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Abstract. For a start, recent techniques devoted to the re-
construction of sources of an atmospheric tracer at conti-
nental scale are introduced. A first method is based on the
principle of maximum entropy on the mean and is briefly re-
viewed here. A second approach, which has not been applied
in this field yet, is based on an exact Bayesian approach,
through a maximum a posteriori estimator. The methods
share common grounds, and both perform equally well in
practice. When specific prior hypotheses on the sources are
taken into account such as positivity, or boundedness, both
methods lead to purposefully devised cost-functions. These
cost-functions are not necessarily quadratic because the un-
derlying assumptions are not Gaussian. As a consequence,
several mathematical tools developed in data assimilation
on the basis of quadratic cost-functions in order to estab-
lish a posteriori analysis, need to be extended to this non-
Gaussian framework. Concomitantly, the second-order sen-
sitivity analysis needs to be adapted, as well as the compu-
tations of the averaging kernels of the source and the errors
obtained in the reconstruction. All of these developments
are applied to a real case of tracer dispersion: the European
Tracer Experiment [ETEX]. Comparisons are made between
a least squares cost function (similar to the so-called 4D-Var)
approach and a cost-function which is not based on Gaus-
sian hypotheses. Besides, the information content of the ob-
servations which is used in the reconstruction is computed
and studied on the application case. A connection with the
degrees of freedom for signal is also established. As a by-
product of these methodological developments, conclusions
are drawn on the information content of the ETEX dataset as
seen from the inverse modelling point of view.

Correspondence to: M. Bocquet
(bocquet@cerea.enpc.fr)

1 Introduction

1.1 Inverse modelling of tracers

There has been increasing interest in the use of inverse mod-
elling techniques with a view to estimate atmospheric chem-
ical emissions, sources, or fluxes. This is due to the increas-
ing computing performances as well as the advances made in
transport and chemistry numerical modelling. Besides there
is a real need and appeal for the top-down approach (inferring
the emissions from the observations): for example in climate
change with estimating the greenhouse gases fluxes, or in in-
dustrial risk assessment with the identification of a source of
an accidental release into the atmosphere.

This paper focusses on this latter topic, though many of
the developments may apply to other situations. The main
characteristics of an accidental release of a pollutant in the
atmosphere, which make it different from species with spa-
tialised emissions, are:

– In most cases, the source term is point-wise, though an
extension in time is often to be considered. Obviously
the source is positive, in contrast with situations (green-
house gases) where sinks of pollutant would exist.

– The numerical modelling of such pollutant involves
strong gradients in the concentrations fields, which of-
ten leads to strong representativeness errors in the com-
parison with pointwise observations.

– From the statistical point of view, which is often re-
sorted to in data assimilation, there is (hopefully) only
one accident of a type. As a consequence, it is difficult
to infer statistics on a large class of dispersion accidents.
Occasionally, this can be circumvented when synthetic
dispersion events are available, when these can easily
be generated and when they are representative of the
risk situation. As a consequence the statistics that can
be inferred from the data are usually rather limited.
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128 M. Bocquet: Non-Gaussian methods for tracer source inversion

In the following it will be assumed that the physics (advec-
tion, diffusion, depletion terms, chemistry) is first order in
the concentration field. This rules out species involved in
second-order reactions, such as ozone and its precursors. Yet
many trace gases abide to this restriction : tracers, trace gases
like heavy metals, radionuclides.

One significant technical advantage of the linearity as-
sumption is that the cost function that is used as an optimi-
sation criterion to find out the source, can often be expressed
in the space of the observations, of much fewer dimensions
than the parameter space. This establishes a dual cost func-
tion that is likely to be minimised significantly faster.

1.2 Non-Gaussian approaches

The inverse modelling of tracers in the atmospheric physics
community has been a growing topic over the last fifteen
years. References to first attempts and the developments of
new methods can be found in the introduction of (Bocquet,
2007). The emphasis is put here on the newly proposed meth-
ods, which consistently take into account prior hypotheses
such as positivity of the source or its boundedness.

In (Bocquet, 2005b,c), it was proposed to use the princi-
ple of maximum entropy on the mean as an inference prin-
ciple to obtain an estimate of the source to be reconstructed.
The method was later extended (Bocquet, 2005a; Krysta and
Bocquet, 2007) to statistically consistent diagnostic tools to
estimate a posteriori the quality of a reconstruction. It has
several advantages such as the fact that the cost function that
is built is always convex. A dual criterion can often be ob-
tained analytically, and the equivalence with the primal prob-
lem is essentially granted by the convexity of the primal and
dual cost functions.

The method was then successfully applied to the real
data of the Euporean Tracer Experiments [ETEX] (Bocquet,
2007; Krysta et al., 2007) with a view to a high-resolution
reconstruction of the source. The source was correctly lo-
calised (ETEX-I and ETEX-II), and the total released mass
was correctly estimated up to a few percents (ETEX-I). In
the case of the Chernobyl accident, it was also applied to
the reconstruction of radionuclides available for long-range
transport with a strong sanitary impact (Davoine and Boc-
quet, 2007). In both applications, this approach performed
significantly better than the optimisation with a cost func-
tion based on a quadratic criterion (that is to say based on
Gaussian prior laws for the source and the modelled errors).
It was therefore proven that, in this risk assessment context,
devising suchnon-Gaussian cost functions as a criterion is
not only legitimate but useful. This type of approach will be
referred to as non-Gaussian in the following.

This methodology will be recalled briefly in Sect. 2.
Another type of inference used in inverse modelling is to

resort to a Bayesian analysis, and to use a maximum a pos-
teriori criterion as an estimator. Note that both types of in-
ference can be designated as probabilistic inverse modelling

techniques (Tarantola and Valette, 1982). Similarly to MEM,
relying on mathematical background of linear and non-linear
convex analysis ((Borwein and Lewis, 2000) and reference
therein), it was noted in (Lagarde, 2000) that it is possible to
build a criterion in the dual space, though, without convex-
ity, no equivalence between the primal and the dual problems
can be guaranteed. In Sect. 3, we will build on this idea. Sec-
tion 4 will provide with concrete examples on real data. It
will define precisely the context and setup of the reconstruc-
tions.

Both approaches yield non necessarily Gaussian cost func-
tion. This may be problematic in a posterior study of the
analysis. Any statistical methods developed in geophysical
data assimilation dealing with second-order sensitivity of the
solution are to be affected by the non-quadratic nature of
these cost-functions.

The main aim of this paper is to present such second-order
analysis, to show how to extend previous available tools. It
is also to exhibit the specifics of such a second-order anal-
ysis based on a non-Gaussian approach as compared to a
quadratic criterion approach. A secondary aim is to apply
them on a real regional dispersion case. This will be studied
in Sect. 5.

1.3 The reconstruction problem

The inverse problem based on the discretised physics can ul-
timately be brought to the form

µ = Hσ + ε , (1)

whereµ is the vector of alld observations (usually con-
centration measurements),σ is the vector of the discretised
source components (N in total), ε is the vector of the errors
due to instrumental, representativeness and modelling errors.
H is a matrix of sized×N which both describes the obser-
vation operator as well as the transport and chemistry model.
When the number of observations is significantly smaller
than the number of source components, it is more efficient
to compute the entries ofH through the use of the adjoint of
the model. Rows ofH are then adjoint solutions indexed by
the observations (Uliasz, 1983; Pudykiewicz, 1998).

