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Abstract. This paper shows how modern ideas of scaling
can be used to model topography with various morpholo-
gies and also to accurately characterize topography over wide
ranges of scales. Our argument is divided in two parts.
We first survey the main topographic models and show that
they are based on convolutions of basic structures (singular-
ities) with noises. Focusing on models with large numbers
of degrees of freedom (fractional Brownian motion (fBm),
fractional Levy motion (fLm), multifractal fractionally inte-
grated flux (FIF) model), we show that they are distinguished
by the type of underlying noise. In addition, realistic mod-
els require anisotropic singularities; we show how to gener-
alize the basic isotropic (self-similar) models to anisotropic
ones. Using numerical simulations, we display the subtle
interplay between statistics, singularity structure and result-
ing topographic morphology. We show how the existence
of anisotropic singularities with highly variable statistics can
lead to unwarranted conclusions about scale breaking.

We then analyze topographic transects from four Digi-
tal Elevation Models (DEMs) which collectively span scales
from planetary down to 50 cm (4 orders of magnitude larger
than in previous studies) and contain more than 2×108 pix-
els (a hundred times more data than in previous studies). We
use power spectra and multiscaling analysis tools to study the
global properties of topography. We show that the isotropic
scaling for moments of order≤2 holds to within±45% down
to scales≈40 m. We also show that the multifractal FIF
is easily compatible with the data, while the monofractal
fBm and fLm are not. We estimate the universal parameters
(α, C1) characterizing the underlying FIF noise to be (1.79,
0.12), whereα is the degree of multifractality (0≤α≤2, 0
means monofractal) andC1 is the degree of sparseness of the
surface (0≤C1, 0 means space filling). In the same way, we
investigate the variation of multifractal parameters between
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continents, oceans and continental margins. Our analyses
show that no significant variation is found for (α, C1) and
that the third parameterH , which is a degree of smoothing
(higherH means smoother), is variable: our estimates are
H=0.46, 0.66, 0.77 for bathymetry, continents and continen-
tal margins. An application we developped here is to use (α,
C1) values to correct standard spectra of DEMs for multifrac-
tal resolution effects.

1 Introduction

1.1 Models and descriptions

The Earth’s topography is extremely variable over wide
ranges of space-time scales. It strongly varies from one loca-
tion to another and from one scale to another, making it hard
to tackle with classical (scale bound) geostatistics. The de-
velopment of realistic descriptions and models of topography
has long been a basic challenge not only to geoscientists, but
also to physicists and mathematicians (e.g.Perrin (1913)).
An accurate description of topography could be used to put
constraints on any first principles geophysical model of to-
pography, shed some light on the internal mechanisms of the
Earth and help explain many aspects of surface hydrology.
More practically, such a description could also be used as in-
put in various applications involving topography/bathymetry
as a boundary condition. Examples include the use of a
random bathymetry model as input in a simplified oceanic
currents model (Alvarez et al., 2000), Guarnieri(2002) who
uses multifractal models in synthetic aperture radar interfero-
grams andOrosei et al.(2003) who use monofractals in mod-
els of radar scattering by the Martian surface.

The problem is that descriptions and models are funda-
mentally linked. On the one hand, an accurate description
of topography is needed to place constraints on geophysi-
cal models; on the other hand, without a basic model of the
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topography, it is not clear what type of description should
be sought . Should a characterization of the topography and
its morphology necessarily contain a wide range of scales,
or is it meaningful to filter out all but a narrow range and
focus on characterizing and modeling these while ignoring
the others? The conundrum of requiring a model simply in
order to analyze and characterize superficially “raw” data is
well illustrated by the development of scaling ideas and their
applications to topography. Even if we limit ourselves to
scaling characterizations and models, we still need more pre-
cise ideas about the types of scaling (isotropic, anisotropic,
monofractal, multifractal). Indeed, we argue that overly re-
strictive (isotropic, monofractal) frameworks have lead nu-
merous researchers to throw out the baby with the bathwater,
effectively dismissing all wide range scaling approaches as
unrealistic.

1.2 Scaling in topography

The quantitative use of scaling laws in topography goes back
at least toVening Meinesz(1951), who used the spherical
harmonic expansion of the Earth’s topography ofPrey(1922)
to show that the power spectrumE(k) of topography (where
k is a wavenumber) roughly follows a power lawk−β with
a spectral exponentβ≈2 (the original results are inVening
Meinesz(1951), but the essential points that are quoted here
can be found inHeiskanen and Vening Meinesz(1958)). Af-
ter his pioneering work,Balmino et al.(1973) made similar
analyzes on more modern data sets and confirmed Vening
Meinesz’s results.Bell (1975) followed, combining various
data sets (including those of abyssal hills) to produce a com-
posite power spectrum that was scaling over approximately
4 orders of magnitude in scale also withβ≈2 (here and be-
low we use the exponent of the angle integrated spectrum;
the angle averaged spectrum has exponentβ+D−1, where
D=2 is the dimension of space). More recent spectral stud-
ies of bathymetry over scale ranges from 0.1 km to 1000 km
can be found inBerkson and Matthews(1983) (β≈1.6−1.8),
Fox and Hayes(1985) (β≈2.5), Gibert and Courtillot(1987)
(β≈2.1−2.3) andBalmino (1993) (β≈2). Attempts were
even made (Sayles and Thomas, 1978) to generalize this
to many natural and artificial surfaces: the resulting spec-
trum exhibited scaling over 8 orders of magnitude withβ≈2
(see however the critique byBerry and Hannay(1978) and
Sect.6.2.2).

If the topography has a power law spectrum, then iso-
lines (such as coastlines) are fractal sets, they have no tan-
gent (Perrin, 1913) and are nonrectifiable (infinite in length)
(Steinhaus, 1954). In particular,Richardson(1961) found
that the length of various coastlines varies in a power law
way with the length of the rulers used to measure them.Man-
delbrot(1967), in his famous paper “How long is the coast of
Britain”, interpreted these scaling exponents in terms of frac-
tal dimensions. Later, with the advent of fractional Brownian
motion (fBm) models of terrain (Mandelbrot, 1975; Good-

child, 1980), many fractal studies of topography were made
as well as the corresponding (gaussian) simulations of topog-
raphy.

Since then, there have been many indirect estimates of
(supposedly unique) fractal dimensions on topographic tran-
sects and surfaces using various methods to see if topogra-
phy respects “fractal” statistics. The indirect methods start
by postulating a priori that a unique fractal dimension ex-
ists, and then exploit special monofractal relations to deduce
the presumed unique fractal dimension from structure func-
tions (variograms), power spectra or other statistical expo-
nents; see for exampleBurrough(1981); Mark and Aron-
son(1984) for the variogram method,Gilbert (1989); Huang
and Turcotte(1989, 1990) for the power spectrum method
andDietler and Zhang(1992) for the “roughening exponent”
method. See alsoKlinkenberg and Goodchild(1992); Xu et
al. (1993); Gallant et al.(1994) for reviews and discussions
of the results of such monofractal processes.

In contrast to indirect monofractal based inference, di-
rect estimates of fractal dimensions of topography and
bathymetry (using box-counting for example) are surpris-
ingly rare (e.g.,Barenblatt et al., 1984; Aviles et al., 1987;
Okubo and Aki, 1987; Turcotte, 1989). For monofractal
fields (such as fBm), the box dimension is independent of
the threshold used to define the set;Lovejoy and Schertzer
(1990) show that for topography this is quite unrealistic. An-
alyzing the topography of France at 1 km resolution, they
showed that the box dimension systematically decreases
from 2 (the maximum possible) to 0 (the minimum) as the
altitude is increased. This shows that monofractals are at best
an approximation of topography near the mean.

As argued inLovejoy and Schertzer(1990); Lavallée et
al. (1993), it is more appropriate to treat topography as a
scale invariant field, generally requiring multifractal mea-
sures and exponent functions (rather than a unique scaling
exponent, such as the fractal dimension). An infinity of frac-
tal dimensions (one for each threshold or equivalently one
for each statistical moment) are then needed to completely
characterize the scaling. A few multifractal studies of topog-
raphy that show that it is multiscaling in various regions of
the world and over various ranges in scale can be found in
Lovejoy and Schertzer(1990); Lavallée et al.(1993); Weis-
sel et al.(1994); Lovejoy et al.(1995); Pecknold et al.(1997);
Tchiguirinskaia et al.(2000); Gagnon et al.(2003). A simi-
lar mono vs multifractal issue also arises in the study of frac-
tures and other artificial surfaces (e.g.,Morel et al., 2000);
while the monofractal model is quite popular, isolated re-
sults (Bouchaud et al., 1993; Schmittbuhl et al., 1995) point
to multifractality.

There is also much indirect evidence for the scaling of
the topography. For example the albedoes and surface emis-
sions at different wavelengths are nonlinearly coupled with
the topography over wide ranges of scales. Since scale in-
variance is a symmetry principle, if there is a break in the
scaling of the topography it should be observed in the lat-
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ter and vice versa. The findings ofHarvey et al.(2002) and
Gaonac’h et al.(2003) that the remotely sensed radiation
fields from volcanoes are multifractal therefore suggest the
multifractality of the corresponding topographies. Similarly,
the scaling of surface magnetic susceptibility (Pilkington and
Todoeschuck, 1995), rock density (Leary, 1997; Lovejoy et
al., 2005), and the multiscaling of geomagnetism (Lovejoy
et al., 2001a; Pecknold et al., 2001) and rock sonic velocities
(Marsan and Bean, 1999) are all relevant.

Other indirect evidence in favor of scaling and multiscal-
ing of the topography comes from hydrology, as can be seen
from the abundant literature on the scaling of river basin geo-
morphology (see in particularRodriguez-Iturbe and Rinaldo
(1997) and the references therein). This includes the clas-
sical scaling of river slopes, lengths, discharges and widths
with respect to the area of the drainage basins, but also to
the scaling (Hurst, 1951; Mandelbrot and van Ness, 1968)
and multiscaling (Tessier et al., 1996; Pandey et al., 1998)
of the temporal variation of river discharges. While the river
basin geomorphology relations suggest the scale invariance
of many orographic/erosion processes, the scale invariance
of the discharges suggests the scale invariance of topog-
raphy/runoff/infiltration processes. Indeed, the ubiquity of
scaling relations in surface hydrology would be difficult to
comprehend without wide range scale invariance of the to-
pography.

1.3 Models of topography

The topography of the Earth is very complex and its mor-
phology results from diverse processes, notably tectonic
forces (faulting, folding, flexure) and erosion, under the in-
fluence of gravity and other factors (Turcotte, 1992; Lam-
beck, 1988, and references therein). Although “equations”,
i.e. nonlinear partial differential equations, describing the
evolution of topography are not known, some models exist
to explain certain of its features. Such physical models can
be divided in two main categories: those with few degrees
of freedom and those with many. The former are gener-
ally deterministic and model narrow ranges of scale, whereas
the latter are generally stochastic and cover wider ranges of
scale. To date, deterministic geodynamic equations, intro-
ducing physical characteristic scales at the beginning, have
attempted to model the topography over only a fairly narrow
range of scales. At best, they predict the general trend of
certain features of topography but do not predict its rugged
aspect nor its fine structure. For example, the large swell
around seamount chains can be explained by thermal expan-
sion of the lithosphere caused by a heat source in the mantle
(hotspot, plume; see for exampleLambeck(1988)). Another
well known example is the bathymetry of the sea floor as-
sociated with mid-ocean ridges. The ridges are sources of
hot material coming from the mantle that create new oceanic
crust. The material injected at the ridge crest cools off, con-
tracts and moves away as part of the plate, creating the char-

acteristic topography of the sea floor. In the framework of
plate tectonics,Turcotte and Oxburgh(1967) (seeParsons
and Sclater(1977) for a review) have reproduced the char-
acteristic decrease of the altitude from the ridge using the
equation of heat transport with appropriate boundary condi-
tions, giving1h∝1x1/2 (see Table1). As can be seen from
Parsons and Sclater(1977), the general approach is to start
with a set of linear or nonlinear partial differential equations
and simplify them (by making various assumptions and ap-
proximations) so that they can be solved. These determin-
istic models are generally too linear to explain the variabil-
ity of topography (Mareschal, 1989), a consequence of the
homogeneity hypotheses that reduce the problem to a small
number of degrees of freedom. For example, in the thermal
boundary layer model ofTurcotte and Oxburgh(1967), the
mantle is considered to be “smooth” below the length scale
of a convective cell.

