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Abstract. We investigate the elliptical instability of a

strongly asymmetric vortex pair in a stratified fluid, gener-

ated by the acceleration and deceleration of the rotation of

a single flap. The dominant parameter is the Froude num-

ber, Fr=U/(NR), based on the maximum azimuthal veloc-

ity, U , and corresponding radius, R, of the strongest vor-

tex, i.e. the principal vortex, and buoyancy frequency N . For

Fr>1, both vortices are elliptically unstable while the in-

stability is suppressed for Fr<1. In an asymmetric vortex

pair, the principal vortex is less – and the secondary vortex

more – elliptical than the vortices in an equivalent symmet-

ric dipolar vortex. The far more unstable secondary vortex

interacts with the principal vortex and increases the strain

on the latter, thus increasing its ellipticity and its instability

growth rate. The nonlinear interactions render the elliptical

instability more relevant. An asymmetric dipole can be more

unstable than an equivalent symmetric dipole. Further, the

wavelength of the instability is shown to be a function of

the Froude number for strong stratifications corresponding

to small Froude numbers, whereas it remains constant in the

limit of a homogenous fluid.

1 Introduction

The stability of monopolar vortices in homogeneous and

stratified fluids is of relevance to transport and mixing pro-

cesses in geophysical and turbulent flows. In particular

dipolar and monopolar vortices appear abundantly in the

Earth oceans and atmosphere. These structures are self pro-

pelling, or propagate under the influence of the Coriolis

force, and may transport heat as well as chemical and bio-

logical compounds over large distances. Stability prolongs

their longevity, whereas instability favors the local mixing
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and the energy transfer to small scales. In this paper, we fo-

cus on the influence of a stable vertical density-stratification

on the elliptical instability of an asymmetric dipole.

Elliptical instability is an essentially three dimensional in-

stability which arises due to the parametric resonance be-

tween the oscillation of inertial waves in the horizontal flow

and the ambient strain field (see the review of Kerswell,

2002). For open flows such as a moving dipolar vortex,

this instability has been first demonstrated experimentally by

Leweke and Williamson (1998). In a stratified fluid, these

oscillations (inertia-gravity waves) are only permitted in the

frequency range between the buoyancy frequency and rota-

tion frequency set by the rotation of the vortex. Strong strati-

fication “closes” this frequency gap, within which resonance

may occur and thereby suppresses the elliptical instability

(see Miyazaki and Fukumoto, 1992; Kerswell, 1994, 2002).

The effect of stratification on the growth rate of ellipti-

cal instability has been investigated numerically by Potylitsin

and Peltier (1998) for the case of monopolar vortices (Kelvin

Helmholtz and Kida vortex) in the presence of a weak strat-

ification, and for dipolar vortices in the presence of a strong

stratification by Billant and Chomaz (2000b). Billant and

Chomaz showed that the wave length of the elliptical insta-

bility increases, while the growth rate decreases with 1/Fr ,

for Froude numbers decreasing to 0.22. This Froude number

is defined as Fr=U0/(NRD) and is based on the translation

velocity, U0, and radius RD of the Lamb-Chaplygin-dipole.

Using the velocity on the dipole axis which is (2.49 U0)

and half the radius of the dipole, this Froude number is

approximately five times larger than the monopole Froude

number, explaining the lower value of 0.22 in their exper-

iments. The equivalent criterion for a monopole is Fr=1

derived by Miyazaki and Fukumoto (1992) for a uniform

rotation. For Froude-number values, Fr≤0.22 (and Fr≈1

for a monopolar vortex), elliptical instability is suppressed

in agreement with Miyazaki and Fukumoto (1992), and the

zigzag instability dominates. In the sequel of this paper we
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Fig. 1. Sketch of the side-view and top-view of the experimental

setup and stratification. The flap was either rotated by hand or by a

computer controlled DC-motor.

will employ the monopole Froude number mentioned above,

based on maximum azimuthal velocity U and correspond-

ing radius R. In a theoretical study Kerswell (1992) consid-

ers the elliptical instability of stratified and hydromagnetic

waves for a solid body rotation. Among the different modes

investigated, the growth rate of the core mode, which is of

interest here, decreases with increased stratification.

