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Abstract. In order to estimate the hazard rate distribu-

tion of the largest seismic events in Vrancea, South-Eastern

Carpathians, we study temporal properties of historical and

instrumental catalogues of seismicity. First, on the basis of

Generalized Extreme Value theory we estimate the average

return period of the largest events. Then, following Bak et

al. (2002) and Corral (2005a), we study scaling properties

of recurrence times between earthquakes in appropriate spa-

tial volumes. We come to the conclusion that the seismic-

ity is temporally clustered, and that the distribution of recur-

rence times is significantly different from a Poisson process

even for times largely exceeding corresponding periods of

foreshock and aftershock activity. Modeling the recurrence

times by a gamma distributed variable, we finally estimate

hazard rates with respect to the time elapsed from the last

large earthquake.

1 Introduction

Vrancea zone, located at the bend of the Southeast

Carpathian arc, is the origin of intermediate-depth litho-

spheric seismicity. At depth between 80 and 200 km, earth-

quakes with magnitudes up to Mw7.8 occur within a small

seismogenic body – about 100 km long, 50 km wide. These

earthquakes have been responsible for extensive damage to

health and property over the last centuries. For example,

the strongest events during the twentieth century occurred

in 1940 (Mw=7.7 at a depth d=160 km), in 1977 (Mw=7.5,

d=100 km), and in 1986 (Mw=7.1, d=135 km). The Mw

7.5 earthquake of 1977 caused damage to some 30 000 apart-

ments, and more than thirty major buildings – most of them

in Bucharest, 150 km from the epicenter location (Marza

et al., 1991). The crustal seismicity has a larger spatial
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distribution, magnitudes Mw<6, and is separated from the

intermediate-depth seismicity by an aseismic layer at a depth

between 40 and 60 km.

The African-Eurasian continental collision, which formed

the Carpathian mountains, stopped about 10 million years

ago (Csontos et al., 1992). Since then, the cooling subduc-

tion slab began to steepen and has become almost vertical by

now (Hauser et al., 2001). At present, the cold relic slab is

denser than the surrounding mantle material and is sinking

due to gravity. Ismail-Zadeh et al. (2000) showed with a 2-

D numerical model that the combination of buoyancy force

and viscous friction produces shear stresses at intermediate

depths which may generate the observed confinement of seis-

micity. In such area, seismic hazard estimation could be bet-

ter constrained here than in other active fault systems where

fault interactions and tectonic motions at larger length scales

are likely to add another level of complexity.

The aim of this paper is to study temporal properties of

the seismicity in Vrancea. We extend previous studies (e.g.

Marza et al., 1991; Mantyniemi et al., 2003; Enescu et al.,

2005) by the estimation of the hazard rate distribution of the

largest events on the basis of various statistical approaches.

First, we study the general features of seismicity in

Vrancea using the ROMPLUS (Oncescu et al., 1999) cata-

logue completed by the CSEM (Centre Sismologique Euro-

Méditerranéen) data from 2004 on (http://www.emsc-csem.

org). This catalogue contains the strongest historical events

since 984 AD and becomes homogeneous after 1940 for

Mw>5, and after 1982 for Mw>3 (Fig. 1). Obviously, larger

events are present in the catalogue for a longer time than the

smaller ones. We therefore use the concepts of the extreme

value theory which allow one to estimate the return levels

of extreme events based exclusively on the tail of the distri-

bution – i.e. earthquakes with a magnitude exceeding some

predefined threshold. Using this approach, we model the

seismicity data by the generalized Pareto distribution (GPD)

(Pisarenko and Sornette, 2003, 2004). More specifically, we
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Fig. 1. ROMPLUS seismicity catalogue, 1450–2005 AD. Yellow

color marks the homogeneous part of the catalogue which was used

for calculations for Figs. 5, 10.

describe the behaviour of the tail of the frequency-magnitude

relationship, and we estimate the hazard rate beyond the

knee of Gutenberg-Richter’s relationship under the assump-

tion that a seismicity rate in the whole Vrancea area, aver-

aged over a long period of time, is constant (e.g. no changes

in tectonic setting, like velocities, direction of motion etc.).