To take into account the high number of degrees of free-
dom and the variability over a wide range of scales, it is natu-
ral to use stochastic approaches which are typically based on
infinite dimensional probability spaces. For example,Bell
(1975) uses hills with random sizes that are uniformly dis-
tributed over the bottom of the ocean to model bathymetry
(excluding mid-ocean ridges). Because the geodynamic
equations considered here are difficult to solve without ap-
proximation, it is fruitful to consider one of the symmetries
of the problem (i.e. scale invariance), which empirically ap-
proximates the topography over wide ranges (see Sect.1.2).

There are two main approaches to the problem depend-
ing on if we are interested in modeling specific processes or
rather the overall outcome of all the topographic processes.
The first approach is mainly used to represent topography
within river basins and aims at modeling the effect of spe-
cific landsculpting processes (such as fluvial erosion, sedi-
ment deposition, diffusion, etc) on topography and drainage
networks. For example, in this contextChase(1992) presents
a model that can produce topography with scaling proper-
ties consistent with observations. Another model that uses
scaling as a basic principle in addition to stochasticity is
the phenomenological Kardar Parisi Zhang (KPZ) equation
(Kardar et al., 1986). It was originally introduced to study
growing and eroding surfaces, but it is also used to model
topography (Sornette and Zhang, 1993) (see alsoDodds and
Rothman(2000) for a pedagogical introduction). Other tools
used to study the causes of topographic scaling includes self-
organized criticality (Rinaldo et al., 1993), minimization of
energy functionals (Rinaldo et al., 1992, 1996; Sinclair and
Ball, 1996; Banavar et al., 2001) and renormalization prop-
erties of fluvial erosion equations (Veneziano and Niemann,
2000a,b). An extensive review of the use of diffusion-like
equations to model topography within river basins can be
found inRodriguez-Iturbe and Rinaldo(1997).

The second approach is more aimed at reproducing accu-
rately the statistics of topography, usually over wide ranges
of scales. One such popular stochastic approach based on
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Table 1. An intercomparison between various models of the topography showing the essential similarities and differences. For additional
information about notation and definitions, see Table2 and Sect.3. HereD=2 for horizontal planes and the dimensionDF is the fractal
dimension of lines of constant altitude in the horizontal. The deterministic mid-ocean ridge model is represented here by a fault in unit
direction vectorr through the pointx0. Here the variables are nondimensionalized and the height of the fault is normalized to one. Note
that δ is a Dirac delta function. The model ofTurcotte and Oxburgh(1967) usesH=1/2. The monofractal fBm model is characterized
by a fractional integration of orderH ′ of a Gaussian white noise with varianceσ2. It can also be produced by simply summing over large
numbers or random Gaussian distributed faults (see Fig.1). HereH ′

=H+D/2, where the extraD/2 in the exponent takes into account
the scaling of the noise (D is the dimension of space). The valueH=1/2 is compatible with the commonly cited valueDF =1.5 for the

dimension of topographic level sets. Note that
d
= means equality in probability distributions. The monofractal fLm model is a generalization

of fBm obtained by replacing the Gaussian white noise with an independent Levy noise of indexα < 2. It has diverging moments forq≥α.
HereH ′

=H+α/2. Finally, the multifractal FIF model is a generalization of fBm and fLm. Here the multifractal noiseφλ is the result of a

continuous in scale multiplicative cascade. Mathematically, it is given byφλ(x)=e0λ(x), where the generator0λ(x)∝
∫ λ
1 dx′ φ′

α(x′)

|x−x′|D−H ′ is an

fLm process withH ′
=D(1−1/α) and a maximally skewed Levy noiseφ′

α . The resultingφλ is multiplicative because it is an exponentiation
of the additive process0λ.

Model Altitude Altitude increments Codimension (c)
(and noise statistics) (and statistics) of level sets

Mid-ocean ridge h(x)=1−
∫

dx′ δ(x′
−x0)

|r ·(x−x′)|−H 1h∝|1x|
H c=D−DF

(deterministic) (No noise statistics) (No altitude statistics)DF =1

Monofractal fBm h(x)=
∫

dx′ φ2(x′)

|x−x′|D−H ′ 1h
d
= φ2|1x|

H c=H

(stochastic) φ2(x)=Gaussian white noise 〈|1h|
q
〉∝|1x|

ξ(q) DF =D−c

H ′
=H+D/2 ξ(q)=qH

Monofractal fLm h(x)=
∫

dx′ φα(x′)

|x−x′|D−H ′ 1h
d
= φα |1x|

H c=H

(stochastic) φα(x)=Levy noise (0≤α≤2) 〈|1h|
q
〉∝|1x|

ξ(q) DF =D−c

H ′
=H+D/α ξ(q)=

{
qH for q<α

∞ for q≥α

Multifractal FIF hλ(x)=
∫

dx′ φλ(x′)

|x−x′|D−H 1h=φλ|1x|
H c(γ )= maxq {qH−K(q)}

(stochastic) 〈φ
q
λ 〉=λK(q)

〈|1h|
q
〉∝|1x|

ξ(q) DF (γ )=D−c(γ )

ξ(q)=qH−K(q)

scale invariance is the fractional Brownian motion (fBm)
model of topography (Mandelbrot, 1975). In this model, to-
pography is obtained by fractionally integrating a Gaussian
white noise (see Table1). In comparison, the fractionally
integrated flux (FIF) model (Schertzer and Lovejoy, 1987)
can be viewed as a multifractal generalization of fBm: it is
obtained by replacing the Gaussian white noiseφ (with no
particular relation between different scales) with a scaling
multifractal noiseφλ (i.e. with long range statistical depen-
dencies). This multifractal noise is the result of a cascade
(see Sect.3.1), which is a scale invariant random multiplica-
tive process (Table1). All of the models must be strongly
anisotropic to be realistic.

1.4 Objectives of the present study

For more than half a century, scaling has been a feature of
many topographic models. With the advent of fractals in the

70’s, the significance of scaling became even more widely
appreciated, especially due to the impressive fractal simula-
tions inMandelbrot(1975, 1983). Unfortunately, the initial
enthusiasm inspired by the images and the theoretical sim-
plicity of a model with a single basic exponent (the suppos-
edly unique fractal dimension) had by the end of the 90’s
been largely dissipated. In place of the larger picture, fo-
cus had turned to purely technical issues: over which scale
range?, which fractal dimension?, what link with location or
type of terrain?, what analysis methods?, etc. The problem
was that the early scaling notions were simply inadequate.
Two aspects in particular were totally unrealistic: the first is
monofractality (uniqueness ofDF ) and the second is the re-
striction to isotropy (“self-similarity”). This last point is par-
ticularly important, because topography possess a variety of
morphologies/textures (e.g. mountain ranges) that are highly
anisotropic.
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Today, the scale invariance symmetry principle – having
been identified with unrealistic and restrictive special cases
(i.e. isotropic monofractals) – is typically disregarded or else
limited to small ranges of scale. Unsurprisingly, it is consid-
ered to be uninteresting and unphysical. However, the history
of symmetry principles shows that their power should not be
underestimated. The example of the symmetry principle of
energy conservation is instructive. At first confined to me-
chanical energy, it was generalized at the end of the 18th cen-
tury to include heat energy. As knowledge progressed, sci-
entists were repeatedly faced with the choice of either aban-
doning it or generalizing it. By the mid 19th century it in-
cluded chemical and electrical energy and – even though as
a general principle, it was initially criticized as being overly
speculative and philosophical – it was proposed as a univer-
sally valid physical law. In the 20th century, it continued to
be generalized to include mass-energy.

In this paper, we argue that two key advances make
scaling applicable to topography: the generalization from
mono to multifractals and the generalization from isotropic
to anisotropic scaling. Our argument is divided in two parts.
In the first part of the paper, we survey and contrast vari-
ous topographic models (both deterministic and stochastic),
emphasizing their similar mathematical structures. We also
explain, with the help of simulations, how one can obtain a
wide diversity of morphologies/textures by exploiting scaling
and letting the geodynamics determine the notion of scale;
this is done in the framework of Generalized Scale Invari-
ance (Schertzer and Lovejoy, 1985). The simulations allow
us to begin the exploration of the subtle interplay between
singularities, structures, statistics and overall morphologies.
We also clarify some misconceptions about multifractals and
multifractal variability with the help of simulations and ped-
agogical examples. Among other things, we show how su-
perficially conflicting monofractal results can be understood
as a result of limited statistics combined with multifractal
variability.

In a previous paper (Gagnon et al., 2003), we concen-
trated on the mono vs. multi fractal issue in rough surface
physics using topography as an example. We clearly demon-
strated that on purely statistical grounds, monofractals are
not sufficient to describe topography and that multifractals
are needed. We elaborate on this in the second part of the
paper. In addition, the use of the large topographic data sets
that have become available in the last few years allows the in-
vestigation of two issues which go beyond the mono versus
multifractal debate.

The first issue concerns the nature of the differences be-
tween continents and oceans. Continents and oceans do not
have the same geological history, so that their topographies
are probably the result of qualitatively different (but still pos-
sibly scaling) processes. For example, the erosion on con-
tinents is due to water, wind and glaciers, whereas in the
oceans it has probably been due to marine currents (little ero-
sion, mostly sediment deposition).

Fig. 1. Numerical simulation ofMandelbrot(1975)’s random fault
implementation of fBm. The faults are power-law shaped (see Ta-
ble 1, first and second rows) and their location and orientation are
randomly chosen. The simulation is done with Gaussian statistics
andH=1/2, showing development with 1, 4, 16 and 256 faults (left
to right, top to bottom). TheTurcotte and Oxburgh(1967) model is
in the upper left corner (one fault case).

The second issue concerns the multiscaling and the
“global” properties of topography. More precisely, the large
range of scales of this study allows us to quantify the extent
of the range of topographic multiscaling and to characterize
its isotropic (angle averaged) statistics with just three funda-
mental exponentsα, C1 andH (see Sects.3.2 and3.3 for
their definitions and meanings).

The rest of the paper is organized as follows. Section2
discusses the key issues of singularities, statistics and mor-
phology with many pedagogical examples, the aim of which
is to convince the reader that an anisotropic scaling frame-
work is potentially capable of explaining/modelling the to-
pography. Section3 introduces some notions of multifractal
theory. Sections4 and5 present, respectively, the data sets
and the analysis techniques (power spectrum and trace mo-
ments) used in the present study. Section6 is the core of
the paper and presents the results of our analyses. We finally
summarize our results and conclude in Sect.7.

2 Singularities and morphology

2.1 A survey of scaling models of topography

When over a range of scales, the topography has no char-
acteristic scale, it is natural to model it using combinations
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of scale invariant basis functions, i.e. mathematical singu-
larities. Perhaps the most famous such singular model is
the Turcotte-Oxburg model for the variation of altitude as
a function of distance from mid-ocean ridges (Turcotte and
Oxburgh, 1967). Mathematically the form is indicated in Ta-
ble1 (first row) and a simulation is displayed in Fig.1 (upper
left hand corner).Mandelbrot(1975) generalized this model
by making singular faults the basic shapes and then summing
large numbers of faults with random centers and orientations
with Gaussian distributed amplitudes. The result is a Gaus-
sian process with long range (power law) correlations; Fig.1
shows the first few construction steps. Due to the central
limit theorem (the gaussian special case), a process with the
same statistical properties can be produced by using singu-
larities of a quite different shape. Table1 (second row) in-
dicates a model with point rather than line singularities; in
this form the mathematics is more convenient for compari-
son with the other singular topography models summarized
in Table1. In this case, in the limit of many faults, because
all of the singularities have nearly the same amplitude (Gaus-
sian variables are rarely more than a few standard deviations
from the mean), the basic singularity shape is not important:
we end up with a rough texture but without any more inter-
esting morphologies (see Fig.2, second row).