Our research is at variance with the numerical results of

Billant and Chomaz (2000) in that we consider strongly

asymmetric vortices in which the partner vortex can be con-

sidered as secondary. This secondary vortex becomes un-

stable in accompaniment of the principal vortex and, while

being entrained, significantly increases the strain on the prin-

cipal vortex. We investigate the evolution of the principal

vortex in this rather perturbed state. After presenting the ex-

perimental setup in the next section, the detailed flow prop-

erties are discussed in Sect. 3. The elliptical instability of

the principal vortex is described in Sect. 4, followed by the

conclusions in Sect. 5.

2 Experimental setup

Two experimental setups are used. A first set of experiments

is conducted at the DAMTP laboratory in Cambridge in a

tank of dimensions 40×40×40 cm3. In a next set, a tank

of dimensions 80×80×40 cm3 is used (see Fig. 1). In both

cases, the tank is filled with a stable density-stratified fluid,

with tap-water as working fluid, the stratification obtained

by a linear variation in salt concentration using the double-

bucket method (Oster, 1965). The total fluid-height is 30 to

35 cm. To inhibit axial flow due to Ekman pumping near top

and bottom, a relatively dense salt-saturated layer is added at

the bottom, and a layer of fresh water at the free surface. This

reduces the working depth to 25 to 30 cm. The buoyancy fre-

quency, defined by N2=−g/ρ̄dρ/dz with density ρ(z) and

mean density ρ̄, is measured by a linear regression of 10 den-

sity samples regularly spaced over the total working depth.

The vortex structure is generated far from the boundaries

and over the entire tank depth by a flap of 15.5 cm width and

35 cm height. The flap axis is placed vertically, with a pre-

cision up to approximatively 0.05 radians corresponding to

0.3 mm over the flap height. The axis is 8 cm from the near-

est wall (see Fig. 1). In both experiments the same flap is

used. In the first set of experiments the flap is shortly moved

by hand such that it produced a very a-symmetric dipole and

initial conditions are measured just after vortex generation

by means of particle-tracking measurements using the soft-

ware package DigImage (Dalziel, 1993). These experimental

results are only used for the data in Fig. 10.

In the second set of experiments, the flap is driven by a

computer controlled DC-motor, and programmed to produce

a constant acceleration followed by a 1/t deceleration up to

a constant very low velocity. A principal vortex is produced

during acceleration (starting vortex) and a smaller secondary

vortex (stopping vortex) during deceleration. Depending on

the forcing, the stopping vortex can be as intense as the start-

ing vortex and results in a nearly symmetric vortex pair (see

e.g. Thomas and Auerbach, 1994; Afanasyev, 2002). The de-

crease of the flap velocity is smooth in order to minimize the

intensity of the stopping vortex and to increase the separation

distance from the starting vortex. The duration of the accel-

eration stage is 0.5 or 2 s and the maximum angular velocity

is varied from 0.2 to 0.27 rad/s. The final angular velocity of

the flap is 0.08 rad/s and the total duration of the motion is

50 to 60 s.

In order to measure the oscillations of the principal vor-

tex core, dye is generated along the long edge of the flap,

either with the solder wire technique (see Honyi et al., 1980)

or with a cotton wire containing fluorescent dye. During the

vortex formation, this thin sheet of dye is continuously en-

trained within the principal vortex, visualizing the core as

well as the vortex motion at larger radii. To simultaneously

measure the horizontal velocity field, and in particular the

vortex maximum azimuthal velocity and corresponding ra-

dius, the motion of particles seeded at mid-depth, illuminated

Nonlin. Processes Geophys., 13, 641–649, 2006 www.nonlin-processes-geophys.net/13/641/2006/
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Fig. 2. Sequence of top-view dye-visualizations of the asymmetric

dipolar flow for Froude number approximately 4. The flow was

illuminated at mid-height with a laser sheet. The images, from left

to right and top to bottom, are taken at times 30, 35, 41, 46, 49 and

51 s, respectively.