The inverse problem consists in estimatingσ and the er-
rors ε, given the observationsµ, the model represented by
Eq. (1), and some prior hypotheses onσ andε. Because of
the physics of dispersion, this inverse problems is known to
be ill-conditioned. BecauseN≫d, it is also ill-posed. The
prior hypotheses act as regularisation. They help pick up a
single physically-motivated solution among the many solu-
tions allowed by the observations.

1.4 The least squares approach

The classical variational approach to solve Eq. (1), is to re-
sort to a least squares criterion (possibly weighted by an ob-
servation error covariance matrix). It amounts to minimising
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the l2-norm of the departureµ−Hσ . However the number of
variables could be far superior to the number of observations.
Moreover, observation errors and model errors are reducing
the information content of these observations. Therefore one
needs a regularisation procedure, which picks up the most a
priori plausible solution among those satisfying the observa-
tion constraints. To do so, it is usual to associate a regularis-
ing Tikhonov term to the error departure so that the complete
cost function to minimise is

L(σ ) =
1

2
(µ − Hσ )†R−1(µ − Hσ ) +

1

2
σ †B−1σ , (2)

whereR is the observation error covariance matrix, andB is
the background error covariance matrix which contains the
a priori known statistical information on the source. The
† symbol denotes vector or matrix transposition. This cost
function is similar to usual four dimensional variational cost
function [4D-Var]: time and space components are all solved
for altogether. More precisely, it can be shown that it is actu-
ally equivalent to a weak formulation of 4D-Var, the source
field playing the role of model error1. Such an optimisa-
tion problem can be equivalently solved in the physical space
of measurements of lower dimensionalityd. The dual cost
function (known as the Physical-Space Statistical Assimila-
tion System [PSAS] cost function (Courtier, 1997)) is

L̂(β) =
1

2
β†
(
HBH † + R

)
β − β†µ , (3)

and should be minimised onβ∈R
d . The optimal source and

diagnosed errors are then given by

σ = BH †β , ε = Rβ , (4)

whereβ is the minimiser minβ L̂(β) of the dual cost func-
tion. This solution identifies with the minimiser which could
be obtained from criterion Eq. (2).

It is well known that a Bayesian reasoning underlies this
cost-function, on the basis that the prior errors (background
and observations) are assumed of Gaussian nature (Tala-
grand, 1997).

1.5 Application to a real dispersion event: ETEX-I

The methodological developments put forward in this paper
will be applied on the data of a real continental atmospheric
dispersion experiment: ETEX. The European Tracer Experi-
ment [ETEX] was organised by the Joint Research Centre, Is-
pra, in 1994. ETEX-I consisted in the release of 340 kg of an
inert gaseous tracer. The tracer is insensitive to wet scaveng-
ing and dry deposition. The release rate was meant constant
over twelve hours. The subsequent plume was monitored
over Europe by 168 WMO stations (Nodop et al., 1998). A
few years after the Chernobyl accident, its purpose was to

1Bocquet, M. and Wu, L., unpublished

test the capabilities of emergency centres and numerical dis-
persion models to forecast and reconstruct the plume. While
models compared favourably well with ETEX-I data, it is
still not the case with ETEX-II, which is therefore left apart
so far for modelling purpose. ETEX-I was later used as an
inverse modelling experiment with real data. Given the (pur-
posefully) accidental nature of the release, the aim is to iden-
tify the location of the release, and estimate the release rate
as well as the total tracer mass released. It is still considered
as the best instrumented dispersion experiment at continental
scale to date.

2 Maximum entropy on the mean

The maximum entropy on the mean formalism is a Bayes-
like approach which allows to take into account prior infor-
mation, such as the source positivity. Like the Bayes for-
mula, it may be turned into a probabilistic inference princi-
ple. In (Bocquet, 2005b), it has been been extended to the
framework and language of geophysical data assimilation.

2.1 Level-two probabilistic inference

The implementation of the principle relies on the minimisa-
tion of the information content that separates the a posteriori
probability density function [pdf] of the source and the errors
p(σ , ε) from the a priori densityν(σ , ε), with the exception
of the information provided by the observations. The dis-
crepancy is measured by the relative entropy

K(p, ν) =
∑

σ ,ε

p(σ , ε) ln

(
p(σ , ε)

ν(σ , ε)

)
, (5)

where the sum (possibly an integral) runs on all potential
sources and errors. With the observation constraints prop-
erly taken care of by a vector of Lagrange multipliersβ, one
has to minimise onp the functional

L̃(p) = K(p, ν) + β†

{
µ −

∑

σ ,ε

p(σ , ε) (Hσ + ε)

}
, (6)

which leads to the effective cost function in the dual space of
theβ (isomorphic to the observation spaceR

d ),

L̂(β) = ν̂(H †β, β) − β†µ , (7)

provided the definition of the log-Laplace transform

ν̂(α, δ) = ln

{∑

σ ,ε

ν(σ , ε) exp
(
α†σ + δ†ε

)}
. (8)

The minimising vectorβ of this effective cost function̂L(β)

determines completely the optimal lawp. An estimator of
the source and the errors can then be obtained fromp.
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The most convenient estimator turns out to be the average.
For any prior lawν, it is given by

σ MEM = ∇α ν̂(α, δ)|H†β,β , εMEM = ∇δ ν̂(α, δ)|H†β,β . (9)

These estimates satisfy the observation equation:
µ=Hσ MEM+εMEM. As is clear from Eq. (7), the actual
form of the cost function that results from the technique
depends on the a priori laws. When the source prior is Gaus-
sian, and when the observation errors are also Gaussian, then
the cost function Eq. (7) turns out to be the least squares cost
function Eq. (3).

The error prior statistics will be assumed Gaussian from
now on, while the source prior statistics will be variable.

2.2 Example: Bernoulli law

A typical and easy to implement prior assumption is based
on the Bernoulli law. At first, it is assumed a priori that a
grid cell k emits a massmk of tracer, with a probabilityγk.
1−γk is the probability that it emits nothing. It is a bounded
law. The formalism then leads to the cost-function

L̂(β) =
N∑

k=1

ln
{
1 − γk + γk exp

(
mk[β†H ]k

)}

+
1

2
β†Rβ − β†µ . (10)

The optimal source is then given, component-wise, by

σ MEM
k = mk

γk exp
(
mk

[
β

†
H
]
k

)

1 − γk + γk exp
(
mk

[
β

†
H
]
k

) , (11)

and the analysed errors are still given formally byεMEM=Rβ

of Eq. (4), thoughβ is now the minimum of the cost function
Eq. (10). An application will be presented in Sect. 4.

2.3 Level-one primal cost function

It is often convenient to introduce the level-one primal cost
function

L(σ ) = ν̂∗(σ , µ − Hσ ) , (12)

where the Fenchel conjugate ofν̂ is defined by

ν̂∗(σ , ε) = sup
α,δ

(
α†σ + δ†ε − ν̂(α, δ)

)
. (13)

It can be shown by Fenchel duality that minimising the dual
cost function Eq. (7) is equivalent to minimising the level-
one primal cost function Eq. (12). This can be achieved be-
cause the criterion yielded by the maximum entropy infer-
ence is always convex (for a set of linear constraints), so that
the Fenchel duality gap is vanishing (see Borwein and Lewis
(2000) for a recent review on the topic). That is to say

inf
σ∈RN

L(σ ) = − inf
β∈Rd

L̂(β) . (14)

Besidesσ MEM andβ are linked by Eq. (9). So that the dual
criterion is equivalent to the primal one, as far as source esti-
mations are concerned.