The underlying assumption of a time invariant seismic-

ity distribution limits the applicability of the method. If

the seismicity is clustered in time, the hazard rate derived

from Gutenberg-Richter’s law or general Pareto distribution

will be over- or underestimated. In Vrancea, time-clustering

behavior of large earthquakes is a controversial issue espe-

cially looking at the sequence of large earthquakes during

the 20th century (4 earthquakes with Mw≥6.9 between 1940

and 1990) (Purcaru, 1979; Trifu and Radullian, 1991; Enescu

and Enescu, 1999). Then the hazard assessment can also use

the distribution of recurrence times in order to estimate the

evolution of the probability for a large event to occur over

long times.

On the one hand, it is often suggested that the recurrence

times of the main shocks are distributed exponentially, ac-

cording to the memoryless Poisson process (e.g. Gardner and

Knopoff, 1974); hence the recurrence time of an event does

not on the time elapsed from the last event. On the other

hand, for some faults the largest earthquakes show some pe-

riodicity in their recurrence, while their aftershock areas do

not overlap in space (e.g. McCann et al., 1979). These obser-

vations, consistent with the assumption of a steady motion

of rigid tectonic plates, gave rise to the so called gap the-

ory (Fedotov, 1965; Mogi, 1982; Kagan and Jackson, 1995).

The gap theory offered a basis for estimating the recurrence

times of strongest earthquakes from the historical catalogues.

As was pointed out by Aki (2003): “... the gap theory implies

a departure from the Poisson process with the probability of

occurrence increasing with the time from the last event while

the earthquake catalog data invariably indicated the depar-

ture in the opposite sense, namely, the probability decreasing

with the time from the last event (e.g. Aki, 1956)”.

In the last decades, much work was dedicated to the mod-

eling of recurrence time distribution; for example, in order to

describe the memory of the process, several distributions re-

lated to exponential were introduced – Gumbel distribution

(Kijko and Sellevoll, 1981) , Weibul distribution (Cornell

and Winterstein, 1988), gamma distribution (Corral, 2003),

stretched exponential (Altmann and Kantz, 2005, and refer-

ences therein). Bak et al. (2002) found that the distribution

of the spatio-temporal occurrence of all events has a scale-

free behaviour whatever they are aftershocks, main shocks

or foreshocks. Corral (2005a) evidenced a scaling invariance

of the hazard rate function; the hazard rate is a time decay-

ing function meaning that the probability for an earthquake

to occur decreases – as it was pointed out by Aki (2003) –

with increasing waiting time, or in other words, that earth-

quakes are clustered in time independently on the scale of

observation. Immediately after an earthquake there is a high

probability of return; then the probability decays with time,

and even for long times and large magnitudes, is not properly

described by a Poisson process.

An extended recurrence time analysis for earthquakes in

the Vrancea area was recently performed by Enescu et al.

(2005). These authors used a data catalogue beginning in

1974 and found that, with the exception of aftershock activ-

ity, the recurrence times of small and intermediate size events

were distributed according to a Poisson process. The unified

scaling law of Bak et al. (2002) states however that the statis-

tics of the small and large events are self-similar within a

characteristic space range. The results of Enescu et al. (2005)

were obtained by averaging the distribution of smaller events

over the whole area of observation. The exponential distribu-

tion of recurrence times is possibly a consequence of spatial

averaging. Even if the local distributions of recurrence times

are not exponential in separate volumes, their superposition

approaches the poisson process. To avoid this spatial averag-

ing, we observe earthquakes with M>4 and without mixing

of the local distributions.

2 Methods

2.1 Generalized Extreme Value (GEV) distribution and

Generalized Pareto Distribution (GPD)

In this section, we refer to some elements of extreme value

theory (Coles, 2001) that we applied to study the tail of the

distribution of the earthquake sizes using only events with

magnitude above a predefined threshold. It allows one (1) to

fit efficiently the magnitude-frequency distribution in the tail

only, and (2) to use an incomplete seismicity catalogue with

lesser events missing, but containing reliable magnitudes and

times of the largest events. The mathematical basis of this

Nonlin. Processes Geophys., 13, 629–639, 2006 www.nonlin-processes-geophys.net/13/629/2006/
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technique is a limit theorem stating that, under some general

conditions, the distribution of a random quantity exceeding

some predetermined threshold (excess distribution) can be

approximated by the so-called Generalized Pareto distribu-

tion (GPD), which depends on two parameters – scale and

shape. GPD is closely related to the so called generalized

extreme value distribution, and it is convenient to begin with

the later.