by a 5 mm to 10 mm-thick sheet of light (laser, or projector),

is recorded from the top. Either a second camera is placed

above the tank, or one single camera recorded top view and

side view in one image via a mirror that was placed under

an angle of 45 degrees with the side-wall of the tank. The

particle sizes are either of about 60 µm or 200 µm in diame-

ter. The images are recorded with 30 Hz, 768×484 pxl, 8 bit

and a 25 Hz 768×572 pxl, 8 bit CCD camera. In the second

set of experiments, the horizontal velocity field is obtained

using the particle image velocimetry (C.I.V.) technique de-

veloped by Fincham and Spedding (1997) and Fincham and

Delerce (2000). In order to follow the evolution in the density

field, side-view shadow-graph visualizations are recorded,

whereas in some cases the “synthetic Schlieren” method (see

e.g. Dalziel et al., 2000) is employed. The experimental data

of both experimental sets is listed in Table 1.

3 Observations

The top-view dye visualizations in Fig. 2 show, that once the

flap has ceased to move, a circular dye-line encloses the prin-

cipal and secondary vortex of the asymmetric dipolar struc-

ture. The secondary vortex is elliptical and, in the presence

of the strain field of the principal vortex, becomes elliptically

unstable (Fig. 2 t=35 s, 41 s). The amplitude of the instabil-

ity grows such that the secondary vortex deviates in horizon-

tal direction. Meanwhile the secondary vortex slightly ap-

proaches the principal vortex, while locally mixing the dye

pattern, showing a three dimensional motion. The core of the

principal vortex is initially circular, and becomes elliptical in

particular between 41 and 46 s.

The synthetic Schlieren pictures in Fig. 3 reveal the verti-

cal evolution of the instability of the secondary vortex. The

core of the secondary vortex is marked by the black line,

Fig. 3. Sequence of (side-view) synthetic Schlieren visualizations

for a Froude number close to 4. The vertical line at the bottom of

each image points at the principal vortex, whereas the curve in the

second image indicates the center of the secondary vortex. Corre-

sponding times are 25, 34, 36, 41, 51 and 57 s from left to right and

top to bottom. The height of the images is 22 cm.

whereas the presence of the principal vortex can be discerned

from the grey vertical lines in the background. The se-

quence clearly shows the secondary vortex wrapping around

the principal vortex in a similar way as elliptical unstable vor-

tices in a homogeneous rotating fluid (see Afanasyev, 2002).

The wavelength is of the order 4 to 5 times the vortex ra-

dius (i.e. ≈9 cm). Since the principal vortex was not per-

turbed, and the wave length is much shorter than the vortex

separation distance of about 10 cm, the Crow instability can

be excluded. The secondary vortex approaches the principal

vortex to such an extent that instabilities occur locally, lead-

ing to the mushroom shaped structures along the principal

vortex (Fig. 3 at t=51 s). Eventually, the secondary vortex

breaks down in the vicinity of the principal vortex, creating

an ambient region of turbulence (t=57 s).

The principal vortex increases in ellipticity once the sec-

ondary vortex becomes unstable indicating that the applied

strain increases until the principal vortex becomes unstable.

Figure 4a shows a dye visualization of the principal vor-

tex core before and after the onset of the oscillations. The

corresponding spatiotemporal evolution of the core line (see

Fig. 4b) shows initially inertial waves (Kelvin waves) for

10 s<t<30 s and the growing instability for t>30 s. A verti-

cal cross section of the principal vortex structure in Fig. 5

reveals the typical radial structure for elliptical instability,

www.nonlin-processes-geophys.net/13/641/2006/ Nonlin. Processes Geophys., 13, 641–649, 2006
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Table 1. Table of the initial buoyancy frequency N , measured velocity U , radius R and wavelength λ. The circulation is estimated from the

radius and maximum velocity using the Oseen vortex model. The last five experiments correspond to the experiments conducted in the small

tank.