Note that the minimiserσ MEM can be interpreted as the
Maximum A Posteriori [MAP] of the unnormalised proba-
bility density function exp(−L(σ )). This is supported by
the following chain of reasoning:

ν(σ )
µ

MEM
// p(σ |µ) = ν(σ )eβ†Hσ

∑
σ ν(σ )eβ†Hσ

expectation
ww

σ MAP = minσ ν̂∗(σ ) σ MEM = ∂α ν̂
(
H †β

)
//oo

p(σ |µ) ∝ exp(−ν̂∗(σ ))

MAP

44

exp(−ν̂∗(σ ))
µ

Bayes
oo

.

Here, the errors are not being considered for the sake of sim-
plicity. The upper arch corresponds to the MEM inference.
It starts with the priorν and leads (by choice) to the average
estimatorσ MEM. The lower arch corresponds to the Bayesian
inference with the choice of the MAP estimatorσ MAP. It starts
with the prior exp(−ν̂∗). This latter prior is chosen so that
the two estimatorsσ MEM andσ MAP coincide.

Any monotonic embedding functionf (leading to
f (−ν̂∗)), not only the exponential function, can perform
the task of matching the two estimators. However, large
deviation results (Ellis, 1985; Le Besnerais et al., 1999) of
pdfs strongly support this particular form, on theoretical
grounds. Indeed, the exponential of minus the relative en-
tropy is known to be the a measure of the deviation around
the prior law, in the large deviation limit. The relevance of
large deviation limit can be hinted at by the fact that any solu-
tion that represents a source of accidental nature, and which
is understood as rare by the prior, is in the tail of the multidi-
mensional prior pdfν(σ ).

3 Exact Bayesian approach

An alternative route to MEM consists in a strictly speaking
Bayesian inference. It is assumed again thatν(σ , ε) repre-
sents the prior pdf ofσ andε. The Bayesian inference on the
basis of this prior and the observationµ=Hσ+ε yields the
posterior pdfp(σ , ε)≡p(σ , ε|µ) according to

p(σ , ε) =
δ(µ − Hσ − ε)ν(σ , ε)∑
σ ,ε δ(µ − Hσ − ε)ν(σ , ε)

. (15)

The Dirac distributionδ(µ − Hσ − ε) enforces the observa-
tion constraints. An estimator is given by the MAP estimator
of this pdf (or alternatively the logarithm of the pdf):

σ MAP, εMAP = argmax
σ ,ε

ln p(σ , ε)

= argmax
σ ,ε : µ=Hσ+ε

ln ν(σ , ε) . (16)

Nonlin. Processes Geophys., 15, 127–143, 2008 www.nonlin-processes-geophys.net/15/127/2008/
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One easy way of lifting the constraints is to minimise the
effective cost-functionL(σ )=− ln ν(σ , µ−Hσ ), thanks to
the substitutionε=µ−Hσ .

3.1 Possible Fenchel duality

Invoking the Fenchel duality it is then possible to show that
on very general grounds:

inf
σ∈RN

L(σ ) = inf
σ∈RN

(− ln ν(σ , µ − Hσ )) (17)

≥ − inf
β∈Rd

(
(− ln ν)∗(H †β, β) − β†µ

)
(18)

= − inf
β∈Rd

L̂(β) , (19)

where(− ln ν)∗ is the Fenchel conjugate of(− ln ν). L̂ is the
dual cost function. In the case where− ln ν and (− ln ν)∗

are convex the reverse inequality also stands, and the useful
duality result is

inf
σ∈RN

L(σ ) = − inf
β∈Rd

L̂(β) . (20)

Besidesσ MAP, εMAP andβ are linked by

σ MAP = ∇α(− ln ν)∗(α, δ)|H†β,β ,

εMAP = ∇δ(− ln ν)∗(α, δ)|H†β,β .
(21)

By construction, these estimates satisfy the observation equa-
tion: µ=Hσ MAP+εMAP. The generalised dual cost function
one should then optimise is given by

L̂(β) = (− ln ν)∗(H †β, β) − β†µ , (22)

but only provided that− ln ν and(− ln ν)∗ are convex. This
is a major restriction when comparing with the MEM ap-
proach, where the convexity is guaranteed.

It is easy to check, as is well known, that under Gaus-
sian hypotheses, the dual cost function is that of PSAS again
Eq. (3), up to a constant.

3.2 Examples: semi-Gaussian prior law and Bernoulli law

To illustrate the Bayesian method, let us define for the source
prior ν a semi-Gaussian law, that is for any cellk of the do-
main, the local prior pdfνk is defined by





νk(σk) = 0 if σk < 0

νk(σk) =
√

2

πm2
k

exp

(
−

σ 2
k

2m2
k

)
if σk ≥ 0 ,

whereas the errors are still modelled by an unbiased normal
law of covariance matrixR. It can then be shown that, up to
a constant,

L̂(β) =
N∑

k=1

1

2
m2

k

[
H †β

]2

k
2
([

H †β
]
k

)

+
1

2
β†Rβ − β†µ .

(23)

where2 is the Heaviside function (defined by 1 onR+, and 0
elsewhere). Both the primal and the dual criteria are convex
(it is easy to check that their respective Hessian exists and
is positive everywhere), and the duality gap vanishes. The
corresponding MAP estimator is

σ MAP
k = m2

k

[
H †β

]
k

2
([

H †β
]
k

)
. (24)

An application will be presented in Sect. 4.
It is now assumed that the prior law is the same Bernoulli

law that was originally used in the MEM framework. Yet,
the resulting cost function will be shown to be quite different.
Then, for cellk, the local prior pdf is defined by

ln νk(σk) = ln γkδσk,mk
+ ln(1 − γk)δσk,0 . (25)

To compute the dual cost function, one establishes first

(− ln ν)∗(α) =
N∑

k=1

(mkαk + gk) 2 (mkαk + gk)

+
N∑

k=1

ln(1 − γk) ,

(26)

where 2 is the Heaviside function again, and
gk= ln γk/(1−γk). As a consequence, thanks to Eq. (22),
the dual cost function is given, up to a constant, by

L̂(β) =
N∑

k=1

(
mk

[
H †β

]
k
+ gk

)
2
(
mk

[
H †β

]
k
+ gk

)

+
1

2
β†Rβ − β†µ .

(27)

This function is continuous onRd . It is differentiable, ex-
cept for theβ ’s such that there exists a cell indexk0 with[
H †β

]
k0

=−gk0/m. This leads to numerical hardships for a
minimisation by a descent algorithm since the gradient is not
a continuous vector field, and may trigger erratic jumps in
the course of the iterative optimisation. To circumvent this
problem, one can slightly modify locally the cost function
in such a way that the gradient is continuous. The function
α2(α) is to be replaced by





0 if α < −ǫ
1
4ǫ

(α + ǫ)2 if − ǫ ≤ α ≤ ǫ

α if α > ǫ

, (28)

with ǫ a deformation parameter (ǫ=0 means no deforma-
tion). The solution will then bealmost binary: the solution
in a few cells may yield an intermediary value, between 0
andmk, in the case whereǫ>0.