Let X1, X2, . . . , Xn be a sequence X of independent ran-

dom variables with a common distribution function F(X)

and

Mn = max{X1, . . . , Xn} (1)

– the maxima for n observation periods of fixed and equal

length called block maxima.

For large enough n and in very general conditions, the dis-

tribution of the block maxima Mn has the form

P {Mn ≤ z} ≈ G(z) = exp

{

−1 + ξ

(

z − µ

s̃

)

−1/ξ

}

(2)

for some µ, s̃>0 and ξ . Interestingly, G(z) does not depend

on the original distribution of X.

Furthermore, for values X exceeding some predefined

(large enough) threshold u, the distribution function Fu(x)

of (X − u),

Fu(x) = P {X − u > x | X > u}, x ≥ 0 (3)

tends to the Generalized Pareto Distribution (GPD)

H(y) = 1 −
[

1 + ξ
y

s

]−1/ξ

. (4)

defined on {yi=X−u>0, (1+ξy/s)>0}. The limit excess

distribution H(y) does not depend on the original distribu-

tion of X.

The shape parameter ξ 6=0 is the same for GEV distribution

and GPD. The scale parameter s>0 is related to the s̃ of GEV

distribution by

s = s̃ + ξ(u − µ)

Both parameters of GPD, ξ and s can be obtained through a

maximum likelihood estimation. While the scale parameter

s depends on the threshold value u, the shape parameter ξ ,

which is dominant in determining the qualitative behaviour

of GPD, is independent of it.

An important question is the estimation of the extreme

quantiles – i.e. the recurrence probabilities for the largest

events X>u. Again, suppose that these excess values are

modeled by a GPD with parameters ξ and s, then

P {X − u > y|X > u} = [1 + ξy/s]−1/ξ. (5)

Letting now P {X>x}=1/m, we get the level xm that is ex-

ceeded on average once every m observations by solving

ζu

[

1 + ξ

(

xm − u

s

)]−1/ξ

=
1

m
. (6)

i.e.:

xm = u +
s

ξ

[

(mζu)
ξ − 1

]

(7)

where ζu=P {X>u}. This is valid for m large enough to en-

sure that xm>u. Usually the return levels plots are given

on an annual logarithmic scale, so that, let’s say, the 10-year

level magnitude is the magnitude Mw>xm expected to be ex-

ceeded once every 10 years.

2.2 Recurrence times distribution

In addition to the probability distribution of the extreme

events described in the previous section, we also studied

the distribution function of the waiting times between earth-

quakes.

We have calculated the recurrence times density function

D(τ),

D(τ) =
P

[

τ < τ ′ < τ + dτ
]

dτ

the survivor function – the probability that an earthquake

does not occur until time τ ,

Z(τ) = P
[

τ ′ > τ
]

and the hazard rate λ(τ) – probability that an earthquake oc-

curs in the time interval (τ, τ+dτ) at τ under the condition

that there was no earthquake during the time τ

λ(τ) =
P

[

τ < τ ′ < τ + dτ |τ ′ > τ
]

dτ
=

D(τ)

Z(τ)
;

following Bak et al. (2002) and Corral (2005a).

Bak et al. (2002) divided the whole area of observation

onto regions of size L×L degrees in the north-south and east-

west direction and considered groups of earthquakes with

magnitude larger than a certain threshold value mc. For

these sets of events they obtained distributions of recurrence

times, with a power-law behaviour over short times and a

faster (exponential) decay for longer times corresponding to

a gamma distribution. The recurrence probability densities

for different magnitude thresholds and region sizes collapse

onto a single curve if rescaled by R (τ→τR), where R is

the average number of earthquakes with magnitude Mw>mc

in the area L×L per unit time. Scaling laws for the survival

and hazard rate functions, for different mc and L, were dis-

cussed by Corral (2003). This empirical scaling function was

shown (Saichev and Sornette, 2006a,b) to be consistent with

the ETAS model of earthquake triggering proposed by Ogata

(1988). Corral (2005a) suggested a gamma distribution as a

model for the recurrence time distribution. This distribution

gives a power-law behavior near t=0, and exponential one at

large times. For a gamma distributed variable, the probability

density function fγ (τ ) is given by:

fγ (τ ) = βα τα−1 exp(−βτ)