Notice that in Table1, all the stochastic models are ob-
tained by convolutions with singularities. Such convolutions
are “fractional integrations” of orderH ′ (if H ′<0, it is a frac-
tional differentiation). The lesson from fBm is that if we are
to represent real topography by such singular models, then
the statistics of the singularities must be more extreme than
Gaussians so that the basic singularity shape may remain im-
portant in the limit of a large number of singularities. One
way to make some of the singularities always stand out is to
use the fractional Levy motion model (fLm) obtained by re-
placing the Gaussian noise by a Levy noise of indexα. The
Levy random variables can be regarded as a generalization of
the Gaussian variables to the case where the variance (sec-
ond moment) is infinite; they have long probability tails such
that the statistical momentsq of order q≥α diverge. Due
to the (generalized) central limit theorem, sums of indepen-
dent (possibly weighted) Levy variables are still Levy vari-
ables. Figure2 (third row) shows simulations of fLm. As one
can see, several strong mountain peaks stand out; in fact, the
strong peaks are too strong. Although far from Gaussian, real
topography empirically seems to have finite variance (i.e. the
probability density tail falls off faster thanx−3), so fLm can-
not be a good model. Before moving on to the statistically
and visually more realistic multifractal model, let’s consider
the singularity shape in more detail. The shape of line (fault-
like) and point singularities depends on powers of distances
from either a line or a point; in order to generalize this it
turns out to be sufficient to replace the standard Euclidean
distances by scale functions. Let us therefore digress a mo-
ment to discuss scale functions.

2.2 Scale functions and anisotropic singularities

In order to change the shape of the singularities while con-
serving the basic statistical properties of the process, it turns
out to be sufficient to make the replacement everywhere in
Table1:

|x − x′
| → ‖x − x′

‖ ; D → Del (1)

i.e. to replace the usual distance by a new “scale function”
and usual dimension of spaceD by an “elliptical dimension”
Del. These new quantities satisfy the following basic scaling
equation:

‖Tλx‖ = λ−1
‖x‖ ; Tλ = λ−G

; Del = Trace(G) (2)

whereTλ is a scale changing operator which reduces the scale
of a vector by a factorλ. In order for the scale function to
be scaling (i.e. have no characteristic scale), it must satisfy
group properties, hence it must admit a generatorG as indi-
cated. In the simplest “linear” case,G is a matrix. Once all
the unit vectorsx1 are specified, the scale equation2uniquely
specifies the scale of all the other vectors; all the nonunit
vectors (i.e.‖xλ‖=λ) are then generated by the action ofTλ,
i.e. xλ=Tλx1 (seeSchertzer and Lovejoy(1985) for techni-
cal details on this Generalized Scale Invariance, GSI). The
set of all vectors with scale‖x‖≤λ is called a “ball”, denoted
Bλ; for physical scale functionsBλ must be decreasing (i.e.
Bλ′⊂Bλ for λ′<λ). We can see that if the replacements in
Eq. (1) are made in the denominators of the models in Ta-
ble1, with scale functions satisfying the scale Eq. (2) (in fact
they then define the notion of scale), then the convolutions
will have power law dependencies under “zooming”, i.e. the
models will be scaling as long as the noises are also scaling
(hence the special choices of Gaussian or Levy noises, or in
the multifractal case, of multifractal noises).

To understand the relation between usual distances and
generalized scales and see how to find‖x‖ in practice, it is in-
structive to do an example. To find‖x‖, we need to solve the
fundamental Eq. (2). Consider a (real) 2-DG matrix which
in a diagonal frame is given byG=diag(Hx,Hy) (note that
what follows can be generalized to complex eigenvalues or
nondiagonalizable matrices). The idea is to use a nonlinear
coordinate transformation to convert the initial problem, i.e.
Eq. (2) with Tλ=λ−G, into an equivalent problem whereG
is the identity matrix:

‖λ−I x′
‖ = λ−1

‖x′
‖ (3)

where x′
=(x′, y′) are the coordinates in the nonlinearly

transformed space. It is easy to show that the nonlinear trans-
formationx′

=sgn(x)|x|
1/Hx , y′

=sgn(y)|y|
1/Hy does the job

for the real diagonal matrix considered above. Equation (3)
is now easy to solve: it represents a pure isotropic scale trans-
formation, hence the solution is of the form

‖x′
‖ = (2(θ ′))−1r ′ (4)
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Fig. 2. Comparison of isotropic versus anisotropic (with symmetric scale functions) simulations for three different scaling models. Top row
shows scale functions. From left to right, we change the anisotropy: the left column is self-similar (isotropic) while the middle and right

columns are anisotropic and symmetric with respect toG=

(
0.8 −0.05
0.05 1.2

)
. The middle column has unit ball circular at 1 pixel, while for the

right one it has the form2(θ ′)=1+0.65 cos(θ ′) (in polar coordinates in the nonlinearly transformed space, see Eq. (4)). Second, third and
fourth rows show the corresponding fBm (withH=0.7), fLm (α = 1.8, H = 0.7) and multifractal (α=1.8, C1=0.12,H=0.7) simulations.
We note that in the case of fBm, one mainly perceives textures, there are no very extreme mountains or other morphologies evident. One
can see that the fLm is too extreme, the shape of the singularity (particularly visible in the far right) is quite visible in the highest mountain
shapes. The multifractal simulations are more realistic in that there is a more subtle hierarchy of mountains. When the contour lines of the
scale functions are close, we change the scale‖x‖ = λ rapidly over short (Euclidean) distances. For a given order of singularityγ , λγ will
therefore be larger. This explains the strong variability depending on direction (middle bottom row) and on shape of unit ball (right bottom
row). Indeed, spectral exponents will be different along the different eigenvectors ofG.

wherer ′
= (x′2

+ y′2)1/2 is a radial vector in the nonlin-
early transformed space and2(θ ′) is an arbitrary function
of the polar angleθ ′ in the nonlinearly transformed space
(i.e. tanθ ′

= y′/x′). The nonlinear coordinate transform
is then used on Eq. (4) to obtain the scale function in the
original x space (as opposed to the nonlinearly transformed
x′ space). For the example considered, the scale function is

‖x‖ = (2(θ ′))−1
(
x2/Hx + y2/Hy

)1/2
.

When scale functions are used to define the basic singular-
ities, the shapes can be extremely varied, hence demonstrat-
ing the possibility of modeling topographic morphology in
this way. First considerG=I , whereI is the identity matrix:
the resulting topography models will be “self-similar” in the
sense that their statistics will vary in power law ways under
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Fig. 3. Comparison of isotropic versus anisotropic (with “spiral” scale functions) simulations for three different scaling models. Top row
shows isotropic (left) and spiral (middle, right) scale functions. Spiral scale functions are obtained whenG has complex eigenvalues; here

G=

(
0.5 −1.5
1.5 1.5

)
. Second, third and fourth rows show the corresponding fBm (withH=0.7), fLm (α=1.8,H=0.7) and multifractal (α=1.8,

C1=0.12, H=0.7) simulations. Note how the use of spiral singularities does not affect the fBm simulations much (compare with Fig.2).
On the other hand, spiral singularities lead to too strong singularities for the fLm, but subtle variations of mountains and plains for the
multifractal.

isotropic “zooming” (blow-ups) (see the left hand column in
Fig. 2). When the unit ball is a circle (or more generally
a D dimensional sphere), then we obtain‖x‖=|x|. How-
ever when the unit ball is not circular (spherical), then there
will still be preferred directions. These preferred directions
will be the same at all scales, the anisotropy is “trivial”.
Things become more interesting as soon asG is no longer
the identity. IfG is a diagonal matrix, then the singularities
‖x‖

−γ (whereγ is the order of singularity, see Sect.3.1)
are quite different in different directions and the resulting

fractals/multifractals are “self-affine”. The case whereG is
nondiagonal and the eigenvalues are real is a generalization
in which the main stretching/shrinking occurs along fixed
nonorthogonal eigendirections; Fig.2 (middle column) show
the resulting differential stratification. When the eigenval-
ues are complex, then the eigenvectors rotate continuously
as functions of scale, giving rise to spiral type singularities,
see Fig.3. Finally, outside our present scope but presumably
important for realistic topography modelling, we can con-
siderG as a nonlinear operator (rather than a matrix). In this
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case, the anisotropy depends not only on scale but also on the
location. This allows for spatially varying morphologies. In
this case, the linear GSI discussed above is simply a locally
valid approximation.

2.3 Spurious breaks in the scaling

In spite of the systematic finding of scaling or near scal-
ing statistics, many geophysicists reject all wide range scal-
ing, often because of their conviction that geomorphologic
processes are scale dependent: they consider a priori that
the scaling is broken. For example,Herzfeld et al.(1995);
Herzfeld and Overbeck(1999) have attempted to demon-
strate broken scaling by estimating power spectra and var-
iograms on a few bathymetry transects which they showed
to have poor scaling. Rather than giving a purely theoreti-
cal explanation as to why their results are not surprising and
how they could be compatible with the scaling hypothesis,
let us consider a simulation of their transect (see Fig.4). The
figure compares the energy spectra of two individual tran-
sects as well as the ensemble average over all the transects.
One of the transects passes through “Mt. Multi” (the high-
est peak in the range), another through a randomly chosen
transect not far away. One can see that the Mt. Multi scal-
ing is pretty poor; a naive analysis would indicate two ranges
with a break at about 10 pixels with high frequency exponent
β≈2.5, low frequencyβ≈1.5. Clearly this significant break
has nothing to do with the scaling of the process (which is
perfect except for finite element effects affecting the high-
est factor of two or so in resolution). In comparison, the
randomly chosen transect has better scaling, but withβ≈2.
On the other hand, the isotropic (i.e. angle averaged) spec-
trum averaged over an infinite ensemble of realizations has
β≈2.17. Even the average over the transects shows signs
of a spurious break at around 16 pixels (the scale where the
north-south and east west fluctuations are roughly equal in
magnitude, the “sphero-scale”); this explains why the theo-
retical line does not pass perfectly through the curve corre-
sponding to the average of the transects. Obviously, had we
chosen a different random seed for the simulation, the results
for the individual transects would have been different (even
the average over the transects would have been a bit differ-
ent), see the example in the next section.

Conclusions about broken scaling in Fig.4 are therefore
unwarranted. The most important reason to explain apparent
scaling breaks is that scale invariance is a statistical symme-
try, i.e. defined on an infinite ensemble (see Sect.3.2). This
means that scaling is almost surely broken on every single re-
alization, hence it is important to have a large data base (i.e.
large range of scales, many realizations) to average fluctua-
tions and approximate the theoretically predicted ensemble
scaling. In fact, due to the singularities of all orders (see
Sects.2.1and3.1) the realization to realization variability of
multifractals is much greater than that of classical stochas-
tic processes; for example, rare (extreme) singularities are

Fig. 4. Figure showing a bathymetry simulation (withα=1.9,
C1=0.12 andH=0.7). The energy spectra of the transect pass-
ing through “Mt. multi” (the highest peak in the simulation) and
through another (randomly chosen) transect are shown as well as
the ensemble over all the transects. We can see that the scaling in
the transect containing the extreme event “Mt. Multi” is clearly bro-
ken, even though the ensemble scaling is very good. Figure taken
from Lovejoy et al.(2005).

produced by the process yet they are almost surely absent
on any given realization. This means that they do not have
the property of “ergodicity”. What may be nothing more
than normal multifractal statistical variability can thus eas-
ily be interpreted as breaks in the scaling. The second rea-
son for erroneously concluding that the scaling is broken is
the assumption that the scaling is isotropic. If the scaling
is anisotropic, then breaks in the scaling on 1-D subspaces
(transects) do not imply anything about the scaling of the full
process.