The MAP estimator is then

σ MAP
k =

{
mk if

[
H †β

]
k

≥ −gk/mk

0 otherwise
(29)

www.nonlin-processes-geophys.net/15/127/2008/ Nonlin. Processes Geophys., 15, 127–143, 2008
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with a deformation following

σ MAP
k =

m

2

(
1 + ǫ−1

(
m
[
H †β

]
k
+ gk

))

if − ǫ ≤ m
[
H †β

]
k
+ gk ≤ ǫ. (30)

As a strict Bayesian approach the solution is binary in the
limit ǫ goes to zero:σ MAP

k ∈ {0, mk} whereas in the MEM
approach also based on the same Bernoulli prior, the estimate
is only constrained to lie in the interval[0, mk], though 0 and
mk are more likely a priori.

In the following, MEM and MAP estimators will indis-
tinctly be notedσ andε, since several results will apply to
both inferences.

3.3 Comparison of the two inferences

A comparison can be established between the two inference
schemes (Mohammad-Djafari, 1996) on a mathematical ba-
sis that goes beyond the need of this paper.

However the second order analysis that applies to the
MEM inference is to rely partially on this equivalence, as
will be explained in the following.

3.3.1 Correspondence for the first-order moments

It can be observed from the results obtained so far that, on
general grounds, the two inference schemes yield distinct
cost functions for the same source and errors priors. How-
ever, in the particular case of Gaussian hypotheses, the two
schemes lead, up to a constant, to the same cost-function, that
is to say to the least squares criterion. When the priors are
not Gaussian, the resulting criterion is not quadratic, possibly
of higher order in the control variables.

Because we were able for both inferences to recast them
in the form of a MAP criterion (primal cost functions), it is
observed that passing from one criterion to the other involves
the formal transformation

ν̂∗ ⇐⇒ (− ln ν) or ν̂ ⇐⇒ (− ln ν)∗ . (31)

which can be read off from the chain of inferences of
Sect. 2.3. In the Gaussian case, both terms of these equiv-
alences are equal, up to a constant independent onσ . For
any prior, using this translation leads through the chain of in-
ferences to the same cost function and therefore to the same
estimator.

3.3.2 Re-defining the MEM analysed second-order mo-
ments

However this correspondence fails for second-order mo-
ments if the MEM approach is applied blindly. It was
stressed in (Bocquet, 2007) that this could be ascribed to the
“on the mean” type of approach because errors and source

fluctuations are considered independent in the MEM ap-
proach whereas they are linked by the measurement equa-
tions in the exact Bayesian approach. In particular it was
shown in the appendix of (Bocquet, 2007), that the analysis
covariance matrix obtained from the MEM a posteriori pdf is
different from the mathematically sound Best Linear Unbi-
ased Estimator [BLUE] result (the former actually identifies
with the background covariance matrix).

This drawback can be circumvented by inferring directly
on the primal cost function Eq. (12), because the errorsε

are replaced there withµ−Hσ . Using the chain of infer-
ences of Sect. 2.3, the primal cost function is then re-defined
as resulting from a Bayesian MAP estimator. This way, a
proper second-order analysis that mimics the strict Bayesian
inference is defined. In the Gaussian case, the BLUE analy-
sis covariance matrix is then predicted. This re-definition of
the MEM second-order moments will be used throughout the
rest of the paper.

In the general case, this allows practically for a unified
treatment in the second-order analysis of these two inference
mechanisms. Most results ahead, though written down in the
MEM context, can be transposed to a Bayesian MAP context
using the transformation Eq. (31).

4 Application setup

The aim of this section is to illustrate the inferences described
formally earlier. The retrievals will all abide to the following
setup. So will the second-order analysis that will be carried
out in Sect. 5.

The reconstruction performed on ETEX-I is based on the
results of (Bocquet, 2007) and (Krysta et al., 2007). It essen-
tially makes use of a 911-measurement dataset, which rep-
resents most of the positive observations of the tracer (that
is to say above the background level). The space resolution
of the inversion grid is 2.25◦×2.25◦ while the time resolu-
tion is one hour. This represents about 20×103 cells for the
inversion grid domain which encompasses all Western Eu-
rope, while the simulation domain encompasses all Western
and Central Europe. A finer (inversion grid) resolution could
have been used. However the quality of the retrieval starts
degrading then (Bocquet, 2007), so that it is safer to choose
the coarser one for the demonstrations ahead. The Jaco-
bian matrix has been built using the chemistry and transport
model POLAIR3D, which has been validated for such tracer
in (Quélo et al., 2007). The model was driven by the 40-year
re-analysis ECMWF meteorological data (wind fields, and
fields necessary to the diagnostic of the vertical turbulent dif-
fusion coefficientKz). Since the number of observations is
much lower than the number of variables to invert, the rows
of H are computed using POLAIR3D in an (approximate)
adjoint mode using a technique that has now been vastly ad-
vertised in this context (Issartel and Baverel, 2003; Hourdin
and Talagrand, 2006; Davoine and Bocquet, 2007).
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Fig. 1. Reconstruction through a Bernoulli prior on a basis of a MEM inference (top row), and through a Gaussian prior (MEM and Bayes
inferences) (bottom row). Panels(a) and(c) represents density plot of the integrated released mass in time for every space grid cell. The
triangles represent the stations involved in the observations. Units are in kg. Panels(b) and(d) represent the profile of the retrieved source
in true release grid cell. The step function indicates the true emission rate profile.

Two types of prior and therefore two types of reconstruc-
tion will serve as illustrations throughout the second-order
analysis of Sect. 5.

Both use a Gaussian prior for the errors, with a diagonal
covariance matrixR=χI , of homoscedastic diagonal coef-
ficients.

√
χ is chosen optimally by an L-curve a posteriori

analysis and confirmed by a maximum likelihood estimation,
in a sense defined elsewhere (Davoine and Bocquet, 2007;
Krysta et al., 2007) to be

√
χ=0.3 ng m−3.

The first source prior is Gaussian, without bias and with
a background diagonal covariance matrix given byB=m2I .
m is estimated optimally to bem=0.025m0/λ for our setup.
m0 is a reference mass that is defined to be the total mass
released in one hour of the ETEX-I release (more than 28 kg)
andλ is a scale parameter that is conventionally set to 4 for
the present inversion grid resolution. Note that from the cost
function perspective,

√
χ andm represent the same degree

of freedom, so that
√

χ is practically fixed a priori, whilem
is later estimated.

The second source prior is a Bernoulli prior which leads
to the cost function Eq. (10) and the estimator Eq. (11).γk

is uniformly set to a very low value of 10−15, expressing the
improbable nature of an accident in a given cell.mk is uni-
formly and optimally set tomk≡5m0/λ

2. (This conventional
λ2 factor differs from the not less conventionalλ Gaussian
factor because of scaling arguments on prior statistics.) Note
that this time,m and

√
χ do not represent the same degree of

freedom, so that they have been jointly estimated by iterative
L-curve techniques following (Davoine and Bocquet, 2007;
Krysta et al., 2007).

Both priors have been chosen because they illustrate the
main differences between a reconstruction based on Gaus-
sian and non-Gaussian hypotheses.

The main characteristics of the reconstructions are given
in Table 1: mass retrieved in the true source grid cellMm,
total retrieved massM, total relative entropy of the solution
Kσ ,ε or Lσ ,ε, relative entropy of the retrieved sourceKσ or
Lσ , and relative entropy of the retrieved errorsKε orLε. The
results of the retrievals are illustrated in Fig. 1.
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Table 1. Main scalar results for four reference inversions.Mm is
the mass found at the ETEX-I true release grid cell.M is the total
mass retrieved. For the Bayesian inversions, the dual cost functions
values are given up to constants (depending only on prior parame-
ters).