Ŵ(α)
, (8)

www.nonlin-processes-geophys.net/13/629/2006/ Nonlin. Processes Geophys., 13, 629–639, 2006
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Fig. 2. Projection of the earthquake foci in the NE-SW vertical

plane. Red stars indicate the foci of the largest events (Mw≥6.0 )

recorded after 1980, and also the focus projection of the Mw 7.5

earthquake occurred in 1977.
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Fig. 3. Projection of the earthquake foci in the NW vertical plane.

where α>0 and β>0 are parameters. The cumulative sur-

vival function is then

Zγ (τ ) = 1 −
Ŵτβ(α)

Ŵ(α)
, (9)

where Ŵτ (α)=
∫ τ

0 τ
′α−1 exp(−τ ′)dτ ′ is the incomplete

Gamma function and the hazard function λγ is given by

λγ (τ ) =
τα−1 exp (−βτ)

Ŵ(α) − Ŵτβ(α)
. (10)

3 Data

The seismicity in Vrancea area is distributed along a NE-

SW vertical plane. The projection of the earthquakes foci

on this plane is shown in Figs. 2 and 3. In the following,

for all calculations which imply information about the spatial

distribution of events, we consider data in this projection.

Fig. 4. Number of earthquakes per year. The catalogue is homoge-

neous since 1982 for events Mw>3. One recognizes aftershocks of

the two largest earthquakes since 1980 – Mw 7.1 occurred in 1986

and Mw 6.9 occurred in 1990.

Here and later only events with Mw>3 and depth

d>40 km are considered.

The ROMPLUS seismicity catalogue, covering the last ten

centuries, contains data of very different quality, as can be

seen in Fig. 1 where the data from 1450 AD on are shown (till

1450 there are only records of largest events with a magni-

tude resolution of 0.5). Figure 4 presents the time dependent

form of the Gutenberg-Richter’s law from 1970 on. One can

see that the catalogue has become homogeneous for Mw>3

since 1982. This period was used for the statistics of smaller

events – with Mw<5. During this time period, two events

with Mw>6.5 occurred.

4 Results

4.1 Gutenberg-Richter relationship

The incompleteness of the catalogue for various magnitudes

and time intervals makes the calculation of b−value of the

GR’s law not straightforward. The b-value estimates in

the range b=0.65−0.78 have been reported in the litera-

ture (see for example Table 2 in Marza et al., 1991). Be-

cause of the heterogeneity of the catalogue (Fig. 1), events

with Mw<5 were used after 1981, 5<Mw<6 after 1940,

events 6<Mw<6.5 after 1780 and Mw>6.5 after 1400. The

Gutenberg-Richter’s relationship for these data

log N = 3.98 − 0.78Mw

is shown in Fig. 5.

4.2 Estimation of return levels from GPD model

The results presented in this section have been obtained using

the “extRemes”-package of the R-language available under

http://CRAN.R-project.org/.

Nonlin. Processes Geophys., 13, 629–639, 2006 www.nonlin-processes-geophys.net/13/629/2006/
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Initially, we fitted the GPD model using data from the

1780–2005 interval with magnitudes exceeding Mw=6. To

obtain regularly sampled data, we took daily maximum val-

ues or zeros for days with no data available(we will call it

“complete” data set). The maximum likelihood estimates of

the model parameters are ξ=−0.44±0.10 and s=0.9±0.1,

based on 49 observed excesses.

Then, we preprocessed the data taking only the block max-

ima over two years, which allowed us to obtain more homo-

geneous data records for this period of time (“block maxima”

data set, with no missing values). For 56 excesses of the

threshold Mw=5.7, we obtained values of ξ=−0.42±0.09

and s=1±0.1. The corresponding GPD fit curve is shown

in red in Fig. 5. The results agree well with those of Man-

tyniemi et al. (2003) obtained by a different method.

The simplest way to estimate the quality of the model is

to compare it to the data, using for example probability and

quantile plots (Fig. 6). Here the empirical data are compared

to the values provided by the GPD model with the estimated

parameters. Probability plot consists of the pairs

{

i

k + 1
, H(y(i)); i = 1, . . . , k

}

(11)

for ξ 6=0. Here the H is the GPD discussed in Sect. 2.1,

Eq. (4), k – the number of points, and y(i) – the ordered ex-

cess data.

Quantile plot consists of the pairs

{

H−1(

(

i

k + 1

)

), y(i); i = 1, . . . , k

}

(12)

If the GPD model is a fair representation of the empirical

distribution, both probability and quantile plots are expected

to be approximately linear, a condition which is met in our

case (Fig. 6).

