, the time de-
pendence of the POT is only considered through the sequence
of weather regimes, which can be seen as a Markov chain
(Ghil and Robertson, 2002). A generalization of the results
of Smith et al. (1997) to temperature or precipitation condi-
tioned by a hidden Markov chain could be useful for a thor-
ough model of extreme distributions.
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