Method Mm (kg) M (kg) Lσ ,ε Lσ Lε

Gaussian MEM average 241 684 1168 347 821
Bernoulli MEM average 222 342 1299 69 1230

Method Mm (kg) M (kg) L̂σ ,ε L̂σ L̂ε

Gaussian Bayes MAP 241 684 1168 347 821
Semi-Gaussian Bayes MAP 208 458 1450 152 1298
Bernoulli Bayes MAP 177 282 1568 273 1295

They stress the difference between a positive and an unbiased
law. In the Gaussian prior case, negative values for the source
are recovered. The localisation is also weaker because the
Gaussian is less constraining than the Bernoulli prior (35%
of the mass in the correct grid-cell as compared to 65%): it
brings in less information in the assimilation system.

The exact Bayesian inferences given as examples earlier
have also been implemented. The semi-Gaussian approach
is illustrated in Fig. 2. The reconstruction makes use again
of an optimally determinedm through an L-curve analy-
sis. It does not significantly differ from the Gaussian case,
i.e.m≃0.025m0/λ. To illustrate the Bernoulli prior Bayesian
inference,m=m0 has been chosen, whileǫ is very small (it
depends on the machine precision). The main scalar results
are also given in Table 1. The results are displayed in Fig. 2.
The emission rates in the profile are 0 orm0, according to this
inference constraints. One value is comprised in between and
gives away the freedom granted by theǫ deformation param-
eter.

The semi-Gaussian prior leads, as it should, to positive val-
ues for the source, but it does not constrain the location of
the source as well as the MEM Bernoulli inference (45% of
the mass is recovered in the correct grid-cell). The Bernoulli
prior leads to a very good reconstruction, but the actual re-
lease rate was given as prior information.

Note that all four inversions presented here suffer from a
strong depletion in the source reconstruction at the end of
the release true window. We believe it can be explained on
physical grounds because of the modelling of the vertical tur-
bulence diffusion parameterKz that is strongly affected by
convective rain in our model. This is precisely the case at the
end of the release interval in the true emission grid-cell.

5 Second-order sensitivity analysis

Two non-Gaussian inference schemes are now available, that
can often be unified into the same formalism. Besides, an
application setup on ETEX-I has been described to test them

with. We are now ready to proceed to the second-order anal-
ysis discussion.

In order to be explicit in the following mathematical ex-
pressions, it is assumed in the following that the prior den-
sity ν(σ , ε) is separable intoν(σ , ε)=ν(σ )ζ(ε), since it is
reasonable to assume that the prior knowledge is to a first ap-
proximation independent from the knowledge on the errors.
Then the dual cost function splits according to

L̂(β) = ν̂(H †β) + ζ̂ (β) − β†µ , (32)

wherêν andζ̂ definitions are particular cases of Eq. (8). The
related primal cost function is

L(σ ) = ν̂∗(σ ) + ζ̂ ∗(µ − Hσ ) , (33)

with obvious definitions of̂ν∗ and ζ̂ ∗ stemming from
Eq. (13).

5.1 Analysis covariance matrix

Remember that, in the MEM case, in order to carry out a
proper second-order analysis, one needs to deduce it from
the primal cost function. Defining the Hessians matrices

H
σ ,σ
k,l = ∂σk

∂σl
ν̂∗

|σ , H
ε,ε
i,j = ∂εi

∂εj
ζ̂ ∗

|µ−Hσ
. (34)

one obtains

P
−1
a = H

σ ,σ + H †
H

ε,εH . (35)

The dimensionality of spaces plays an important role and jus-
tifies the use of the dual space. That is why it is useful to
expressPa through a dual formulation. Let us define

H
α,α
k,l = ∂αk

∂αl
ν̂|H†β , H

δ,δ
i,j = ∂δk

∂δl
ζ̂ |β . (36)

Because the Hessians of two Fenchel-conjugated functionals
are reciprocal inverse matrices, one has

H
α,α =

(
H

σ ,σ
)−1

, H
δ,δ =

(
H

ε,ε
)−1

. (37)

Thanks to this property and to the Sherman-Morrison-
Woodbury [SMW] formula, one obtains

Pa = H
α,α − H

α,αH †
(
H

δ,δ + HH
α,αH †

)−1
HH

α,α .

(38)
It is straightforward to check that in the Gaussian case, the
Hessians identify with the background and error covariance
matrices, as they should,

H
α,α
k,l = [B]kl , H

δ,δ
i,j = [R]ij , (39)

which are independent of the solution. Otherwise, these Hes-
sians do depend on the solution. For example, within the
MEM framework, the Hessian related to the Bernoulli prior
law is

H
α,α
k,l = δk,lm

2
k

γk(1 − γk)e
mk[H†β]k

(
1 − γk + γkemk[H†β]k

)2
. (40)
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Fig. 2. Top row: reconstruction through a semi-Gaussian prior on the basis of a Bayesian inference and a MAP estimator. Bottom row:
reconstruction through a Bernoulli prior on the basis of a Bayesian inference and a MAP estimator. Panels(a) and(c) represent a density
plot of the integrated released mass in time for every space grid cell. The triangles represent the stations involved in the observations. Units
are in kg. Panels(b) and(d) represent the profile of the retrieved source in the true release grid cell. The step function indicates the true
emission rate profile.

Therefore a second-order analysis on the reconstruction of
an atmospheric tracer source, whether it relies on a non-
Gaussian cost function of any of the two types considered
here, calls for a generalisation to accommodate this depen-
dence.

In Fig. 3 a partial representation of the ETEX-I confidence
matrixP−1

a is given in the Gaussian case. It can also be in-
terpreted as an information matrix. It essentially shows how
much confidence in the observations is propagated and dif-
fused by the model (H †Hε,εH ) plus a uniform background
confidence term (Hσ ,σ ). In the Gaussian case, it does not
depend on the solution. It is remarkable that the ETEX-I
release (in Brittany, France) is far from the most trustwor-
thy region (Central Europe). Incidentally, it shows that even
though ETEX-I has a well-suited setup for dispersion mod-
elling validation of numerical transport models, it is not the
easiest setup for an inverse modelling experiment.

In Fig. 4, a partial representation of the ETEX-I covariance
matrixPa is given in the non-Gaussian case.

The dependence on the solution is very significant, for at
least two reasons. First the true release site area corresponds
to a much stronger uncertainty, likely because it is there that
the optimisation puts most of the tracer mass. Second, in
cells where the solution is close to zero, the uncertainty is
also very small. This reflects the structure of the Bernoulli
law: negative estimates are forbidden, so that fluctuations
(hence variances) around a near zero solution are strongly
damped. This is the reason why, in this case, it was chosen
to represent the covariance matrix instead of the confidence
matrix.