2.4 Apparent nonstationarity, inhomogeneity, parameter
variations... or simply random exponents?

When the statistical properties of a process are independent
of spatial position, the process is statistically homogeneous;
if independent in time, it is statistically stationary. These no-
tions of statistical translational invariance are therefore prop-
erties of an infinite ensemble of realizations; indeed each re-
alization will be inhomogeneous. In spite of this, the rel-
atively low realization to realization inhomogeneity of the
prevalent Gaussian or quasi Gaussian models (see e.g. Fig.2,
left hand column) has obscured this fact so that the exis-
tence of strong inhomogeneities – even if only on a single
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Fig. 5. 1024× 1024 self-similar multifractal simulation with some
trivial anisotropy and parametersα=1.9, C1=0.12 andH=0.7.
The spectral exponent isβ=1+2H−K(2)=2.17.

realization – often leads to claims of statistical inhomogene-
ity/nonstationarity. In the case of multifractals, it is partic-
ularly tempting to invoke statistically inhomogeneous mod-
els (corresponding to different physical processes in different
locations) since their occasionally strong singularities often
stand out from a background of more homogeneous noise.
However, the basic multifractal processes are statistically sta-
tionary/homogeneous in the strict sense that over the region
over which they are defined (which is necessarily finite), the
ensemble multifractal statistical properties are independent
of the (space/time) location (and this, for any spectral slope
β). Rather than discussing this at an abstract level, let us
see what happens when we analyse a self-similar 1024×1024
multifractal simulation (Fig.5). Figure6 shows the compen-
sated (i.e.k2.17E(k)), isotropic spectrum obtained by inte-
grating the Fourier modulus squared over circles of radiusk

in Fourier space. The low frequencies are quite flat, indicat-
ing that the simulation has roughly the expected ensemble
spectrum. At high frequencies, there is a drop-off which is
an artifact of the numerical simulation techniques. We can
now consider the “regional” variability in the spectral ex-
ponentβ by dividing the simulation into 8×8 squares, each
with 128×128 pixels. Figure7 (left) shows the histogram of
the 64 regression estimates of the compensated spectra: the
mean is close to zero as expected, but we see a large scat-
ter implying that there are some individual regions havingβ

as low as 1.2, some as high as 2.7; the standard deviation
is ±0.3. As we shall see later, this would imply a random

Fig. 6. Compensated power spectrum (i.e.k2.17E(k)) of the multi-
fractal simulation in Fig.5. The extreme factor of 2 in wavenumber
falls off too rapidly: this is an artifact due to the difficulty of dis-
cretizing singularities on numerical grids.

Fig. 7. On the left, we have a histogram of the compensated spec-
tral exponent (1β=β−βtheo=β−2.17) values obtained after divid-
ing Fig. 5 into 64 128×128 squares, and computing the isotropic
power spectrum in each square (the vertical axis is the number of
occurences out of the total of 64). In each case, we fit the slope
to the lowest factor of 16 in scale (we remove the highest factor of
4 due to numerical artifacts at the highest wavenumbers). On the
right, we have a histogram of the log10E1 (E1 is the spectral pref-
actor,E(k)=E1k−β ) showing a variation of a factor of about 1000
from the smoothest to the roughest subregion.

variation in local estimates of H of±0.3/2=±0.15, which
is of the order of the difference observed between continents
and oceans (see Sect.6.1.1), although this spread inβ will
decrease as the size of the data set increases. Similarly, use
of the monofractal formulaDF =7/2−β/2 would lead to a
corresponding wide spread of “local” fractal dimension.

In Fig. 7, we can also see the large variations in the log
prefactors (i.e. log10E1, whereE(k)=E1k

−β ). If this is in-
terpreted in terms of roughness, the roughest of the 64 re-
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gions has about 103 times the variance of the smoothest re-
gion. While it would obviously be tempting to give different
interpretations to the parameters in each region, this would
be a mistake. Note that this does not imply that the roughest
and the smoothest would be associated with identical ero-
sional, orographic or other processes. The point is that in
a fully coupled model involving various geodynamical pro-
cesses, all the processes would be scaling and would have
correlated variations. Figure4 also demonstrates the fact that
if data from special locations (such as near high mountains)
are analysed that we may expect systematic biases in our
statistics and parameter estimates. These conditional statis-
tics are discussed quantitatively and theoretically inLovejoy
et al. (2001b). This underlines the need for coupled multi-
fractal processes, possible through the use of a state vector
and vector mulitfractal processes (based on “Lie cascades”
(Schertzer and Lovejoy, 1995; Lovejoy et al., 2001b)).

3 Properties of multifractals

3.1 Multifractal processes and scale invariance

In Sect. 2, we discussed the crucial role of singularities.
Multifractals allow singularities of various orders to be dis-
tributed over fractal sets with varying fractal dimensions
(rather than a unique dimension as for monofractal processes
such as fBm, fLm). In this section we show how the key
(multiplicative part) of the process can be viewed as a step
by step build-up of variability from an initially uniform state.
This multiplicative process is often called a “cascade”; it is
the generic multifractal process.

Cascades are phenomenological models of processes
which have the following properties: (1) They have a scale
by scale conserved quantity; it is this conserved quantity that
is modulated by nonlinear interactions as it goes down the
scales. (2) Localness in Fourier space, i.e. structures of a
certain size interact most strongly with structures of not too
different sizes. (3) Scale invariance; over a range of scales,
the mechanism doesn’t change. To illustrate these points and
show how cascades are related to multifractals, let us con-
struct a very simple cascade, theα-model (e.g.,Schertzer and
Lovejoy, 1985). This model is very close to the model ofde
Wisj (1951) for the distribution of mineral ores.

To help the reader through this section, a summary of our
notation is provided in Table2. Consider a certain quan-
tity φ uniformly distributed in aD dimensional space of
sizeLD (to apply this to topography, just replaceD with 2).
Supposing that the system (including its surroundings) has a
very high number of degrees of freedom, we want to know
how the quantityφ will be distributed in theD dimensional
space after undergoing a large number of nonlinear interac-
tions with the whole system. Consider a simple discrete scale
ratio model (α-model); the continuous in scale extension is
given in Table1. The first step is to specify an integer ratio

Fig. 8. Example of a 2-D cascade process. At each step of the cas-
cade, the noiseφ (represented byε in the above picture) in each
square is multiplied by a random increment, here given by the prob-
abilistic law in Eq. 5. Figure taken fromSchertzer and Lovejoy
(1985).

φλ(x)

λγ1
λγ2

L/λ

Set 2

Set 1

x

Fig. 9. Illustration of Eq. (6) using a 1-D example of a cascade. For
different thresholdst1 = λγ1 andt2=λγ2 (with γ2>γ1), the corre-
sponding sets (defined byφλ>t) have different fractal dimensions
(DF (γ2)<DF (γ1)) or fractal codimensions (c(γ2)>c(γ1)).

of scalesλ0=L/l0 (typically 2); we then separate the initial
“cube” of sizeLD into λD

0 cubes of sizelD0 . In theα-model,
the quantityφ in each new cube at each step is modulated
according to the following probabilistic law:
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Table 2. Summary of notation and important quantities.

Symbol Quantity Definition Reference1

l Length scale — Eq. (6)
L Maximum length of a process — Eq. (6)
λ Resolution λ=L/l Eq. (6)
Tλ Scale changing operator Tλ=λ−G Eq. (2)
G Generator D×D matrix or operator Eq. (2)
D Dimension of space — Sect.3.1

DF Fractal dimension of a set — Sect.3.1
c Codimension of a set c=D−DF Sect.3.1
γ Order of singularity — Sect.3.1
t Threshold t=λγ Fig. 9

φλ Scaling multifractal noise — Sect.3.1
K(q) Moment scaling function K(q)= maxq {qγ−c(γ )} Sect.3.2
1hλ Height increment h(x+λ−11x)−h(x) Eq. (9)
α Degree of multifractality 0≤α≤2 Sect.3.2
C1 Sparseness of the mean singularity 0≤C1 Sect.3.2
H Degree of smoothing — Sect.3.3

ξ(q) Structure function exponent ξ(q)=qH−K(q) Sect.3.3
β Spectral exponent β=1+ξ(2) Sect.5.1

1 Specifies the section or the equation where the symbol is defined or explained.

Pr(µε = λ
γ+

0 ) = λc
0

Pr(µε = λ
γ−

0 ) = 1 − λc
0 (5)

where µε is a “multiplicative increment” multiplyingφ,
γ+>0, γ−<0 are positive/negative singularities andc is the
codimension of the space occupied byφ. Thede Wisj(1951)
model is obtained by restricting this model so that the mean
µε=1 on each cascade step (microcanonical conservation),
whereas the above “α-model” only enforces this conserva-
tion on the ensemble average (canonical conservation). It is
now known that microcanonical conservation results in much
less variable processes and is generally unrealistic. Equa-
tion (5) corresponds to an increase (λ

γ+

0 ) or a decrease (λ
γ−

0 )
in φ. Note that the parametersγ+ andγ− cannot be chosen
independently if we wantφ to be conserved, as prescribed
by assumption (1). Aftern steps,φ is broken up into(λD

0 )n

cubes and the succession of decreases/increases leads to a
highly heterogeneousφ. In fact, it leads to a whole hierar-
chy of singularitiesγi with values betweenγ n

−≤γi≤γ n
+ (see

Fig. 8). The cascade just described is artificial because of its
discrete in scale nature. Letting the scale ratioλ0 become
continuous (i.e.λ0→1; n→∞; λ=λn

0=constant), we obtain
(Schertzer and Lovejoy, 1987):

Pr(φλ ≥ λγ ) ∼ λ−c(γ ) (6)

where the notationφλ stands forφ at the scaleL/λ, λγ

is the threshold corresponding to the singularityγ and
c(γ ) is a nonlinear convex function called the codimen-
sion function. Equation (6) means that the set defined by
the conditionφλ≥λγ has a (fractal) codimension given by

c(γ )=D−DF (γ ), whereDF (γ ) is the fractal dimension of
the set (see Fig.9). Thus, the initial uniformly distributed
quantityφ is now a hierarchy of interwoven sets, one for each
threshold, each of them having a different fractal codimen-
sion: a multifractal. In comparison, a monofractal process
has a unique fractal dimension for all thresholds. The scale
by scale conserved multifractalφλ will be referred to as a
multifractal noise.

3.2 Moment scaling function and universal multifractals

One way to characterize the statistics of stochastic processes
is via probability distributions. For a multifractal process, the
probability distribution is a power law, as given in Eq. (6).
Equivalently, we can characterize the statistics of stochastic
processes by the moments of the probability distribution (Pr),
〈xq

〉=
∫

∞

0 d Pr xq . In the case of multifractal processes, this
gives (Schertzer and Lovejoy, 1987, 1991):

〈φ
q
λ 〉 = λK(q) (7)

whereq is the order of the moment andK(q) is a nonlin-
ear convex function.K(q) characterizes the scaling of the
moments of the multifractal noise, hence it is called the “mo-
ment scaling function”. If the multifractal noise is conserved
with scale (i.e.〈φλ〉=1), then it implies thatK(1) = 0; for
a nonzero processK(0) is also trivially equal to zero.K(q)

andc(γ ) are related to each other via a Legendre transform,
K(q)= maxγ {qγ−c(γ )}. It is easy to see the equivalence
between studying singularitiesγ and momentsq. In the case
of singularities, we fix a thresholdλγ and then find the codi-
mensionc(γ ) of the set satisfyingφλ≥λγ . In the case of
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moments, we fix a momentq and then take the average〈φ
q
λ 〉;

depending onq, certain orders of singularities dominate the
average (for example, a highq favors strong singularities
compared to weaker ones). The bottom line is that analyz-
ing a certain moment is equivalent to probing a certain sin-
gularity (a one to one correspondence given by the Legendre
transform), but it is usually more convenient to do moments
analysis.