In Fig. 6, the return level plot, defined in Sect. 2.1 (Eq. 7),

is presented inside its 95% confidence interval curves. Using

the maximum likelihood method, we estimate a return level

magnitude interval of 6.8–7.2 for a return period of 20 years.

As the shape and scale parameters for both the “complete”

and the “block” data set based models are close to each other,

the return levels (at 95% confidence) are identical – e.g. an

event with Mw=6.9 (6.8–7.2) is expected every 20 years; an

event with magnitude Mw=7.5 (7.2–7.8) – every 100 years.

Return plots can be obtained alternatively by using the GEV

model (Coles, 2001). The algorithm is quite similar, but in-

stead of fitting the threshold excesses to the GPD (Eq. 4) the

block maxima are fitted to the GEV distribution (Eq. 3). Be-

cause of the catalogue incompleteness before 1900 AD, it

was necessary to take 4-year block maxima to obtain con-

vergence of the GEV model. The GEV model then gives a

10 years return level for Mw=6.4 (6.1–6.6), in perfect agree-

ment with the GPD model – 6.4 (6.4–6.5), and a 20 years

return for level Mw=6.9 (6.7–7.2).
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Fig. 5. Gutenberg-Richters relationship (blue line). Complemen-

tary cumulative GPD function (red line).

4.3 Recurrence time distribution

The calculation of the recurrence time probability density D

is straightforward, and consists in recording the occurrence

times tj of the subsequent earthquakes in regions of size L

and the time intervals τi=ti−ti−1 between them. As dis-

cussed by Bak et al. (2002), the recurrence time probability

function D, for different region sizes L and magnitude cut-

offs, scales as Ldf /S−b where S is the seismic moment, df

is the fractal dimension and b – the slope of GR’s law. The

Vrancea seismicity is strongly localized in the horizontal co-

ordinates and distributed close to a vertical plane (Figs. 2 and

3), therefore, to delimit regions (L), it seems reasonable to

change only the depth interval, keeping the horizontal dimen-

sions constant. Two different region sizes were used: (1) the

whole Vrancea area with depth range δd≈150 km (Fig. 2);

(2) a subinterval 135<d<200 km containing aftershock se-

quence of only one strong earthquake (Mw=7.1 in 1986).

First, we compute the maximum likelihood estimates of

the parameters α and β of the density function in Eq. (8) for

earthquakes with mc≥5.8 in the time interval 1780–2005 AD

occurred in the whole Vrancea area (red points in Fig. 7a).

The blue line represents the best gamma fit fγ (τ ), obtained

for α=0.75. β-value is assumed to be equal to the average

seismic rate R(L, mc) for corresponding magnitude cutoff:

β=R(L, mc)=0.5. The earthquake occurrence times ti are

clearly clustered (Fig. 7b).

Now, for a magnitude threshold mc=4.2, we consider

the earthquakes located d>135 km. The resulting probabil-

ity function D(mc=4.2)(τ ) is presented in Fig. 8a (α=0.65,

β=R(L, mc)=2.5). Occurrence times (Fig. 8b) show simi-

lar clustering as in Fig. 7b.

To prove that this evidence of the temporal clustering of

earthquakes with Mw>4.2 can not be attributed to the poor

quality of the catalogue, we analyze the completeness of the

catalogue for this depth interval, following the phasor sum

www.nonlin-processes-geophys.net/13/629/2006/ Nonlin. Processes Geophys., 13, 629–639, 2006
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Fig. 6. GPD model diagnostics for a model fitted for 2-year block maxima 1780–2005 A.D., with a threshold of Mw>5.7 inside the 95%

confidence interval.

model proposed by Rydelek and Sacks (1989). The pha-

sor sum of N=72 earthquakes with magnitudes Mw>4.2

(where we excluded all events occurred during 100 days after

the Mw=7.1 earthquake in 1986) is compared to the length

l=1.73
√

(N) given by 95% confidence level of an equiva-

lent random walk. As this radius is not exceeded in our case

(Fig. 9), the catalogue can be considered as complete for this

magnitudes and depth interval.