N (rad/s) U (cm/s) R (cm) Ŵ (cm2/s) λ (cm) Fr=U/(NR) λ/R Re=UR/ν ReŴ=Ŵ/ν

0.63 3.2 2.4 67 5.7 2.0 2.4 770 6700

0.63 4.5 2.2 87 4.9 3.2 2.2 1000 8700

0.54 6.2 2.2 120 5.0 5.2 2.3 1360 12 000

0.63 5.7 1.8 90 4.9 5.0 2.5 1000 9000

0.54 5.4 2.0 95 5.2 5.0 2.6 1100 9500

1.21 2.5 1.5 76 4.5 1.3 3.0 380 7600

1.21 3.8 2.1 – 4.5 1.5 2.17 800 –

1.0 3.8 2.7 – 8.8 1.1 3.3 1030 –

0.58 2.2 2.4 – 5.5 1.6 2.4 530 –

0.58 2.8 2.6 – 4.8 1.9 1.9 730 –

characterized by an unperturbed stream tube with a diam-

eter of half the wavelength, also observed by Leweke and

Williamson (1998). The present Froude number >0.5 and

the short wavelength, exclude the zig-zag instability. The

structure and relative size of the unstable mode in Fig. 5 are

reminiscent of the elliptical instability observed by Leweke

and Williamson (1998). In addition the suppression of the

instability for strong stratification (see Miyazaki and Fuku-

moto, 1992) (see Fig. 2) suggest an elliptical instability.

During the flow evolution, the Froude number decreases

due to viscous dissipation, and the wavelength of the ellip-

tical instability was observed to increase accordingly. As a

consequence, the instability of the principal vortex never re-

sulted in a complete vortex breakdown but saturated. For

small Froude numbers (Fr<1) the zigzag instability (Billant

and Chomaz, 2000a) was observed eventually.

4 Flow properties of the principal vortex

4.1 The vortex velocity profile

In order to characterize the vortex generated by the flap-

motion, the horizontal velocity field was measured using the

CIV technique mentioned above. Figure 6 shows instanta-

neous cross-sectional velocity-profiles, of three different ex-

periments taken at 12 s after forcing. Each profile is obtained

from an azimuthal average. These experimental profiles are

compared to a theoretical model, which is an analytical solu-

tion of the two-dimensional diffusion equation (Kloosterziel,

1990; Flór and Eames, 2002), given by:

v(r) = Wim,n(r
2/2)e−r2/4, (1)

with Wim,n the Whittaker function where n=0.5 and

m=(β−1)/2. The parameter β controls the decrease of the

azimuthal velocity with r . For β=1 the velocity field decays

as 1/r , while for β=3 the equation represents a Gaussian

velocity-profile. The parameters β, U , and R are deduced

from a fit of Eq. (1) with the experimental data. In Fig. 6

the continuous curves represent the fit and the dashed curves

the corresponding theoretical vorticity-profiles. In the exper-

iments here reported, β is close to 0.7 for the three different

experiments. With time, the velocity and radius vary due

to viscous diffusion of vorticity, but the velocity profile re-

mains self similar and the evolution is close to that of a two-

dimensional vortex with a Gaussian vorticity-distribution.

After vortex formation at about 10 s, typically the maxi-

mum azimuthal velocity is ≈5 cm/s at radius R≈2 cm yield-

ing a Reynolds number, Re=UR/ν=1000. This Reynolds

number remains about constant up to the onset of the instabil-

ity, and decays slightly during the subsequent flow evolution

under consideration to values of order 800. Viscous effects

on the scale of the vortex are further neglected.

4.2 The initial strain induced by the secondary vortex

A typical example of an asymmetric dipole is shown in the

stream line plot in Fig. 7. The principal vortex is weakly

elliptical whereas the weaker secondary vortex is strongly

elliptical, and thus both vortices are susceptible to elliptic

instability.

To provide an estimation of the growth rate based on exist-

ing theoretical results we use the theoretical results by Ker-

swell (1992 and 2002) and le Dizès and Laporte (2002). Ker-

swell (1992) uses a basic state of solid body rotation in a ro-

tating stratified environment. le Dizès and Laporte (2002)

use a general pair of Gaussian vortices in a homogeneous

fluid.