A priori, the only constraint onK(q) is that it must be con-
vex, which implies that an infinite number of parameters are
generally needed to describe it; without further constraints,
it would not be manageable.Schertzer and Lovejoy(1987,
1991) have shown that there exists a class of stable and attrac-
tive multifractal processes called “universal multifractals”,
which are thus generic outcomes of multifractal processes
independent of many of the details (seeSchertzer and Love-
joy (1997) for the debate about this issue). Here we postulate
the functional form given in Eq. (8) on theoretical grounds (it
can be viewed as a consequence of a “multiplicative central
limit theorem”), but we will see in Sect.6.2.4that the esti-
mated error with thisK(q) is quite low, so that this can also
be viewed as a way of parametrizing the data. The universal
K(q) is given by the following functional form:

K(q) =
C1

α − 1

(
qα

− q
)

(8)

whereα andC1 are the two basic parameters characterizing
the scaling properties of the multifractal noiseφλ. The pa-
rameterα is the degree of multifractality and varies from 0
to 2, whereα = 0 is the monofractal case andα = 2 is the
log-normal case. This parameter describes how rapidly the
fractal dimension of sets at different thresholds vary as they
leave the mean singularity. It is not very intuitive; the ac-
companying simulations (see Fig.10) may be the best way
to visualize the effect of varyingα. The parameterC1 is the
fractal codimension of the set giving the dominant contribu-
tion to the mean (q=1) and is bounded below by zero. The
valueC1=0 implies that the set giving the dominant contri-
bution to the mean is space filling (i.e. its fractal dimension is
equal to that of the embedding space), so it can be interpreted
as quantifying the sparseness of the mean field. Again, com-
pare Figs.10–11 or see the simulations of Fig.12 to see the
effect of varyingC1 on a multifractal process.

3.3 Fractionally integrated flux model

We have discussed (Table1) several scaling models and have
seen that fBm/fLm are additive, being the result of a gen-
eral scaling linear operator (a fractional integral/derivative)
acting on a basic scaling noise (Gaussian and Levy, re-
spectively). These lead to exponent functions linear in the
momentq (e.g. the structure function exponentξ(q), see
Eq. (10)). We saw that in order to obtain more general scal-
ing behaviour, we could retain the fractional integration of
a noise, choosing the basic noise instead to be the result of

a multiplicative process (the cascade). We saw that the cas-
cade generates a scale by scale conserved noiseφλ charac-
terized by a moment scaling functionK(q) (a convex func-
tion with the constraintsK(0)=0, K(1)=0). The spectrum
of the conserved noise has exponentβ=1−K(2)<1. So to
characterize topography (havingβ≈2), we clearly need an
extra fractional integration; this is the Fractionally Integrated
Flux model described in Table1. The fractional integration
of the multifractal noise leads to the following statistics for
the height increments (Schertzer and Lovejoy, 1987, 1991):

1hλ = λ−H φλ (9)

where1hλ ≡ 1h(1x) = h(x + 1x) − h(x) (with |1x| =

L/λ) are the height fluctuations a distancel = L/λ apart
(as usual, the anisotropic generalization is obtained using
|1x| → ‖1x‖). The parameterH can be interpreted as a de-
gree of smoothness where higherH means smoother fields.
Figures10–14show examples of changing the degree of frac-
tional integrationH in conjunction withα, C1.

As mentioned earlier, statistical moments analysis is more
convenient than direct height analysis. We take theqth power
on both sides of Eq. (9) and then the ensemble average which
leads to

〈|1hλ|
q
〉 = λ−ξ(q)

; ξ(q) = qH − K(q) (10)

where〈|1hλ|
q
〉 is theqth order structure function andξ(q)

is the corresponding scaling exponent. The special case
q=2 corresponds to ensemble averaged variograms. Equa-
tion (10) models the statistical properties of topographic
height increments and is the culminating point of the mul-
tifractal FIF model. Note that if the multiscaling noiseφλ

in Eq. (10) is replaced with a noise with no particular rela-
tion between scales (i.e.K(q)=0) such as a Gaussian white
noise, then we obtain fractional Brownian motion (see Ta-
ble 1 for a comparison). This last comment is particularly
important when it comes to data analysis and will help us
to distinguish between multifractal and monofractal behav-
ior (see Sect.5.2). It also helps to clarify the advantage of
multifractals over monofractals: the multifractal noiseφλ is
much more variable than Gaussian white noise, leading to a
much better characterization of extreme events, such as very
high mountains.

An important caveat is in order at this point. The 2-D anal-
yses in this study are restricted to isotropic (i.e. self-similar)
statistics. By isotropic analysis, we mean that the resolution
λ in real space is degraded isotropically or that the energy
in Fourier space is integrated over wavevectors of constant
length. In the example of theα-model, one could break the
2-D noiseφ in “rectangles” instead of “squares” to obtain
an anisotropic cascade. The effect of using isotropic statis-
tics is to wash out different geomorphologies/textures. As
explained in Sect.2.2, another scaling exponentG – a ma-
trix or, more generally, an operator – is needed to charac-
terize scaling anisotropies, in addition to the usualα, C1,
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Fig. 10. Isotropic (i.e. self-similar) multifractal simulations showing the effect of varying the parametersα andH (C1=0.1 in all cases).
From left to right,H = 0.2, 0.5 and 0.8. From top to bottom,α=1.1, 1.5 and 1.8. AsH increases, the fields become smoother and as
α decreases, one notices more and more prominent “holes” (i.e. low smooth regions). The realistic values for topography (see Table5)
correspond to the two lower right hand simulations. All the simulations have the same random seed.

H . We thus argue that isotropic statistics do not vary much
from place to place even if morphologies/textures vary appre-
ciably (see Figs.2–3 and Figs.12–14 for some isotropic vs
anisotropic simulations). For additional simulations and “fly-
bys” of topography and other geophysical fields, we refer the
reader to the following website:http://www.physics.mcgill.
ca/∼gang/multifrac/index.htm. Additional simulations ex-
ploring anisotropic topographies may also be found inLove-
joy et al.(2005).

4 Data sets

In this study, several Digital Elevation Models (DEMs) that
span various ranges of scales are analyzed. DEMs are grid-
ded representations of topography. They are constructed via

various techniques including stereo-photography and in situ
measurements of altitude (often combined using complex ob-
jective analysis techniques) and are then gridded so as to ob-
tain a height field. They are essentially characterized by their
horizontal and vertical resolutions.

Due to their method of construction and the highly vari-
able nature of the topographic field, DEMs have various lim-
itations (e.g.,Weissel et al., 1994), including insufficient dy-
namical ranges. The latter is defined as the ratio of the typ-
ical maximum signal to the noise level, which is usually de-
termined by the vertical discretization. An insufficient dy-
namical range means that there is frequently not much pixel
to pixel variability in the height measurements (i.e. adjacent
pixels frequently have identical digital counts) so that gra-
dients are not well represented, i.e. the surface is artificially
smooth at the smallest spatial scales. We study this quan-
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Fig. 11. Same as Fig.10, but withC1=0.3. The effect of increasingC1 is to make high areas much more sparse. It is interesting to note the
presence of isolated high peaks in very flat areas.

titatively in Sect.6.2.2. Another problem is oversampling,
which results when the altitude is sampled more frequently
than is warranted by the source data; this implies an artifi-
cially smooth DEM at the highest wavenumbers. The cur-
vature of the Earth can also be a problem; because DEMs
are gridded representations of the topography, it is necessary
to project a sphere on a plane to produce the DEM. When
averaging many transects at different latitudes, this can in-
duce changes in the highest wavenumbers. The main point is
that each DEM has its own characteristics and problems, but
these problems usually manifest themselves at the highest or
smallest wavenumbers. On the other hand, different physical
mechanisms would induce clean breaks in the scaling.

Four different DEMs are analyzed in this study. We refer
the reader to Table3 for their individual characteristics (res-
olution, vertical discretization, etc.) and to Figs.15–17 for
the regions analyzed on each of them. The data sets are:

ETOPO5 (global topography including bathymetry) (Data
Announcement 88-MGG-02, 1988); GTOPO30 (global con-
tinental topography) (Land Processes Distributed Active
Archive Center, 1996); United States (DEM of the United
States) (United States Geological Survey, 1990); Lower Sax-
ony (DEM of a 3 km×3 km section of Lower Saxony, con-
structed with the help of the High Resolution Stereo Camera
Airborne (Wewel et al., 2000)).

5 Analysis techniques

In this section, we present two analysis techniques used to
analyse scaling properties: power spectra and trace moments
(a specific multiscaling analysis technique). In both tech-
niques, ensemble averages are made over all available data.
This is very important, because scale invariance is a statis-
tical symmetry (see Sects.2.3 and2.4), meaning that an in-
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Fig. 12. Isotropic (i.e. self-similar) multifractal simulations showing the effect of varying the parametersC1 andH (α=1.8 in all cases).
From left to right,H=0.2, 0.5 and 0.8. From top to bottom,C1=0.05, 0.15 and 0.25. AsH increases, the fields become smoother. When
C1 is low, field values are close to the mean everywhere; whenC1 is large, all values are below the mean except in some specific locations
where they are very large. The values closest to the data (see Table5) correspond to the middle row (middle and right columns).

Table 3. Characteristics of the DEMs and regions studied.

Data sets Horizontal Vertical Numbers of Length of
resolution discretization transects analyzed transects (km)

ETOPO5 5’ (≈10 km) 1 m 500 and12160 40 000
GTOPO30 30” (≈1 km) 1 m 1225 4096
U.S. 90 m 1 m 2500 5898
Lower Saxony 50 cm 10 cm 3000 and2500 3 and20.512

1 Analysis with constant angular resolution.
2 Analysis on treeless region.

finity of independent samples are needed to obtain accurate
scaling. In this study, all samples (transects or squares) ana-
lyzed are correlated because they come from the same region
and from the same unique Earth. This means that the aver-
ages in this study are at best approximations to the required
ensemble averages.

5.1 Analysis of the height: Power spectra

Power spectra are widely used to study scaling. In 1-D, it is
the ensemble averaged squared modulus of the Fourier trans-
form. In 2-D, it is usual to use the “isotropic” spectrum
which is also angle integrated in Fourier space (sometimes
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Fig. 13. Anisotropic (self-affine) multifractal simulations with varyingC1 andH (α=1.8 in all cases). From left to right,H=0.2, 0.5 and

0.8. From top to bottom,C1=0.05, 0.15 and 0.25. The scale changing operator isG=

(
Hx 0
0 Hy

)
(with Hx=1.2 andHy=0.8) and the

sphero-scale is 1 pixel. Transects in the up-down (y) or left-right (x) directions do not have the same spectral exponents: they are related
through the ratio(βx−1)/(βy−1)=Hx/Hy , whereβx , βy are the 1-D spectral exponents in thex, y directions, respectively.

angle averaging is used; this increases the spectral exponent
by 1). Before estimating power spectra, we removed linear
trends (in 1-D analyses) and we used Kaiser windows (in 2-
D in analyses) to avoid problems at the lowest wavenumbers.
The (isotropic) power spectrum of a scaling process is given
by

E(k) ∝ |k|
−β (11)

wherek is the wavenumber andβ=1+ξ(2)=1+2H−K(2)

is the spectral exponent. It can be seen that the simple scaling
result is recovered ifK(2)=0. The power spectrum is only
a second order moment, so that this method alone cannot be
used to distinguish between simple and multiscaling.