Reassured by these two examples of temporal clustering,

we will attempt to obtain a more general result. Normal-

izing waiting times by R(L, mc) we obtain the scale-free

form of D(L,mc)(τ )/R for different L and mc. Estimated

from the GR law, R is taken as the average number of earth-

quakes with a seismic moment exceeding S=10mc in the re-

gion L during the time interval τ . Figure 10a shows the re-

currence density D(τ)/R for two different region sizes and

magnitude cutoffs mc as a function of rescaled dimensionless

time Rτ . For mc=5.5, 6.5 the whole Vrancea area is con-

sidered (40<d<200 km), for mc=4 earthquakes with depths

135<d<200 km during the same period of time are taken

into account.

The red line in Fig. 10a is the density function fγ

calculated from Eq. (8) with an α-value obtained by fit-

ting the events with Mw≥5.8 after 1780 AD (Fig. 7) and

β=R(L, mc).

In Fig. 10a, magenta points show the effect of mixing local

distribution functions: here recurrence times are calculated

for two different areas (40<d<135 and 135<d<200 km)

and put together to obtain the D(mc=4,L1−L2)(τ ). The re-

sulting mixed distribution deviates from the analytical curve

(red line) over long times, where it approaches another power

law (as discussed in detail by (Corral, 2005b)). Thus, the as-

sumption that recurrence times are gamma distributed seems

valid for local recurrence time distributions.

Finally, we calculate the hazard rate function

λ(τ)=D(τ)/Z(τ) following Corral (2005a) (Fig. 10b).

In agreement with his results, we obtain a hazard function

that decreases with elapsed time, which indicates a temporal

clustering of earthquakes. For a Poisson process, α=1, the

hazard rate is constant in time and equal to the average

seismicity rate R.

Another but related measure of temporal clustering is

given by the correlation dimension D2 of recurrence times

introduced by Grassberger and Procaciia (1983), which is

a special case of generalized fractal dimension Dq for q=2

(e.g. Borgani et al., 1993):

Dq =
1

(q − 1)
lim
r→0

log(
∑j=N

j=1 (Pj (r))
q)

log(r)
. (13)
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Fig. 7. (a) Gamma fit for recurrence probability D(τ), earthquakes

Mw≥5.8 since 1780 (α=0.75, β=0.5). (b) Occurrence times of the

same events. (c) Accumulated number of the earthquakes shown in

the plots (a) and (b). A straight line would correspond to a stationary

seismicity with a constant average seismic rate – the slope of the

line.
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Fig. 8. (a) Gamma fit for recurrence probability D(τ) to earth-

quakes Mw≥4.2 which have occurred at depths 135<d<200 km

since 1980 (α=0.65, β=2.5). In this time and depth interval only

one earthquake with Mw>6 occurred – the Mw=7.1 event in 1986

at depth of 135 km (Fig. 2). One cluster in 1986 corresponds

clearly to the aftershock sequence of Mw=7.1 event. Aftershocks

of Mw=6.9 earthquake (depth 90 km) are not seen in this depth

interval, but several clusters not related to any strong event can

be identified. (b) Recurrence times of the events (c) Accumulated

number of the earthquakes shown on the plots (a) and (b).
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Fig. 9. Phasor sum plots for testing the completeness of 72 earth-

quakes with Mw>4.2 data on d>135 km depth interval.
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Fig. 10. (a) Probability density distribution function Dmc,L for dif-

ferent sizes L and magnitude cutoffs mc, rescaled as a function of

(Rτ). Here R is the average seismic rate of events with Mw>mc

within a range L. Black color correspond to the local distributions,

magenta – to mixed distribution of events (see text). Red line is the

probability density function fγ for a gamma distributed variable

with α=0.75 (see text). (b) Rescaled hazard rate function λ(τ).

The red line shows the λγ for a gamma distributed variable.

Here, N is the number of points, the partition function Pj is

the probability that the cell j is not empty. P can be defined

in different ways. For example, given a finite set of N data

points x, P can be related to the correlation function Cj (r) –

the fraction of points within a distance r of the j -data point.

Then, the partition function P follows

P(r, q) =
1

N

N
∑

j=1

Cj (r)
q−1. (14)
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Fig. 11. Fractal dimension estimation for occurrence times of

Mw>5.8 events (64 data points since 1780) (circles), with synthetic

gamma distributed data with α=0.75 and the same number of points

(stars). r is box size in years. D2 is defined by Eq. (15). Straight

line gives linear square-root best fit for real data, the slope of the

line gives the D2 value.