For a period of 20 s during which the separation distance is

approximatively constant, the experimental dipole trajectory

can be modeled by a pair of point-vortices. The theoretical

angular velocity is

�p =
Ŵ1 + Ŵ2

2πb2
eq

, (2)

Nonlin. Processes Geophys., 13, 641–649, 2006 www.nonlin-processes-geophys.net/13/641/2006/
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Fig. 4. (a) Side views of the vortex core at 5, 33 and 45 s after starting the flap motion visualized with fluorescent dye, and (b) the core

centre-line as a function of time. The Froude number is 4.5 and the vertical size of the image is 17 cm.

4
.5

 c
m

2.2 cm

Fig. 5. Side view of the principal vortex cross section colored with

dye at t=38 s after its generation.

with Ŵ1 and Ŵ2 the circulation of the vortices and beq their

separation distance. If Ŵ1 6= Ŵ2 and the circulations are of

opposite sign, the curvature of the trajectory of the most in-

tense vortex, having circulation Ŵ2, is

b2 =
Ŵ1beq

Ŵ1 + Ŵ2
. (3)

With Ŵ1=14 cm2/s and Ŵ2=−70 cm2/s and a separation

distance of beq=10 cm this yields an angular velocity of

0.1 rad/s, compared to 0.1±0.01rad/s measured from exper-

imental observations over half a period of rotation. Using

these values we can derive the external strain on the vortices

with

Se2,1 =
Ŵ1,2

2πb2
eq

, (4)

implying an external strain of 0.02 s−1 for the principal vor-

tex and 0.11 s−1 for the secondary vortex. Note that, due to

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4
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0.8

1

r/R

v
/
V
,
 

ω
/

ω
m
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Fig. 6. Experimental velocity profiles over a vortex cross-section

(circles) at t=12 s after vortex generation for three different experi-

ments, fitted with the vortex model Eq. (1) (solid curves). The thick

curve correspond to the vortex model with a Gaussian distribution

of vorticity. The dashed curve represents the vorticity profile corre-

sponding to the fitted profiles.

the presence of vorticity in e.g. a Gaussian vortex, the strain

increases towards the centre of the vortex. For the ellip-

tical instability occurring in the vortex core, we thus need

the value of the internal strain in the vortex centre. The re-

lation between internal and external strain rate is given by

Si=KSe(Rω), with Rω the second order vorticity moment

R2
ω =

1

2Ŵ

∫

r2ωdS

with r the distance to the vortex centre. We estimate

the radii of each vortex as the radius at which a Gaus-

sian vorticity-distribution has a maximum azimuthal veloc-

ity, i.e. R=1.12Rω. During the early stages of the dipole

evolution, the measurements yield 2.5 cm and 1.3 cm for the

www.nonlin-processes-geophys.net/13/641/2006/ Nonlin. Processes Geophys., 13, 641–649, 2006
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Fig. 7. Stream lines measured in the reference frame moving with

the dipole structure. Gray areas represent vorticity exceeding 10%

of the maximum vorticity.

principal and secondary vortex, respectively, whereas after

30 s, these radii are 2.7 cm and 1.7 cm. With these values the

value of K is given by (see le Dizès and Laporte, 2002)

K(µ) = 1.5 + 0.038
(

0.16 −
�p

2µ

)−9/5
, (5)

where µ=Ŵ/(2πR2
ω) is the maximum angular velocity and

Ŵ the circulation of the vortex. This gives a factor K close

to 3 for the principal vortex whether the radius is 2.5 cm or

2.7 cm. For the secondary vortex, this factor varies from 3.2

to 4.1 for a radius of 1.3 cm or 1.7 cm, respectively. The

growth rate of an inertial wave with inclination ξ and vertical

wave number kz is:

σ =

√

(

3µ − �p

4µ

)4

S2
i − (µ − �p − 2µ cos ξ)2

− ν
k2
z

cos2ξ
,

(6)

where ν is the viscosity of the fluid. In this expression, the

last rhs-term takes into account the viscous damping of the

perturbation. The relation between the angle of the inertial

wave to the vertical wavelength is given by

cos ξ =
1

2
−

(2.26 + 1.69n) − kzRω

14.8 + 9n
, (7)

for an inertial wave of azimuthal wave-number 1, with

n=0, 1, 2... the index of the branch of the dispersion rela-

tionship. The maximum growth rate for the elliptical insta-

bility of the principal vortex yields 0.010 s−1 for a radius

of 2.5 cm and 0.015 s−1 for 2.7 cm. The maximum growth

rate of the weakest secondary vortex becomes 0.045 s−1 for

a radius of 1.7 cm. The typical wavelength obtained with

the largest radii is 3.5Rω for the starting vortex and 1.6Rω

for the stopping vortex. This wavelength is slightly outside

the validity domain of the asymptotic approach of le Dizès

and Laporte (2002). The presence of a stable density strati-

fication modifies these values (see Miyazaki and Fukumoto,

1992).

The expression of the growth rate given by Kerswell

(2002) for a stratified fluid in solid body rotation as basic

flow is:

σ ∗ =
9

16
ǫ∗

4(3 + 2�∗
p)2(1 − N∗2)

94(1 + �∗2
p ) − N∗2

(8)

where ǫ∗ is the non-dimensional strain-rate. Variables are

normalized by the angular velocity of the flow. For a ho-

mogeneous fluid, the growth rate can be estimated by the

expression for internal strain of a purely elliptical flow ǫ=Si

(Eloy and le Dizès, 1999). Since the basic flow is two dimen-

sionnal, this is also true for a stratified fluid. This theoretical

growth rate is represented as a function of Froude number

in Fig. 8, and compared to the growth rate in a homogenous

fluid according to le Dizès and Laporte (2002) including vis-

cous damping. Note that here, the Froude number is defined

as Fr=�/N which equals U/NR in case of a rotating cylin-

der or Rankine vortex. For lower Froude number values the

growth rate decreases, whereas it reaches a constant value

for higher Fr values. The homogeneous limit of le Dizès

and Laporte (2002) with (and without) viscous damping of

the unstable mode is also reported. Since the instability of

the presently studied vortices is heavily affected by the non-

linear vortex interaction, we use these values as an order of

magnitude.

4.3 The instability wave-length of the principal vortex

The wavelength of the instability is measured simultaneously

with maximum velocity and radius of the vortex, using mea-

surements with a top and side-view camera, and is displayed

against Froude number in Fig. 10. With increasing Froude

number the wavelength decreases until reaching a constant

value that is predicted by the theory for a Oseen-like vortex

subject to a weak external strain in a homogeneous fluid (see

Eloy and le Dizès, 1999). This theoretical value for the wave-

length (dashed line in Fig. 10) corresponds to the resonance

condition of two inertial modes of azimuthal wave number 1

and a pulsation equal to zero. The choice of zero pulsation

is justified by the fact that the growth rate of the instability

is stationary in all experiments (see Fig. 4). Also the struc-

ture of the radial perturbation (see Fig. 5) defines the unstable

wave length found by Eloy and le Dizès (1999) for a Gaus-

sian vortex in homogeneous fluid. To compare this wave

length with our results, we scale with the radius of maximum

velocity which gives λ/R=2.5.

Nonlin. Processes Geophys., 13, 641–649, 2006 www.nonlin-processes-geophys.net/13/641/2006/
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The solid curve of the Fig. 10 is obtained from a simpli-

fied model used to verify the dependence of the instability

wavelength on Froude number. The basic mechanism of the

elliptical instability involves a resonant interaction between

Kelvin (or inertial) waves. These waves were first identi-

fied on a cylindrical column of fluid in solid-body rotation

by Kelvin (1880) and are described by harmonic functions of

the kind:

x′ = x(r)ei(lθ+mz−ωt), (9)

where x′ stands for any component of the perturbed field,

l the azimuthal wavenumber, m the axial wavenumber and

ω is the wave pulsation. When a stationary ellipticity is

imposed by an external horizontal strain field of mode 2,

Kelvin helical waves (|l|=1) with the same wavenumber and

zero pulsation resonate (see e.g. Kerswell, 2002), leading to

the so-called elliptical instability. The same mechanism still

holds for a Gaussian vortex, although the vorticity gradient

strongly modifies the dispersion relationship (see e.g. Eloy

and le Dizès, 1999).