5.2 Analysis of the noise: Trace moments

As can be seen from Table1, the fBm and FIF models may
be hard to distinguish because they both share a convolu-

tion characterized by the exponentH . A better way to dis-
tinguish them is to consider their noiseφ, which has com-
pletely different properties: a delta correlated Gaussian white
noise for fBm viz. a scaling singular multifractal noise for
FIF. We are therefore lead to the use of “trace moments”
(which directly characterizeφ) so that the distinction will
be far more apparent. The first step is to obtainφ from the
height increments: in principle this involves removing the
λ−H in Eq. (9). From the convolutions in Table1, we see
that to invert the fractional integration, a fractional differen-
tiation of orderH or greater must be performed (Schertzer
and Lovejoy, 1987, 1991). For H<1, an adequate numeri-
cal approximation to this fractional differentiation is to take
the modulus of the finite difference gradient (Lavallée et al.,
1993), which corresponds to a differentiation of orderH=1
(this is sufficient, because we haveH≈1/2 in topography).
More generally and equivalently, one can take the absolute
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Fig. 14. Same simulations as Fig.13, but with a sphero-scale equal to 64 pixels instead of 1 pixel. We still have left-right “mountain chains”
but at scales smaller than 64 pixels, we have up-down “ridges”. This is what a typical pixel of Fig.13would look like if blown up by a factor
of 64.

value of wavelet coefficients at the finest available resolution
(Muzy et al., 1993; Audit et al., 2002). (Technical note: Be-
cause of the insufficient dynamical range of the DEMs (see
Sect.4), many spurious zero gradients are present in the an-
alyzed transects. Those zero gradients particularly affect the
low q statistics, so they are eliminated by a fractional inte-
gration of orderH=0.1 (a filtering in Fourier space with a
power law), which is a scale invariant smoothing.) After the
removal ofλ−H in Eq. (9), we are left with only the underly-
ing noiseφλ. The next step is to study the scaling of the sta-
tistical moments ofφλ and compare them with Eq. (7). To do
this, we normalizeφλ so that the ensemble average of all the
samples is〈φλ〉=1. Then spatial averaging is performed over
sets (lines or squares) of sizel=L/λ, theqth power is taken
and the average over all data available is taken: this gives
the moments of the normalized noise for a given value of
q. This procedure is performed for different values ofq and
K(q) is determined from the logarithmic slopes; multiscal-

ing is verified if we find a nonlinearK(q). For the monofrac-
tal fBm, the moments of the normalized flux are equal to 1
for all q, i.e.K(q)=0. In other words, if after doing the frac-
tional differentiation we get a Gaussian white noise (with no
scale/resolution dependence, i.e.K(q)=0), the data are com-
patible with a fBm process.

A recent article byVeneziano and Iacobellis(1999) points
out that this method (i.e. taking the absolute value of the gra-
dients before doing the trace moments analysis) may produce
apparently spurious multiscaling. The reason is that taking
the absolute value of the gradient is a nonlinear operation:
it breaks the scaling at the highest resolution. However, we
seek the scaling behavior ofφλ at larger and larger scales
(smaller and smallerλ); this scaling is rapidly re-established
so that although it does take a certain range of scales (typi-
cally a factor of 2–4) before the averaged absolute gradients
start to scale again, the exponentK(q) can nonetheless be
well estimated by this technique (all this has been extensively
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studied using numerical simulations (Lavallée et al., 1993).
With the large topography data sets available in this study, the
scale range is so large that this is not so difficult. In any case,
functional box-counting (Lovejoy and Schertzer, 1990) and
generalized structure functions (Lavallée et al., 1993; Weis-
sel et al., 1994) also clearly indicate multiscaling over wide
ranges of scale; breaks are indeed confined to the highest
wavenumbers of each data set.

6 Results and discussion

6.1 Analysis of continents and oceans

The morphologies of continental and oceanic topography are
clearly different. In the scaling framework, these differences
can arise in several ways. One effect that we already men-
tioned (see Sect.3.3) is that the anisotropy varies not only
from scale to scale but also from place to place: another
set of scaling exponents are needed to characterize these
anisotropies. In this paper we limit ourselves to isotropic
analyses (analysis of scaling anisotropy is quite difficult (e.g.,
Lewis et al., 1999)). For example, the 2-D spectra are an-
gle integrated or in the case of trace moments we average
on squares at each scale. In both cases, we “wash out” the
anisotropies and consider only the isotropic statistics. We
have also seen in Sect.2 that due to their strong singularities,
individual realizations of multifractals can have strong vari-
ations from one region to another even though the process is
strictly homogeneous, stationary (statistically translationally
invariant). This means that it is not trivial to test the scaling
and estimate the parameters.

The continent/ocean comparison is made using power
spectra and trace moments on ETOPO5. Three 512×512
pixels squares (≈5120×5120 km) are analyzed in the case of
continents and five in the case of oceans (shown on Fig.15).
The ensemble average is performed over the three (five)
squares of continents (oceans) for the two methods of analy-
sis.

6.1.1 Power spectrum analysis

A comparison between the averaged spectra from continents
and oceans is shown on Fig.18. According to Eq. (11), a
log/log plot of the spectral energyE(k) versus the wavenum-
berk should give a straight line if the process is scaling. The
spectra are fairly straight over 2 orders of magnitude, imply-
ing that they are scaling over that range. There is a break in
the scaling at approximately 50 km, which is probably due to
oversampling. Note that there is a systematic difference in
the slope of the spectra:βcontinents=2.09 (c.f. β≈2 (Vening
Meinesz, 1951)) andβoceans=1.63, in agreement withBerk-
son and Matthews(1983) (β≈1.6−1.8) but less than the val-
ues ofBell (1975) (β≈2), Fox and Hayes(1985) (β≈2.5)
and Gibert and Courtillot(1987) (β≈2.1−2.3). The dif-
ferences between the values ofβ may be a consequence of

Fig. 15. ETOPO5 data set (Data Announcement 88-MGG-02,
1988). See Table3 for its specific properties. The white and black
squares indicate the areas studied in Sect.6.1. The white rectangle
indicates the area used for the narrow strip analysis (500 transects
of 40 000 km).

the fact that estimates of the spectral exponent require large
amounts of data and wide ranges of scales (see Sect.2.3). In
addition, for multifractals the values ofβ in any single real-
ization is random with (depending on parameters) a possibly
large scatter (see Sect.2.4). In the studies mentioned above,
the analyses are on small data sets (104 compared to 106

points here), which result in “fuzzy” or even broken spec-
tra, making it hard to find the scaling range. This means that
the spectral exponents may not be well estimated in those
studies.

6.1.2 Trace moments analysis and the universal multifrac-
tal parameters

The trace moments of the continents and the oceans are
shown in Fig.19. According to Eq. (7), a log/log plot of the
normalized moments of the noiseφλ versusλ should give
straight lines (with different slopes for eachq) if the process
is multiscaling. As can be seen on Fig.19, the trace moments
are straight for scales greater than 50 km; as with the spec-
tra, they flatten a little at small scales, presumably for the
same reason (probably a little oversampling). However, we
see clearly that the behavior is totally different from that pre-
dicted by the monofractal fBm model; in the latter, all lines
would be quite flat, there would be no systematic resolution
dependence. The multifractality stands out as a systematic
roughly linear trend with nonzero slope. Indeed, the standard
errors of the slope indicate that for typical values ofq, the
slope is 5–10 standard deviations away from the fBm value
zero, so that the fBm hypothesis can be easily rejected with
standard statistical tests. We could mention at this point that
although it has never been proposed for the topography, there
exists a monofractal model for the multiplicative noise called
the “β-model” in whichφ is confined to a fractal support (this
corresponds toα=0, see Sect.3.2). The β-model is quite
different from fBm since the latter has a nonfractal (space
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Fig. 16. U.S. part of the GTOPO30 data set (Land Processes Dis-
tributed Active Archive Center, 1996). See Table3 for its spe-
cific properties. The black rectangle indicates the area studied
on GTOPO30 (1225 transects of 4096 km) and the white rectan-
gle indicates the area studied on the U.S. DEM (2500 transects of
5898 km).

Table 4. Universal multifractal parameters for the conti-
nents/oceans analysis.

Type of region α C1 H

Continents 1.82±0.17 0.13±0.04 0.66±0.04
Oceans 1.87±0.15 0.15±0.02 0.46±0.03
Continental margins 1.80±0.05 0.12±0.02 0.77±0.02

filling) support corresponding toC1 = 0. In Fig. 19, the
β-model would give nonzero slopes that would vary linearly
with q (theK(q)’s in Fig.20would followK(q)=C1(q−1)).
We see below that this is also incompatible with the data. We
may also note that the fLm is not compatible with the data ei-
ther; this is because statistical moments substantially larger
thatq=2 have no obvious anomalous behaviours (visible as
a “multifractal phase transition”, i.e. a discontinuity in the
derivative ofK(q) atq = 2).

The slopes of the trace moments for eachq yield K(q);
from this we estimate the parametersα andC1 for continents
and oceans. Equation (8) is used to fit the curves on Fig.20
and the results are shown in Table4. The errors in the table
are equal to one standard deviation of the individual values of
α andC1 for continents and oceans. By taking into account
the error, we conclude that continents and oceans may have
the sameα andC1.

Fig. 17. Lower Saxony DEM (Wewel et al., 2000). See Table3
for its specific properties. The global analysis of Sect.6.2 is done
on the upper half of the above DEM to avoid contamination from
man-made structures. The total area covered is 3000 transects of
3000 m. The small white rectangle (500 transects of 512 m) is the
treeless section analyzed and compared to the full DEM analysis.
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Fig. 18. Log/log plot of the spectral energy versus the wavenumber
for continents and oceans. The slopes (=−β) are−2.09 for conti-
nents and−1.63 for oceans.
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The values ofα andC1 combined withβ yield the values
of H for continents and oceans (see Eq.11 and following
discussion). The results are shown in Table4. TheH value
for oceans is quite near the commonly cited value ofH=1/2
(e.g.,Bell, 1975), but theH value for continents is system-
atically larger. This can also be seen on the scatter plots of
Figs. 21 and22, where there is a clear stratification of the
H values but not of theα andC1 parameters (where there
is only a certain spread). This result is compatible with the
hypothesis that the statistics of the noiseφλ (determined by
α andC1) are the same for continents and oceans, but the
height statistics (see Eqs.7 and10) are different becauseH
is different. The higher value ofH for continents means that
they are smoother than the seafloor. It means that the under-
lying physical mechanisms responsible for the values ofα

andC1, whatever they are, may be the same for continents
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Fig. 21.Scatter plot of the parameters (α, H ) for the three different
types of region (circles, stars and X’s represent continents, oceans
and continental margins respectively).

and oceans. On the other hand, the mechanisms responsi-
ble for H (related to erosion-like processes) are likely to be
different. It also means that the simple dimensional analysis
(with H=1/2) proposed byLovejoy et al.(1995) does not
hold on continents.

6.1.3 Continental margins

In addition to the continents and oceans, it is also of interest
to consider the statistics of the transition region from one to
the other, i.e. the continental “margins”. These regions have
very large topographic gradients and may therefore have a
differentH . Also, since Sect.6.2deals with the global anal-
ysis of topography, i.e. the combined analysis of continents
and oceans (on the same transect), this region is important.
So we apply the same procedure as for continents and oceans
on 5 square regions that include a continental margin (not
shown on Fig.15, but very near the squares already drawn).
The final universal parameters are given in Table4. As can
be seen, once again theα andC1 parameters do not differ
significantly from those of continents and oceans, but theH

parameter is significantly higher. This can also be seen from
the scatter plots (Figs.21 and 22). It is not clear what is
the physical explanation for this higher value ofH for con-
tinental margins, except that it implies a smoother variation
from high to low altitudes. Since the algorithms used to in-
terpolate between continents and oceans smooth the data, we
should be cautious in our interpretation of this result.
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Fig. 22.Scatter plot of the parameters (C1, H ) for the three different
types of region (circles, stars and X’s represent continents, oceans
and continental margins respectively).

6.2 Global topography analysis

In this section, we use power spectra and trace moments to
analyze the four DEMs. For convenience, the data are an-
alyzed in 1-D (transects) that are chosen so as to maximize
the range of scales analyzed (i.e. we take the longest possible
transects on each DEM). The regions analyzed are shown on
Figs.15 (ETOPO5),16 (GTOPO30 and the U.S. DEM) and
17 (Lower Saxony DEM). See Table3 for details. In the ini-
tial analysis of ETOPO5, only 500 transects from a narrow
strip around the equator are used. This is done in order to ob-
tain a relatively constant spatial resolution (the original DEM
has constant angular resolution), so that it can be compared
with the results of the other DEMs. Below, we also analyze
the ETOPO5 data as a function of angular resolution (using
all the 2160 transects of the data set).