If P(r, q) scales as rd over some range of length-scales, the

generalized dimension Dq can be found as

d = (q − 1)Dq . (15)

For earthquakes with magnitude Mw≥5.8, we estimated the

correlation dimension to be D2=0.67±0.06 (Fig. 11), us-

ing the algorithm of unbiased estimation for finite data sets

implemented in the R-language (Roberts and Cronin, 1996).

The time series for the same time period is shown in Fig. 7b.

We estimate the probability to obtain such small value by

chance from a Poisson distributed series with the same num-

ber of events as less than 5%. For only 47 out of 1000 syn-

thetic Poisson series the D2 estimation was found to be 0.67

or smaller.

5 Discussion

Figure 10 illustrates the temporal scaling properties of the

seismicity in Vrancea. Independently on the magnitude cut-

offs and of the nature of the earthquakes – main shocks, af-

tershocks or foreshocks –, it displays a similar behaviour for

all scales. We can use this self similarity to predict the be-

haviour of the largest events (which we can not study sta-

tistically) when we know the statistics of the smaller ones.

Assuming that our estimates of average seismicity rates are

reliable also for large magnitudes, we thus could predict the

recurrence time distribution for events Mw>7.5 based on a

fit for events with Mw≥5.8.

Table 1. Seismic hazard rates for different earthquake magnitudes

estimated using Fig. 10b.

Mw=5.3⇔R=1 yr−1 Mw=7.5⇔R=0.01 yr−1

τyrs λyr−1 τyrs λyr−1

R
τ

0.1 0.1 1.8 10 0.018

1 1 1 100 0.01

10 10 0.4 1000 0.004

From the fit of Mw≥5.8 events after 1780, we obtain

α=0.75, β=R and use these values to estimate the hazard

rate as a function of time elapsed after the last earthquake

(Fig. 10b). Using this graph, we can read the instantaneous

hazard rate (Corral, 2005a). The x-axis represents the di-

mensionless time Rτ , with τ the time elapsed from the last

earthquake and R the average seismic rate given by the GR’s

law or, for large magnitudes, by GPD distribution (Fig. 5).

On the y-axis we can read the hazard rate divided by R.

Table 1 summarizes some hazard rate estimations obtained

from Fig. 10b.

For earthquakes with magnitude Mw=5.3 and an aver-

aged rate R=1 event/year, the instantaneous hazard rate λ at

τ=0.1 years or ≈36 days is equal to 1.8 events/year. Thus,

the probability of having an earthquake with Mw>5.3 during

the 36 days after an event with comparable or greater mag-

nitude is equal to the integral of λ over interval from zero to

0.1: p=Ŵτβ(α)/Ŵ(α)≈0.19 (Eq. 9). Such a probability is

almost two times higher than the probability obtained from

the GR’s law. If however the earthquake does not occur till,

say, τ=10 years, the hazard rate becomes significantly lower

than that predicted by GR’s law.

The slope of the hazard rate curve at times Rτ<1 is ap-

proximately α−1 (Fig. 10b); for a Poisson process the haz-

ard rate does not depend on recurrence time. Obviously, the

non-exponential distribution of recurrence times is partly at-

tributed to the aftershock activity (e.g. the cluster observed

in 1986 in Fig. 8). On the other hand, the data points in

Fig. 10 b evidence decrease of the hazard rate at times ex-

tending to Rτ≈1. This means that the non exponential dis-

tribution holds e.g. for earthquakes with magnitude Mw=7,

R=0.02 yr−1 for a time period of many years after an earth-

quake. This time period is significantly longer than the typ-

ical duration of the aftershock sequence in Vrancea area,

where e.g. after Mw=6.9 in 1990 the seismicity returned to

the background level after approximately 100 days (Fig. 12).

This small number of aftershocks and short duration of the

aftershock sequence is typical for intermediate depth earth-

quakes (Wyss and Toya, 2000). A similar conclusion on the

temporal clustering can be drawn from Fig. 11 where the

power law behaviour is observed up to several years after

the earthquake.
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Fig. 12. Decay of the aftershock rate after Mw=6.9 earthquake.

Seismicity returns to the background seismicity rate approximately

100 days after the main shock.

Enescu et al. (2005), in their multi-fractal study of Vrancea

seismicity, came to the conclusion that with exception of the

aftershocks, the recurrence times of events Mw>2.8 are dis-

tributed according to a Poisson process. These results are

complementary to those presented in our study. The expo-

nential distribution of the smaller events can most probably

be explained by the fact that in the study of Enescu et al.