In (Bocquet, 2005a), a performance indicator

ρ = ν̂∗(σ MEM, εMEM)/̂ν∗(σ t , εt ) (41)

fully consistent with the MEM approach was proposed:ρ

close to 1 indicates an excellent reconstruction, whereasρ

close to 0 indicates a failure of the reconstruction. An expan-
sion ofρ in the discrepancy between the estimateσ MEM and

www.nonlin-processes-geophys.net/15/127/2008/ Nonlin. Processes Geophys., 15, 127–143, 2008



136 M. Bocquet: Non-Gaussian methods for tracer source inversion

45°N

50°N

55°N

10°W 0° 10°E 20°E

0 1000 2000 3000 4000 5000 6000 7000 8000

Fig. 3. Partial graphical representation of the analysis confidence
matrix in the Gaussian prior case. The density plot represents the
the diagonal of the matrix, with a sum over time steps in each space
grid cell. This is only an approximation as off-diagonal elements
connecting different times in the same space grid cell are not taken
into account. The units are in kg−2. For clarity, the uniform back-
ground term contribution has been subtracted.

the true sourceσ t leads to

ρ = 1 −
1

2 ν̂∗(σ MEM, εMEM)
(σ MEM − σ t )

†
P

−1
a (σ MEM − σ t )

+O(||σ MEM − σ t ||2) . (42)

This makes the connection betweenρ and the confidence ma-
trix P−1

a explicit.

5.2 Averaging kernels of the source and the errors

The second-order analysis is to be built on the equation satis-
fied by the solutionσ andε. Since in most cases considered
here the cost functions are more than quadratic, the analysis
will only be local, in the vicinity of the solution, even though
all derivations are without approximations.

5.2.1 Sensitivity of the retrieved source to the real source

Consider the optimality condition on the primal cost function
L(σ ):

0 = ∂σk
L = ∂σk

ν̂∗ − Hik∂εi
ζ̂ ∗ . (43)

Here, and below, the Einstein convention on the repetition
of indices is used. To extract the sensitivity of the retrieved
source to the real source (averaging kernel of the source), one
differentiates Eq. (43) with respect to the coefficients ofσ t :

∂σ h

∂σ t
l

{
∂σh

∂σk
ν̂∗ + Hjh∂εi

∂εj
ζ̂ ∗Hik

}
= Hik

∂µj

∂σ t
l

∂εi
∂εj

ζ̂ ∗ .

(44)

Knowing thatµ = Hσ + ε = Hσ t + εt , one gets

∂σ

∂σ t

=
(
H

σ ,σ + H †
H

ε,εH
)−1

H †
H

ε,εH . (45)

The following matrix indices convention has been chosen

[
∂A

∂B

]

ij

=
∂Ai

∂Bj

. (46)

An analog result can be obtained using a dual route. The
Lagrange parameters are solutions of

0 = ∂βi
L̂ = Hik∂αk

ν̂ + ∂δi
ζ̂ − µi . (47)

A differentiation with respect to the measurementsµ yields
(in matrix form)

∂β

∂µ
=
(
HH

α,αH † + H
δ,δ
)−1

. (48)

To obtain the sensitivity of the retrieved source to the mea-
surements, one appliesσ = (∂α ν̂)|H†β . This gives

∂σ

∂µ
= H

α,αH †
(
HH

α,αH † + H
δ,δ
)−1

. (49)

This, in turn, yields the averaging kernel:

∂σ k

∂σ t
l

=
∂σ k

∂µi

∂µi

∂σ t
l

=
∂σ k

∂µi

Hil = Hjm

∂βj

∂µi

∂αk
∂αmHil , (50)

so that

∂σ

∂σ t

= H
α,αH †

(
HH

α,αH † + H
δ,δ
)−1

H . (51)

This formula could have also been obtained from the SMW
formula and from Eq. (45).

5.2.2 Sensitivity of the retrieved errors to the real errors

Very similar results can be obtained for the errors. For exam-
ple the errors averaging kernel is

∂ε

∂εt

=
∂ε

∂µ
= I − H

(
H

σ ,σ + H †
H

ε,εH
)−1

H †
H

ε,ε

= H
δ,δ
(
HH

α,αH † + H
δ,δ
)−1

(52)

∂εt ε can be shown to be symmetric positive definite matrix
with eigenvalues in the range [0,1]. The closest to 1, the
more truthful the reconstruction is. In Fig. 5, we have chosen
to represent the diagonal ofI−∂εt ε. The difference between
the two types of reconstructions is significant. It emphasises
how differently the same information (observations) is inter-
preted by the optimality system.
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Fig. 4. Partial graphical representation of the analysis covariance matrix in the Bernoulli prior case. Panel(a) represents the diagonal of the
matrix, with a sum over time steps in each space grid cell. This is only an approximation as off-diagonal elements connecting different times
in the same space grid cell are not taken into account. The units are in kg×kg. Panel(b) displays the profile of the reconstructed source (�),
and the profile of the square root of covariance matrix elements in the true release grid cell (•) (no approximation is used). The units are in
kg.

5.3 Lagrange multipliers, errors and sensitivities

Before any further investigation of second-order properties,
one should consider the Lagrange multipliers, that are read-
ily available as the vector minimising the dual criterion. It
is known in convex analysis that they are prone to a phys-
ical interpretation (see for example (Nocedal and Wright,
2006)). The primal problem onσ andε consists in optimis-
ingL(σ , ε)=ν̂∗(σ , ε)+β† (µ−Hσ−ε). At the saddle point,
one has 0=∂εi

L=∂εi
ν̂∗−βi . The alternate formulation of the

primal criterion isL(σ )=ν̂∗(σ , µ−Hσ ). It can be consid-
ered at its minimum pointσ , understood as a function ofµ.
Then

dL

dµi

(σ (µ))=
dσ k

dµi

∂σk
L +

∂ν̂∗

∂εi

=βi ,

because at the minimum∂σk
L=0. As a consequence, the

multipliers β are a measure of the sensitivity of the cost-
function to the measurements. The larger theβi , the more
constraining is the related measurementµi onto the optimal-
ity system. A similar derivation can be performed on the dual
criterion. Ultimately

βi = −
dL̂

dµi

=
dL

dµi

. (53)

When the errors are of Gaussian nature (it was chosen so
here), the retrieved errors are of the formε=Rβ. Provided
that the errors are homocedasticR=χI , then the errors are
given by the Lagrange multipliers up to a scale factor. It
seems consistent that the stronger the constraint due toµi ,
the stronger the diagnosed error related toµi .

The Lagrange multipliersβ are plot in Fig. 6 for the recon-
structions based on the two typical priors.

Although different, these plots exhibit very similar magni-
tude for theβi . From Eq. (53), theβ represent the marginal
information contribution of the observations to the total rel-
ative entropy (or total gain of information). What makes a
significant difference between the two types of reconstruc-
tion is the way the optimality system dispatches the total gain
of information between the source and the noise, not really
the total gain itsef which is mainly driven by the measure-
ments information content. This point is the foccuss of the
next section.

5.4 Information content and observations

5.4.1 Marginal contribution of the observations to the
source and errors relative entropies

One way of estimating the influence of observations on the
reconstruction is to compute the sensitivities∂µσ or ∂µε,
which turn out to be by-products of the averaging kernels
derivations. The graphical representation and interpretation
of such sensitivities can be awkward since they are repre-
sented by very large matrices (N×d andd×d, respectively).
A more concise approach would be to define a wisely chosen
sensitivity function that depends on the observations. Such
an approach has been fostered for instance in (Le Dimet
et al., 1997; Ngodock, 1996). Here, we choose for such
a function the information content that a given obervation
brings to the inversion. Obviously, this contribution depends
on all other observations, so that only a marginal contribu-
tion to the information used in the source inversion can be
computed from information theory.
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Fig. 5. Plot of the diagonal ofI−∂εt ε. The disks radii of the disks are proportional to the diagonal elements[I−∂εt ε]ii . Panel(a) is related
to the use of the Bernoulli prior, whereas panel(b) is related to the use of the Gaussian prior. The same scale radius applies to both plot.