6.2.1 Power spectrum

Figure23 shows the results of the power spectrum analysis
over the four DEMs (the spectrum is on the narrow strip for
ETOPO5). The log/log plots on Fig.23 give straight lines
over 6 orders of magnitude (the individual values ofβ are
given in Table5), indicating that the scaling is well respected
from planetary scales down to a few meters. In fact at 40 m,
there is a “bump” that breaks the scaling in the Lower Sax-
ony spectrum. The same break in the scaling is also observed
in the trace moments analysis (see Sect.6.2.4). This break
can probably be explained by the presence of trees (irreg-
ular white patches on Fig.17) on the Lower Saxony DEM
(Gagnon, 2001). Below we will concentrate on a tree-free
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Fig. 23. Log/log plot of the spectral energy versus the wavenum-
ber for the four DEMs. From right to left: Lower Saxony (with
trees, top), Lower Saxony (without trees, bottom), U.S. (in grey),
GTOPO30 and ETOPO5. A reference line of slope−2.10 is on the
graph to show the overall slope of the spectra. The small arrows
show the frequency at which the spectra are not well estimated, ac-
cording to Eq. (13) (for ETOPO5, it is well estimated on the whole
range). The “semi error bar” symbols indicate the amount of offset
due to the resolution dependent factorλK(2) (see Eq.14for details).
Figure taken fromGagnon et al.(2003) with some modifications.

part of the DEM to avoid problems (indicated on Fig.17).
Its power spectrum is also shown on Fig.23: we can see that
it follows the “overall” spectrum, hinting at scaling down to
the meter scale. The fact that the spectrum containing trees
is shifted vertically compared to the tree-free one is easily
explained. Trees are not part of natural topography, they are
superposed on top of it; they thus add spectral energy to the
spectrum, resulting in a vertical shift. The spectrum of the
full ETOPO5 data set is given in Fig.24. It is straight over
≈2.7 orders of magnitude and the value ofβ is given in Ta-
ble 5. We can see that the values ofβ are similar for the
narrow strip analysis and the full analysis.

6.2.2 Quantitative analysis of insufficient dynamical range

Before interpreting the data further, we must consider the ef-
fects of artefacts due to the inadequate dynamical range of
the DEMs. The following rough argument can be used to
find the wavenumberkmax at which the spectrum starts to
be corrupted by this effect. Let1hmax=hmax−hmin be the
maximum range of altitude on the data set and1hmin the
smallest possible nonzero difference on the data set (which
is equal to the height of one unit of vertical discretization).
The ratio1hmax/1hmin defines the dynamical range of the
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Table 5. Universal multifractal parameters for the four DEMs (and other studies).

Data sets Horizontal Regions analyzed β α C1 H References
resolution (in pixels)

ETOPO5 (narrow strip) ≈10 km 500×4000 2.17 1.72 0.14 0.71 —
ETOPO5 (full analysis) ≈10 km 2160×4000 2.12 1.81 0.13 0.69 —
GTOPO30 ≈1 km 1225×4096 2.04 1.77 0.08 0.60 —
U.S. 90 m 2500×65536 2.08 1.51 0.09 0.61 —
Lower Saxony 50 cm 3000×6000 1.86 2.00 0.17 0.60 —
Global parameters — — — 1.79 0.12 — See Sect.6.2.5
Deadman’s Butte 50 m 512×512 1.93 1.9 0.045 0.51 Lavallée et al.(1993)
French topography 1 km 512×512 — 1.7 0.075 — Lavallée et al.(1993)
U.S. 90 m 20×512×512 1.91 1.70 0.07 0.52 Pecknold et al.(1997)

data set. Because the spectrum of a scaling process is a de-
creasing power law, the amplitude of thekmin=1 sinusoid
is roughly proportional to1hmax (or E(kmin)1k≈1h2

max)
and the lowest possible amplitude (which is proportional
to 1hmin) roughly corresponds to thekmax sinusoid (or
E(kmax)1k≈1h2

min), hence(
1hmax

1hmin

)2

≈
E(kmin)

E(kmax)
=

(
kmin

kmax

)−β

(12)

whereβ is the spectral exponent. If the minimum/maximum
heights on the transectshmin andhmaxare measured in nondi-
mensional digital counts and the wavenumbers in nondimen-
sional inverse pixels, then we have

kmax ≈ (hmax − hmin)
2/β (13)

The wavenumbers at which this formula predicts that the
spectra start to be corrupted are shown with arrows on
Fig. 23. This approximate formula works particularly well
for the U.S. spectrum, where it explains the drop in the high
frequencies. In fact, this problem of insufficient dynamical
range, which is related to the problem of insufficient statis-
tics and the statistical nature of scale invariance (i.e. if more
and more realizations are analyzed, the probability of hav-
ing higher/lower altitudes increases, so it increases the dy-
namical range and the chance to observe good scaling over
that range), can probably explain some scale breaks seen
in the literature that are interpreted as characteristic scales
of the process. There is also the problem of oversampling
(see Sect.4) that can lead to a fall-off of the spectra at high
wavenumber.

An important point is the fact that the spectra from our dif-
ferent data sets fall on a single straight line. Note here they
are all in the same units and are only shifted in the vertical
by a small multifractal correction determined by K(2) (see
below). In addition, the range of scaling of each data set is
roughly 3 orders of magnitude and their ranges overlap. This
point is important: the overlap makes it clear that the high
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Fig. 24. Log/log plot of the spectral energy versus the wavenumber
for ETOPO5 (full analysis).

wavenumber fall-offs or flattenings are artefacts of the par-
ticular data set. It also suggests that the corresponding scale
breaks that are attributed to physical characteristic scales in
the literature are artefacts. This result is quite different from
that ofSayles and Thomas(1978) who argued that surfaces
(natural and artificial) exhibited scaling over 8 orders of mag-
nitude. In their case, the range of scaling of their individual
data sets was very limited (they used 23 data sets to cover
their 8 orders of magnitude) and the shifts in spectral ampli-
tude were made more or less arbitrarily (Berry and Hannay,
1978) in order that they would line up over a wide range. In
Fig. 23, only the Lower Saxony spectrum (with trees) does
not follow the overall line, but the tree-free subsection does
line-up. In our case, the vertical displacements are not arbi-
trary so the wide range of scaling is significant.
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Fig. 25. Log/log plot of the normalized trace moments ver-
sus the scale ratioλ=LDEM/l for each DEMs. The values of
q of each trace moments are, from top to bottom, 2.18, 1.77,
1.44, 1.17, 0.04, 0.12 and 0.51. Upper left corner: ETOPO5
(narrow strip analysis),LETOPO5=40 000 km; upper right cor-
ner: GTOPO30,LGTOPO30=4096 km; lower left corner: U.S.
DEM, LUS = 5898 km; lower right corner: Lower Saxony DEM,
LLower Saxony= 3000 m.

6.2.3 Multifractal resolution corrections to spectral ampli-
tudes

The small shifts in the vertical are due to the resolu-
tion dependence of the multifractal noisesφλ and the
fact that the different data sets have quite different spa-
tial resolutions. To see this, consider the fractional inte-
grations implied by the convolutions in Table1. Since
the Fourier transform of a convolution is a multiplication
and the spectrum is determined by the square of the ab-
solute transform, we haveEfBm

h (k)=EfBm
φ (k) |k|

−(1+2H)

and EFIF
h (k)=EFIF

φ (k) |k|
−2H for the height spec-

tra, where the noise spectra areEfBm
φ (k)∝σ 2 and

EFIF
φ (k)∝〈φ2

λ〉 |k|
−(1−K(2))

=λK(2)
|k|

−(1−K(2)). We thus
have

EfBm
h (k) ∝ σ 2

|k|
−(1+2H)

EFIF
h (k) ∝ λK(2)

|k|
−(1+2H−K(2)) (14)

¿From Eq. (14) we can see that in addition to the multifrac-
tal correction to the spectral exponent, there is also a res-
olution dependent factorλK(2), whereλ is the scale ratio
which is inversely proportional to the resolution of the DEM.
When comparing spectra from data sets having different in-
trinsic resolutions, there will be an additional offset of this
amount. For example, using the nominal resolutions 10 km,
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Fig. 26. Log/log plot of the normalized trace moments versus
the scale ratioλ=LETOPO5/l for ETOPO5 (full analysis). Here
LETOPO5=40 000 km. The values ofq of each trace moments are,
from top to bottom, 2.18, 1.77, 1.44, 1.17, 0.04, 0.12 and 0.51.

1 km, 90 m and 50 cm for the four different data sets, we see
that using the “global” valueK(2)=0.22 (see Sect.6.2.5),
the corrections necessary to bring them all to an “effective”
50 cm resolution are 8.84, 5.32, 3.13 for 10 km, 1 km, 90 m
respectively. We see from Fig.23 that these corrections con-
siderably improve the alignment of the spectra.

The spectra of Fig.23 are from continents (except for
ETOPO5, which is a continents/oceans mix). To calculate
the theoretical spectral exponent predicted by the univer-
sal multifractal model, one must use theH value of con-
tinents (Hcontinents=0.66, see Table4) and the multifractal
correctionK(2) (calculated with the global values ofα and
C1 found with trace moments, see Sect.6.2.5). This gives
β=1+2Hcontinents−K(2)=2.10. A reference line of slope
−2.10 is shown on Fig.23 to show that the overall slope
is close to−2 (in rough agreement withVening Meinesz
(1951)), but is also close to the one predicted by univer-
sal multifractals (with parametersα=1.79, C1=0.12 and
H=0.66).

6.2.4 Trace moments analysis and the universal multifrac-
tal parameters

Trace moments analysis was performed on the four DEMs;
see Figs.25–26. Reasonable straight lines are obtained on
all the DEMs, showing that Eq. (7) is obeyed. The slopes of
the straight lines are equal toK(q): the fact that the slopes
are nonzero implies that the fBm model is not adequate and
their nonlinear variation withq implies that the monofrac-
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Fig. 27. Plot of the moment scaling functionK(q) as a function of
the momentq for the four DEMs (+’s correspond to Lower Saxony,
squares to U.S., X’s to GTOPO30 and circles to the narrow strip
analysis of ETOPO5).

tal β-model is not adequate either (this is quantified below).
The point at which all the trace moments converge corre-
sponds to the “effective” outer scale of the cascadeLeff. If
there were an infinite ensemble of topographies, it would be
the largest scale of the cascade. In the extreme case where
we have a unique data set,Leff is bounded above by the scale
of the data set; the trace moments will point toλ=1 (roughly
as observed). If the scaling is broken,λ=1 would be less
than the largest scale of the data set. It is interesting to note
that the effective outer scale of ETOPO5 is≈20 000 km (see
Fig. 25, upper left corner). This means that the variability
of the topography is the same as that of a cascade starting
at approximately 20 000 km, which is the size of a great cir-
cle (the maximum possible size on the earth). In the case of
GTOPO30 (Fig.25 upper right corner) and the U.S. DEM
(Fig. 25 lower left corner), the effective outer scale is larger
than the DEM outer scale, presumably differing slightly be-
cause the fitted lines on Fig.25 (upper right and lower left
corners) do not reproduce the flattening of the trace moments
at highλ (as discussed in Sect.6.1.2).

To see more clearly the exact form of the corresponding
K(q)’s, these are shown on Figs.27 and28. Although the
K(q)’s are nonlinear, the asymptotes are linear. This lin-
ear behavior is the signature of a multifractal phase transi-
tion (Schertzer and Lovejoy, 1992). This phase transition is
caused by the fact that, on a given realization, there is a max-
imum singularityγs (the highest gradient on the dataset), im-
plying that forq>qs , K(q) becomes linear:

K(q) = γs(q − qs) + K(qs) for q > qs (15)

0.0 0.5 1.0 1.5 2.0

q

-0.05

0.00

0.05

0.10

0.15

0.20

0.25

K
(q

)

Fig. 28. Plot of the moment scaling functionK(q) as a function of
the momentq for ETOPO5 (full analysis).