For a density stratification with a buoyancy frequency, N ,

lower than the maximum of vorticity, these inertial waves

still exist but the dispersion relationship is modified (see

Miyazaki and Fukumoto, 1991).

Kerswell (1992) considered the elliptical instability of

waves in a fluid in solid body rotation with axial stratifica-

tion and derived the dispersion relationship for both cases,

with and without magnetic field. Here, we consider the sim-

plest case. Solid body rotation is chosen for its simplicity,

its relevant physics and as a complementary diagnostic tool,

with in the limit, the wavelength for a Gaussian vortex in a

homogeneous fluid. The difference in the velocity profile,

however, affects the wavelength. The purpose of this model

is to compare qualitatively the variation in wave-length with

Froude number with the variation in our experimental data.

From a superposition of an axisymmetric two-dimensional

flow and the small harmonic perturbation we obtain the equa-

tion for the pressure perturbations. The basic flow field

U=(0, V (r), 0) and perturbed field U+u′=(u′, V +v′, w′)

are supposed to satisfy the Euler equations in Boussinesq ap-

proximation. After linearization, the perturbation equations

for momentum, density and continuity become, respectively,

(8 − σ 2)u = iσ
dp̃

dr
− i

2l�

r
p̃, (10a)

(8 − σ 2)v = Z
dp̃

dr
−

l

r
σ p̃, (10b)

(N2 − σ 2)w = −mσp̃, (10c)

1

r

d

dr
(ru) +

il

r
v + imw = 0. (10d)

where p̃=p/ρ0 with p the amplitude of the pressure per-

turbation, �=V/r , Z=1/r(d/dr)(rV ), σ=ω−l� is the

doppler shifted frequency and 8=2�Z is the Rayleigh dis-

criminant. After some manipulation of the set (10d), one

1 2 3 4 5 6 7 8 9 10
0

0.005

0.01

0.015
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0.025

1/N
*

σ
*

Fig. 8. Theoretical growth rate of the elliptical instability as a

function of the Froude number. The continuous curve is the ro-

tating stratified case, the long dashed curve is the non rotating case,

both from Kerswell (2002). The small dashed and thick lines repre-

sent, respectively, the non-viscous and viscous homogeneous limit

from le Dizès and Laporte (2002).

obtains the Bessel equation

r2 d2p

dr2
+ r

dp

dr
+

(

8 − σ 2

σ 2 − N2
m2r2 − l2

)

p = 0. (11)

As boundary condition we take a non-singular condition at

the centre r=0, and with (10d)a, a zero radial velocity con-

dition at some radius R. The choice of a bounded flow yields

a wave number selection, in contrast to an infinite flow. Reg-

ularity at r=0 excludes Bessel functions of the second kind.

The second condition yields the dispersion relationship (see

e.g. Chandrasekhar, 1981):

σ ∗ = ±

√

4 + (N∗α/m∗)2

1 + (α/m∗)2
, (12)

where N∗=N/�, m∗=mR and σ ∗ = σ/�. The parameter

α is the solution of

αJ ′
l (α) +

2l�

σ
Jl(α) = 0, (13)

with Jn(x) the Bessel function of order n. Equation (12)

shows that N<σ<2�. Moreover, the effect of stratification

is negligible for small N∗ and large m∗, which is verified for

Fr>2 (i.e. N∗2<1/4) and for the short wavelength elliptical

instability. The secant method is used to find the roots of

Eq. (13) and the same method is used to find the roots of the

dispersion relationship for the azimuthal mode l=1 qiven by

Eq. (12). Figure 10 represents the variation of the second

root. The three first roots show the same tendency. We have

taken the second since it is the closest to the data.
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Fig. 9. Measurement of the amplitude of the instability of the vor-

tex core (dots, arbitrary unit) as a function of time. The solid curve

is the exponential fit which gives a growth rate of 0.13 s−1.