The information is rigorously measured by the relative en-
tropy of the source. To avoid any confusion, note this is
not specific to the MEM inference, but also applies to the
Bayesian inference.

5.4.2 MEM inference

However in the specific case of the MEM approach, the rela-
tive entropy can be obtained as a by-product of the optimisa-
tion, which makes it simpler to estimate numerically, but also
analytically. By definition, from both dual (second line, first
member) and primal (second line, second member) points of
view, the source relative entropy is:

Kσ =
∑

σ

p(σ ) ln

(
p(σ )

ν(σ )

)

= σ †H †β − ν̂(H †β) = ν̂∗(σ ) , (54)

at the solution point. So that the sensitivity ofKσ to µi is

d

dµi

{
σ †H †β − ν̂(H †β)

}

= βjHjk

∂σ k

∂µi

+
∂βj

∂µi

Hjk

(
σ k −

∂ν̂

∂αk

)

= βjHjk

∂σ k

∂µi

, (55)

because, at the optimality, one has∂α ν̂|H†β = σ . Because,
we know∂µi

σ k from Eq. (49), one gets

dKσ

dµ
=
(
HH

α,αH † + H
δ,δ
)−1

HH
α,αH †β

= H
ε,εH

(
H

σ ,σ + H †
H

ε,εH
)−1

H †β .

(56)

The second line has been obtained through a similar deriva-
tion on ν̂∗(σ ) directly, or using the SMW formula.

The marginal information that is brought in by an obser-
vationµi onto the errors, which is often considered as lost in
noise, can be obtained in the same manner. One gets

dKε

dµ
=
(
HH

α,αH † + H
δ,δ
)−1

HH
δ,δβ

= β − H
ε,εH

(
H

σ ,σ + H †
H

ε,εH
)−1

H †β .

(57)

As a consequence of Eq. (56) and Eq. (57), one has

d

dµ
(Kσ + Kε) = β , (58)

which has already been derived from the total entropy (cost
function in the MEM formalism) Eq. (53).

These sensitivities are plot in Fig. 7.
The results for ETEX-I clearly emphasise the difference

between the two reference schemes. The Gaussian source
retrieval is mostly influenced by the closest observations
(those obtained in France), whereas in the non-Gaussian in-
version it is also influenced by farther measurements as far
as the Netherlands, with a non-negligible contribution from
the Nordic observations. It demonstrates that the positive law
scheme is able to accommodate farther observations. This re-
sult incidentally raises questions on the relevance of a Gaus-
sian ETEX-I inversion, using more than the nearby (French
for the matter) observations, irrespective of their intrinsic
quality. This could have been understood by trial and error
by changing the dataset, but it was worth a rigorous demon-
stration.

5.4.3 Example: Gaussian case

In the Gaussian case, the source relative entropy is

Kσ =
1

2
µ†(R+HBH †)−1HBH †(R+HBH †)−1µ , (59)
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Fig. 6. Plot of the Lagrange multipliersβ which are also proportional to the diagnosed errors. The radii of the disks are proportional to the
sensitivities. Panel(a) is related to the use of the Bernoulli prior, whereas panel(b) is related to the use of the Gaussian prior. The same scale
has been used for the two plots.

while the error relative entropy is

Kε =
1

2
µ†(R + HBH †)−1R(R + HBH †)−1µ , (60)

It does depend on the observation vectorµ. When statistics
on µ are available, it is possible to provide with an average
information gain on the source. Then the average gain on the
signal and the noise are

Eµ [Kσ ] =
1

2
Tr
[
(R + HBH †)−1HBH †

]
(61)

Eµ [Kε] =
1

2
Tr
[
(R + HBH †)−1R

]
, (62)

whereas the average total entropy Eµ [Kσ + Kε] = d
2 iden-

tifies with half the degrees of freedom for signal. This is not
the conventional way the degrees of freedom for signal are
recovered. The following section is dedicated to the route
usually taken to recover them.

5.4.4 Degrees of freedom for signal

As was emphasised earlier, in an accidental context, there is
only one set of observations. Before averaging, the infor-
mation analysis of the previous section was carried out on a
single observation setµ, and is therefore consistent with the
approach. The number of degrees of freedom for signal [dfs],
is however an averaged information obtained for a statistical
set ofµ. It is therefore less relevant in the specific context
of accidental release, but could be useful in other circum-
stances. The usual definition of the dfs is (Rodgers, 1996)

dfs = Tr

[
∂µa

∂µ

]
, (63)

Table 2. Information used in the retrieval of the source and the
errors, for the Gaussian prior case, for the two inference schemes.

Kσ (µ) Eµ [Kσ (µ)] Kε(µ) Eµ [Kε(µ)]

MEM 876 164 1034 291
Bayes 1070 358 2077 1334

whereµa is the diagnosed measurements, i.e.µa = Hσ ,
therefore (for any prior):

dfs = Tr

[
H

∂σ

∂µ

]

= Tr

[
I − H

δ,δ
(
HH

α,αH † + H
δ,δ
)−1

]

= Tr

[(
H

σ ,σ + H †
H

ε,εH
)−1

H †
H

ε,εH

]
.

(64)

This calculation is exact. However, it only offers a local anal-
ysis (in the vicinity of the minimum). These expressions
parallel those obtained in (Chapnik et al., 2006) where the
assimilation is of Gaussian nature whereas the model is pos-
sibly non-linear. In the Gaussian case, this formula identifies
with Eq. (61) up to a scaling factor of two. In other words, in
the MEM inference based on the fully Gaussian assumption,
the dfs and the entropy expressions coincide (up to a factor
of two).

5.4.5 Bayesian inference

Such an analysis can also be carried out using the Bayesian
inference. The information content used in the reconstruction
of the source is again given by the relative entropy

Kσ =
∑

σ

p(σ |µ) ln

(
p(σ |µ)

ν(σ )

)
. (65)
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Fig. 7. Marginal contribution to the source relative entropy∂µiKσ for each of the observationµi . The radii of the disks are proportional to
the sensitivities. Panel(a) is related to the use of the Bernoulli prior, whereas panel(b) is related to the use of the Gaussian prior. Compared
to Fig. 6, a scaling factor of 10 has been applied to the radii on panel (a) whereas a factor of 2 has been applied to the radii of panel (b).

However, such a quantity is not as easily available as in the
MEM framework. To illustrate the difficulty, let us note that
on the Gaussian hypothesis case, the two inference schemes
even give different answers. Indeed, for the MEM approach
Kσ is given by Eq. (59) whereas in the Bayesian context:

Kσ =
1

2
ln
∣∣∣B
(
B−1+H †R−1H

)∣∣∣

+
1

2
Tr

[(
B−1+H †R−1H

)−1
B−1−I

]

+
1

2
µ†(R+HBH †)−1HBH †(R+HBH †)−1µ .

(66)

When considering that the MEM inference only uses knowl-
edge at the level of the first moment, whereas the Bayesian
inference uses knowledge on all moments (actually two for
a Gaussian law), these two expressions are in fact consis-
tent: the Bayesian expression contains the first-momentµ-
dependent term which equals the MEM-derivedKσ . Yet the
Bayesian expression is clearly more demanding, because of
the second-order moments induced extra terms.

The connection with the usual definition of entropy of a
data set in geophysical data assimilation is as follows.