(2005), the recurrence time distribution was obtained for

the whole Vrancea area, thus the local distribution functions

were averaged. The spatial averaging can account for the

exponential distribution of the resulting recurrence times. If

independent local sources generate earthquakes with gamma

distributed waiting times, then the resulting superimposed

sequence will approach a Poisson process. This is illus-

trated in Fig. 13. A gamma probability density is shown by

blue solid line. First, we generate N gamma distributed se-

quences of waiting times (with identical parameters α=0.75

and β=1/N ). Then we produce N artificial earthquake cat-

alogues calculating occurrence times starting at t=0. We

obtain the resulting superposition, stacking these catalogues

and recalculating the waiting times of the resulting catalogue.

As can be seen from Fig. 13, its distribution can be approx-

imated by exponential distribution with βf =1/α (red cir-

cles). Therefore, to avoid this spatial averaging, we con-

sidered larger events (Mw>4) which have larger source di-

mensions, and studied their clustering properties in volumes

corresponding to the magnitude cutoffs (Bak et al., 2002).

For the largest earthquakes, we use the fact that the Vrancea

sesimic zone is relatively small and isolated from other seis-

mogenic structures. The largest earthquakes with source vol-

umes comparable to the whole Vrancea area occur practically

at the same point, thus, considering only largest events, we

avoid the spatial averaging.

10
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gamma
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Fig. 13. The solid line represents a gamma probability density

function (α=0.75). We generate N=20 independent earthquake

sequences with gamma distributed recurrence times (for each se-

quence α=0.75, β=1/N ). We calculate the occurrence times of

events starting at t=0 and stack them into a single catalogue. Red

dots represent the probability density function of the recurrence

times in this catalogue. The dashed line is the best exponential fit

of this distribution (βf =1/α). This example shows that the super-

position of the sequences with gamma-distributed recurrence times

approaches a Poisson process.

6 Conclusions

The purpose of this study was to characterize the hazard

rate of the largest intermediate-depth earthquakes in Vrancea

area, South-Eastern Carpathians.

First, we studied the seismicity rates averaged over the

whole period of seismicity records. We then divided the

ROMPLUS catalogue into four sub-catalogues, complete

for different magnitudes. As the existing results on the

Gutenberg-Richter’s law for Vrancea area are contradictious

(e.g. Marza et al., 1991), we recalculated the frequency-

magnitude relationship using these four sub-catalogues for

different magnitude cutoffs and obtained N=3.98−0.78Mw.

For the earthquakes Mw>6 occurred after 1780 AD, we

fitted their magnitude-frequency relationship using the gen-

eralized Pareto Distribution model and obtained the return

level magnitudes for the expected recurrence times; e.g. for

20 years, Mw=6.9 (6.8–7.2 in 95% confidence interval); or,

for 100 years, Mw=7.5 (7.2–7.8).

As the hazard rate does not depend only on the average

seismicity but on the distribution of the recurrence times, we

calculated the fractal dimension of the recurrence times and

use the approach proposed by Bak et al. (2002) and Corral

(2003) to estimate the recurrence time distribution function.
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Our fractal dimension estimations (D2=0.67) provide ev-

idence for temporal clustering with a very low probability to

be produced by a Poisson process. Therefore, we considered

that recurrence times are gamma distributed with α<1, as

was proposed by Corral (2003) for clustered data. We cal-

culated the local recurrence time distributions D(τ) and haz-

ard rate functions λ for magnitude cutoffs Mw≥4, 5.5 and

6.5.α≈0.75 provide the best fit of the distribution function to

Mw≥5.8 events.

This result is in accordance with our D2 estimation. We

produced an artificial sequence of events, by generating inter-

occurrence times randomly distributed with probability den-

sity given by Eq. (8) with α=0.75. Correlation dimension

analysis for this sequence (Fig. 11, blue points) gives very

similar result. Note that the distribution of recurrence times

deviates from exponential even for times largely exceed-

ing the typical duration of the aftershock sequences in the

Vrancea area.

The calculated hazard function for all magnitude cutoffs

decreases with time, supporting the results from the fractal

dimension and giving strong evidence for a temporal cluster-

ing of earthquake occurrences. Using the scaling properties

of the recurrence time distribution function we predict the

hazard rate function for the largest events. The hazard rate

function can also be used to improve the risk estimation in

the earthquake prediction algorithms.
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