4.4 The growth rate of the principal vortex

The growth rate of the instability was measured from dye vi-

sualizations of the vortex core, which continuously deforms

until the amplitude saturates (see Fig. 4). For these Froude-

number values, stratification effects are relatively weak (see

Fig. 10). The increase in amplitude is measured by fitting

the data with an exponential function (see Fig. 9) yielding a

growth rate of 0.13 s−1 for Fr≈4. This growth rate is about

10 times larger than predicted by the theory based on the

initial ellipticity of the primary vortex. As shown in the se-

quence of images in Fig. 2, the nonlinear interaction with

the unstable secondary vortex significantly increases this el-

lipticity. In order to estimate the strain on this primary vor-

tex we suppose it is a dipolar vortex. Then, with the the-

ory of le Dizès and Laporte (2002) for a symmetric dipo-

lar vortex we determine the distance between the two vor-

tices, b, yielding a measure for the corresponding strain.

This allows us to normalize the growth rate with the exter-

nal strain Se=Ŵ/(2πb2) and compare the scaled growth rate,

σ ∗=σ/Se, with that of mutually strained vortices in a sym-

metric dipole Leweke and Williamson (1998). In a symmet-

ric dipole the ellipticity of the vortices and the strain induced

on the “principal vortex” are much larger than for the initially

asymmetric dipole. For a vortex radius 2.5 cm and circula-

tion 70 cm2 s−1, we obtain σ ∗=1.2. For an equivalent ratio

R/b of a symmetric dipole (Leweke and Williamson, 1998,

see) find a growth rate equal to 0.94. The difference may

be explained by the difference in circulation-based Reynolds

number which was of the order 7000 compared to 2800 in

the experiments of Leweke and Williamson (1998). When

1 2 3 4 5 6
1

2

3

4

5

Fr

λ
/
R

Fig. 10. Measurements of the core instability wavelength as a func-

tion of the Froude number. Squares correspond to the 80×80 cm2

tank, circles to the 40×40 cm2 tank and the filled circle corresponds

to the instability of the secondary vortex. The curve corresponds to

the variation obtained from Eq. (12) and the dashed line represents

the homogeneous limit.

neglecting viscous effects the theory of le Dizès and Laporte

(2002) yields an even higher value for a symmetric dipole,

σ ∗=1.42. This shows that the growth rates for Fr>4 cor-

respond reasonably well to the growth rate found for a sym-

metric dipolar vortex in a homogeneous fluid. This growth

rate is also close to the growth rate, σ ∗=1.32, obtained by

Miyazaki and Fukumoto (1992) for an elliptical vortex in a

stratified fluid.

5 Conclusions

We have explored the elliptical instability of highly asym-

metric vortex pairs in a weakly stratified fluid for Froude

numbers Fr≤1. Our results correspond to the numerical

results of Billant and Chomaz (2000b); the wavelength of

the instability equally increases from λ/R≈2.5 for Fr=5 to

λ/R≈4 for Fr=1. For Fr>2, (see Fig. 10) we show that

the properties of the elliptical instability are quantitatively

close to theoretical and numerical results obtained for a ho-

mogeneous fluid by le Dizès and Laporte (2002). For de-

creasing Froude number the wavelength increases between

1<Fr<2, whereas the instability is suppressed for Froude

numbers Fr<1. This variation is in good agreement with

the theory for the simplified case of a bounded cylindrical

body of stratified fluid in solid rotation.

An interesting result of the present investigation is that

the nonlinear interaction of the secondary vortex with the

principal vortex significantly increases the ellipticity of the
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principal vortex. The instability growth rate increases by a

factor ten. This, even though the secondary vortex has a 10

times weaker circulation and could be considered of minor

importance. This suggests that the elliptical instability of the

core of the principal vortex may also be be relevant in strati-

fied fluids for Froude numbers ≥1.
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