The expression forKσ yields the correct information con-
tent for a given set of observationsµ. However the aver-
age gain in information for the source using statistics onµ is
given by

Eµ [Kσ ] =
∑

µ

p(µ)
∑

σ

p(σ |µ) ln

(
p(σ |µ)

ν(σ )

)

=
∑

σ ,µ

p(σ , µ) ln

(
p(σ , µ)

ν(σ )p(µ)

) (67)

The last term is known as mutual information (Cover and
Thomas, 1991).

It is measuring thereduction in entropy because of the
straightforward splitting Eµ [Kσ ] =H(σ )−H(σ |µ), where
H(σ ) is the entropy of the pdfν(σ ), whereasH(σ |µ) is
the average (onµ) entropy of the conditional pdfp(σ |µ).
This expression is often used in geophysical data assimila-
tion (Rodgers, 2000; Fisher, 2003). The average of Eq. (66)
is then (Gaussian prior)

Eµ [Kσ ] =
1

2
ln
∣∣∣I + B−1H †R−1H

∣∣∣ , (68)

which is also equal to−1
2 ln |I − A|, where

A =
(
B−1 + H †R−1H

)−1
H †R−1H , (69)

is the averaging kernel ((Rodgers, 2000) and references
therein).

These single event and event ensemble estimations of the
information used in the retrieval through MEM and Bayes
inference schemes are reported in Table 2 in the case of
the Gaussian source prior using formula Eq. (59), Eq. (60),
Eq. (61), Eq. (66), and Eq. (68). Note that, in the MEM case,
the average pieces of information Eµ [Kσ (µ)] + Eµ [Kε(µ)]
add up tod/2, with d=911 here. This agrees with the equiv-
alence with the dfs proven earlier.

As it was established before, the differences between the
MEM and the Bayesian inferences are due to the additional
gain in information obtained by the Bayes inference on the
second-order moments, which is not taken into account by
the MEM inference. Clearly, from Table 2 this contribution
can be significant.

5.5 Sensitivity of the retrieved mass

It was shown that the reconstructions of an atmospheric
source may depend significantly on the prior hypothesis on
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Fig. 8. Normalised sensitivity of the total retrieved mass to the observationsM−1∂µiM. The radii are proportional to the sensitivities.
Panel(a) is related to the use of the Bernoulli prior, whereas panel(b) is related to the use of the Gaussian prior. the same sensitivity scale
has been used for the two plots.

the source, and especially whether it is positive or not. For
example, in the ETEX-I case, a Gaussian prior based recon-
struction delivers a total massM not so significantly differ-
ent from a positive law reconstruction. However, the fluc-
tuations of the source are very different, with possibly sig-
nificantly negative values in the Gaussian-based case. It is
therefore useful to study the second-order sensitivity of the
total retrieved mass to the observations. This sensitivity can
easily be obtained from Eq. (49). As for the information gain,
as ad−rank vector, it is easier to interpret than an averaging
kernel. It reads

∂M

∂µi

=
N∑

k=1

∂σ k

∂µi

, (70)

whereσ k is the reconstructed mass released from cellk in
the space-time domain. Therefore

∂M

∂µi

=
N∑

k=1

[
H

α,αH †
(
HH

α,αH † + H
δ,δ
)−1

]

ki

. (71)

Such a sensitivity is illustrated by the Gaussian
prior/Bernoulli prior comparison in Fig. 8.

The two types of reconstruction lead to very different sen-
sitivities. In the positive law case, the total mass is mainly
influenced by observations in a radius of 800 km, and signif-
icantly lesser farther away. On the contrary, in the Gaussian
hypothesis case, there is remarkably no such trend due to the
proximity of the source.

6 Conclusions

Two inference schemes for inverse modelling of atmospheric
tracer sources have been proposed. They are meant to handle
prior information that cannot always translate onto mean and
second-order moments, such as the positivity of the pollutant
source.

They lead to cost-functions that differ from the usual least
squares criterion. They have been qualified as non-Gaussian.
The inference scheme based on the MEM principle has
been summarised following earlier references while the ex-
act Bayesian inference used with a maximum a posteriori es-
timator has been further developed. They both offer similar
performances on real case studies. In one hand, the exact
Bayesian approach implements faithfully the prior, but does
not guarantee the convexity of the resulting criterion. In the
other hand, the MEM principle interprets the prior in its large
deviation limit, but does guarantee the convexity of any cri-
terion. Both inferences deliver an efficient dual formulation
(though convexity is required for the Bayesian one).

Because the resulting cost-functions are non-Gaussian the
usual second-order sensitivity analysis needs to be extended
beyond the BLUE posterior analysis. In particular, most
second-order results depend on the solution of the recon-
struction.

Most derivations have been illustrated by two typical in-
versions: the first one is based on a Gaussian source prior,
while the second is based on a Bernoulli source prior (that
essentially enforces the positivity of the source) following
the MEM scheme. Most results transpose easily to the alter-
native Bayesian scheme, thanks to a formal translation on the
prior pdf.

The analysis covariance and confidence matrices, but also
the averaging kernels of the source and the errors have been
derived. They are uneasy to interpret since they are rep-
resented by matrices defined in a large vector space, built
on the underlying physical space with two space dimensions
(ground sources) plus time.

Scalar and vector quantities are easier to interpret. In par-
ticular the total retrieved mass sensitivity to the observations
has been derived.

www.nonlin-processes-geophys.net/15/127/2008/ Nonlin. Processes Geophys., 15, 127–143, 2008



142 M. Bocquet: Non-Gaussian methods for tracer source inversion

The difference between the Gaussian and non-Gaussian in-
ference is significant, the sensitivity of the mass in the Gaus-
sian case being strong for almost all observations.

The Lagrange multipliers, which are the minimisers of the
dual cost function, have been interpreted as the strength of
the constraints imposed by each measurement.

Building on the analytical results of the the second-order
analysis, an information content study has been carried out.
The purpose was, for a single dispersion dispersion event, to
objectively measure the information that is used in the recon-
struction of the source (and possibly the errors). By averag-
ing on the possible events, more classical results on entropy
reduction and degrees of freedom for signal were recovered.

As by-products of this methodological study, several re-
sults have been obtained on ETEX-I and its study as a inverse
modelling case. For instance, it has been shown that:

– When considering ETEX-I as an inverse modelling case
study (it was not designed to), it was shown that the
meteorological conditions make the true source location
a not well informed point, while areas in Central Europe
would have served as much easier source locations for
identification.

– It was shown that, in the Gaussian framework, essen-
tially only the observations in France provide with use-
ful information (irrespective of their qualities). Such a
scheme therefore makes the ETEX-I retrieval a very re-
gional exercise. Whereas a more efficient non-Gaussian
scheme is sensitive to significantly farther observations,
and makes the exercise much more meaningful as a con-
tinental inverse modelling case study.

In the case of non-Gaussian cost-functions, the sensitiv-
ities that have been derived are depending on the solution.
These sensitivities are given by exact formula for a linear
model. However, they only represent local fluctuations of the
solution, and do not give away these fluctuations at a larger
scale. When the retrieved source is close to a bound, which is
often the case here where most of the solution is close to zero
for a positive law prior, these large scale fluctuations may be
significant, whereas the variances are close to zero.

To study larger deviations of the solution, a Monte-Carlo
study should be contemplated. Once theH matrix has been
computed, the inversions are fast enough on a up-to-date
four-core PC (about one minute for ETEX-I, three times less
with less stringent but reasonable convergence criteria) so
that such a Monte-Carlo study would be practical.
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