From Eq. (15) and Fig.27, we see that the values ofqs can be
estimated by measuring the value ofq whereK(q) becomes
linear; we findqs≈3 for all the data sets. Forq>qs , K(q)

is determined by the largest singularity presentγs (the statis-
tics “saturate”). Note that these are second order multifractal
phase transitions; the second derivative ofK(q) is discon-
tinuous. First order transition due to divergence of statistical
moments may also occur and may explainBouchaud et al.
(1993)’s results on fracture surfaces.

In order to test the universality hypothesis and estimateα

andC1, theK(q) curves of Figs.27 and28 are fitted with
Eq. (7) in the range 0<q<2<qs (to obtain accurate moment
estimates). The values obtained for the parameters can be
seen in Table5. These results can be compared to other stud-
ies on topography (see Table5). Even if those analyses are
on different parts of the world and are on different ranges
of scales, the parameters obtained are not too different from
those found here. Of course, it is important to remember that
α andC1 are statistical, and that the data sets here are larger.
Note also that the parameters for the full analysis of ETOPO5
are quite similar to the narrow strip analysis; this justifies the
use of only 500 transects to compare with other datasets.

6.2.5 Global moment scaling function

The similarity between theα andC1 parameters between all
these studies suggests that it may be possible to introduce
a “global” K(q) function that would describe the statistics
of the Earth’s “topographic” noiseφ at all scales. This is
certainly the simplest hypothesis that one could make about
the Earth’s noise. Even in the case with both continental
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Fig. 29. Log/log plot of the normalized trace moments versus
the scale ratioλ=Louter/l (with Louter=20 000 km) for the three
DEMs (circles correspond to ETOPO5, X’s to U.S. and squares to
Lower Saxony). The solid lines are there to distinguish between
each value ofq (from top to bottom,q=2.18, 1.77, 1.44, 1.17, 0.04,
0.12 and 0.51). The trace moments of the Lower Saxony DEM with
trees forq=1.77 andq=2.18 are on the graph (indicated by arrows).
The theoretical lines are computed with the globalK(q) function
discussed in Sect.6.2.5. Figure taken fromGagnon et al.(2003)
with some modifications.

and oceanic data (ETOPO5), it is reasonable to make the
hypothesis that they are described by the sameK(q), be-
cause the primary difference between the two appears to be
H (i.e. α and C1 are similar, see Sect.6.1.2). There are
also morphological differences (i.e. anisotropies) between
oceans and continents (and also between different places on
oceans/continents), but they are largely washed out by the use
of isotropic statistics (angle integrated power spectra, coarse
graining over squares at all scales in trace moments).

So here we argue that forφ, the statistics are the same at
all scales and can be described by a globalK(q) function.
A simple way to obtain an estimate of the globalK(q) is
to take the average of the parameters obtained in this study
(α=1.79±0.18 andC1=0.12±0.04, where the uncertainties
are equal to one standard deviation). To see whether this
globalK(q) is plausible we must test that the cascade is con-
tinuous from planetary scales down to small scales, i.e. to
check whether the trace moments of all the data sets lie on
straight lines when put on a single graph. However, we can-
not mechanically superpose the trace moments for the differ-
ent regional data sets. This is because (recall from Sect.5.2)
each regional data set will satisfy log〈φ

q
λ 〉=1 at λ=1 (with

λ=1 corresponding to the outer scale of the regional data,
i.e. different for each). The reason for this apparent contra-

diction is that the regional data sets are missing variability
due to the planetary scales down to their outer scales. How-
ever, knowing the globalK(q), we can estimate this miss-
ing variability and adjust the trace moments by a theoreti-
cally determined amount. The first step is to fix the outer
scaleLouter of the entire process, approximately 20 000 km
(see Fig.25). Next we calculateλ=Louter/l of each DEM
(this corresponds to a shift of the trace moments on the hor-
izontal axis). Then, in order to take into account the fact
that the variability of the regional data sets is artificially low,
we use the basic factorization property of cascades. Let
λlarge=L/(data set scale) be the ratio of the missing range
of scales. Ifλsmall=(data set scale)/(pixel scale), then fac-
torization (valid for the cascade quantityφ but not directly
for h) means

〈φ
q
λlargeλsmall

〉 = 〈φ
q
λlarge

〉〈φ
q
λsmall

〉 = λ
K(q)

large〈φ
q
λsmall

〉 (16)

whereK(q) is the globally averagedK(q) discussed previ-
ously and〈φ

q
λsmall

〉 is obtained directly from the analysis of
each data set. On a log/log plot, the multiplicative factor due
to the variability of the larger scales becomes a linear shift in
the trace moments, corresponding to a theoretically predicted
linear vertical shift in Fig.25. Figure29shows the trace mo-
ments of three DEMs shifted according to Eq. (16) (the trace
moments of GTOPO30 are not shown in Fig.29 because its
scaling range is already contained in the U.S. range, so we
avoid overcrowding the graph).

As can be seen from Fig.29, the lines obtained are not
exactly straight, but oscillate slightly around a straight line
(this is more apparent for large values ofq). These oscilla-
tions may be due to scaling anisotropies, which are only par-
tially eliminated by our isotropic analyses (see the ensemble
spectrum of “Mt. Multi” in Sect.2.3 for a similar type of
behaviour due to anisotropy). With this caveat, the trace mo-
ments obtained on Fig.29are nearly straight and continuous
over nearly 6 orders of magnitude (there is a break at≈40 m
that is probably due to trees (Gagnon, 2001)), meaning that
the Earth’s topography is multiscaling over that range. We
can quantify this statement on multifractality by estimating
the error of the fit. To do this, we calculate the deviation (nor-
malized residuals)1 between theory (i.e. the straight lines on
Fig. 29) and data with the following formula:

1 =

∣∣∣∣log10
(
〈φ

q
λ 〉

)1/q
− log10

(
λK(q)

)1/q
∣∣∣∣ (17)

whereK(q) is the global moment scaling function discussed
above and we average over 0<q<2 and the scale range
20 000 km to 40 m. For the estimated global parameters
α=1.79 andC1=0.12, we get1̄=0.16, corresponding to
±101̄

=±45% in the statistical moments, with the overbar
indicating averaging over allλ’s andq ’s. Considering that
we are dealing with four different data sets that cover nearly
6 orders of magnitude in scale, that we are estimating allq<2
moments and that the fit is done with only two parameters
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(with no optimization of the parameters nor minimization of
error), then the fit is fairly good. This is an indication that
the hypothesis of a globalK(q) is a reasonable assumption
for the isotropic noise. In contrast, the use of a multiplica-
tive monofractal model (α=0) to fit all the curves would give
1̄=0.55 (or ±355% in the statistical moments). Fractional
Brownian motion cannot be used to explain these results ei-
ther, becauseK(q) 6=0 whereas fBm predictsK(q)=0. For
example, taking a typical well estimated trace moment at
q=2.17, we obtain a slopeK(2.17)=0.24±0.03, which is
8 standard deviations away from zero. For otherq and other
data sets,K(q) is typically 5–10 standard deviations from
zero. The trace moments are therefore not flat, definitely rul-
ing out the monofractal fBm model.

7 Conclusions

The earth’s topography is a fundamental geosurface. It is im-
portant in numerous applications and its immediacy has chal-
lenged generations of mathematicians, physicists and geosci-
entists to devise realistic descriptions and models. Its high
variability over huge ranges of scales continues to defy tra-
ditional scale bound notions of variability. In this paper we
showed how to tackle this variability using scaling ideas. We
first showed how new ideas of scaling can be used to make re-
alistic models of topography with interesting morphologies.
We then showed that in real topography scaling is accurately
obeyed over wide ranges of scale and quantified that state-
ment.

Surprisingly, the notions of scaling used in modeling
and analyzing the earth’s surface have not changed much
since their early development: they are still generally quasi-
Gaussian (the monofractal fBm). To appreciate the restric-
tive nature of this framework, we recalled that scaling mod-
els are generally based on mathematical singularities which
are the basic scaling functions. A general feature of such
singular models is that they produce large, strong structures
which can stand out even in the limit when an infinite num-
ber are superposed. The Gaussian case is exceptional in
this regard; the morphology of the singularities gets “washed
out” in the infinite limit since all singularities have nearly the
same strengths. In order to achieve interesting and realistic
morphologies/textures, we need not only more wild statisti-
cal variability but also singularities with interesting shapes.
While the former is possible using multifractals, the latter
is possible with the use of scale changing operators, genera-
tors and scale functions, i.e. in the framework of Generalized
Scale Invariance. We illustrate the resulting subtle interplay
between singularity shapes, statistical variability and result-
ing morphology with many examples from numerical simu-
lations. From the simulations, one can see that multifractals
give rise to subtle hierarchies of mountains and plains that
are very appealing visually when compared to fBm or fLm.
We also show with the help of simulations and pedagogical

examples, that the hypothesis of wide range scaling is well
defined and not in contradiction with other results in the lit-
erature. The existence of apparent breaks in the scaling is in
fact a result of normal multifractal variability.

All of this shows that anisotropic multifractals hold
promise for modelling topography. But this is only a proof of
principle: what about real topography? In the second part of
the paper, we showed that, indeed, topography is multiscal-
ing over the largest scale range – nearly 6 orders of magni-
tude – and on the largest data sets – a hundred times the data
used in previous studies. Restricting ourselves to isotropic
statistics (i.e. averaged over all directions), the fundamen-
tal result is that from planetary scales down to roughly 40 m
(broken apparently due to the indirect effect of trees), the
scaling is remarkably accurately followed. Indeed, not only
can the noise statistics for weak and strong gradients (low
and high order moments) be well represented by a unique
moment scaling functionK(q) parametrized by two basic
exponents (α and C1), the overall agreement between the
noise statistics and that predicted by the two parameters is
±45%. In contrast, theβ-model (monofractal noise,α=0)
gives an error of±355% and the fBm (homogeneous noise,
K(q)=0) is typically 5–10 standard deviations away from
the data, hence the inadequacy of monofractal models.

By systematically comparing various subregions of the
globe, we also showed that while the continents, oceans and
continental margins have roughly the same noise statistics
(charaterized byα andC1), their height statistics (character-
ized byH ) were significantly different (see Table4). This
suggests that the physical mechanisms responsible forH

(whatever they are) are different, while the ones responsible
for α andC1 are similar. It also justifies the use of a unique
global moment scaling to characterize the Earth’s topogra-
phy as a whole (see Table5 for a summary of the parameters
obtained).

While the finding that each topographic level set has its
own fractal dimension surely restores a degree of realism
to the popular monofractal picture of topography, the anal-
yses done in this paper are isotropic (angle averaged): the
scale by scale and location by location anisotropy has largely
been washed out. As discussed previously, the development
of Generalized Scale Invariance has shown that – at least in
principle – realism can be restored by allowing the notion
of scale itself to be defined by the physics. In other words,
Generalized Scale Invariance could be used to model to-
pographies with various morphologies in different locations
– where the scale changing operatorTλ would be constrained
by the physics responsible for these morphologies – all of this
in a scaling framework. The development of realistic topo-
graphic models and the corresponding anisotropic analysis
techniques are clearly the subjects of future research.

The “complete explanation” of topography can then be
roughly divided in two parts: its description and its under-
lying physics, with a non-trivial link between the two. This
paper mostly deals with the description part and an implied
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symmetry constraint on the underlying mechanisms. An ac-
curate and complete characterization of the statistical prop-
erties of topography is important in applications where it is
used as a boundary, such as atmospheric/oceanic currents
models, synthetic aperture radar interferograms or radar scat-
tering models. It potentially explains many of the classical
scaling relations of river basin hydrology. More generally,
just as energy conservation is an often used model constraint,
so should scale invariance: scale invariance and multifractal-
ity can be useful model selection criteria.
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