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Abstract. This paper shows how modern ideas of scalingcontinents, oceans and continental margins. Our analyses
can be used to model topography with various morpholo-show that no significant variation is found far,(C1) and
gies and also to accurately characterize topography over widehat the third parameteif, which is a degree of smoothing
ranges of scales. Our argument is divided in two parts.(higher H means smoother), is variable: our estimates are
We first survey the main topographic models and show thatH=0.46, 0.66, 0.77 for bathymetry, continents and continen-
they are based on convolutions of basic structures (singulartal margins. An application we developped here is to use (
ities) with noises. Focusing on models with large numbersC1) values to correct standard spectra of DEMs for multifrac-
of degrees of freedom (fractional Brownian motion (fBm), tal resolution effects.
fractional Levy motion (fLm), multifractal fractionally inte-
grated flux (FIF) model), we show that they are distinguished
by the type of underlying noise. In addition, realistic mod- 1
els require anisotropic singularities; we show how to gener-
alize the basic isotropic (self-similar) models to anisotropic{ 1 nodels and descriptions
ones. Using numerical simulations, we display the subtle
interplay between statistics, singularity structure and result-The Earth’s topography is extremely variable over wide
ing topographic morphology. We show how the existenceranges of space-time scales. It strongly varies from one loca-
of anisotropic singularities with highly variable statistics can tion to another and from one scale to another, making it hard
lead to unwarranted conclusions about scale breaking. to tackle with classical (scale bound) geostatistics. The de-
We then analyze topographic transects from four Digi- velopment of realistic descriptions and models of topography
tal Elevation Models (DEMs) which collectively span scales has long been a basic challenge not only to geoscientists, but
from planetary down to 50 cm (4 orders of magnitude largeralso to physicists and mathematicians (d2grrin (1913).
than in previous studies) and contain more tharl@® pix- An accurate description of topography could be used to put
els (a hundred times more data than in previous studies). Weonstraints on any first principles geophysical model of to-
use power spectra and multiscaling analysis tools to study theography, shed some light on the internal mechanisms of the
global properties of topography. We show that the isotropicEarth and help explain many aspects of surface hydrology.
scaling for moments of order2 holds to withink=45% down  More practically, such a description could also be used as in-
to scales~40m. We also show that the multifractal FIF put in various applications involving topography/bathymetry
is easily compatible with the data, while the monofractal as a boundary condition. Examples include the use of a
fBm and fLm are not. We estimate the universal parametersandom bathymetry model as input in a simplified oceanic
(o, C1) characterizing the underlying FIF noise to be (1.79, currents model4lvarez et al, 2000, Guarnieri(2002 who
0.12), wherex is the degree of multifractality @«<2, 0 uses multifractal models in synthetic aperture radar interfero-
means monofractal) an@; is the degree of sparseness of the grams androsei et al(2003 who use monofractals in mod-
surface (&C1, 0 means space filling). In the same way, we els of radar scattering by the Martian surface.
investigate the variation of multifractal parameters between The problem is that descriptions and models are funda-
mentally linked. On the one hand, an accurate description
Correspondence tal.-S. Gagnon of topography is needed to place constraints on geophysi-
(gagnonjs@physics.mcgill.ca) cal models; on the other hand, without a basic model of the
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542 J.-S. Gagnon et al.: Multifractal earth topography

topography, it is not clear what type of description should child, 1980, many fractal studies of topography were made
be sought . Should a characterization of the topography ands well as the corresponding (gaussian) simulations of topog-
its morphology necessarily contain a wide range of scalesraphy.

or is it meaningful to filter out all but a narrow range and  Since then, there have been many indirect estimates of
focus on characterizing and modeling these while ignoring(supposedly unique) fractal dimensions on topographic tran-
the others? The conundrum of requiring a model simply insects and surfaces using various methods to see if topogra-
order to analyze and characterize superficially “raw” data isphy respects “fractal” statistics. The indirect methods start
well illustrated by the development of scaling ideas and theirby postulating a priori that a unique fractal dimension ex-
applications to topography. Even if we limit ourselves to ists, and then exploit special monofractal relations to deduce
scaling characterizations and models, we still need more prethe presumed unique fractal dimension from structure func-
cise ideas about the types of scaling (isotropic, anisotropictions (variograms), power spectra or other statistical expo-
monofractal, multifractal). Indeed, we argue that overly re- nents; see for examplBurrough (1981); Mark and Aron-
strictive (isotropic, monofractal) frameworks have lead nu- son(1984) for the variogram methodsilbert (1989; Huang
merous researchers to throw out the baby with the bathwategnd Turcotte(1989 1990 for the power spectrum method
effectively dismissing all wide range scaling approaches asandDietler and Zhan@1992 for the “roughening exponent”

unrealistic. method. See alsKlinkenberg and Goodchil1992); Xu et
al. (1993; Gallant et al.(19949) for reviews and discussions
1.2 Scaling in topography of the results of such monofractal processes.

In contrast to indirect monofractal based inference, di-

The quantitative use of scaling laws in topography goes backect estimates of fractal dimensions of topography and
at least tovening Meinesz(1951), who used the spherical bathymetry (using box-counting for example) are surpris-
harmonic expansion of the Earth’s topograph{Pody(1922 ingly rare (e.g.Barenblatt et a).1984 Aviles et al, 1987
to show that the power spectrufiik) of topography (where  Okubo and Akj 1987 Turcotte 1989. For monofractal
k is a wavenumber) roughly follows a power l&w” with fields (such as fBm), the box dimension is independent of
a spectral exponeri~2 (the original results are ikening  the threshold used to define the setvejoy and Schertzer
Meinesz(1951), but the essential points that are quoted here(1990 show that for topography this is quite unrealistic. An-
can be found irHeiskanen and Vening Meine§¥958). Af- alyzing the topography of France at 1km resolution, they
ter his pioneering workBalmino et al.(1973 made similar  showed that the box dimension systematically decreases
analyzes on more modern data sets and confirmed Veninfrom 2 (the maximum possible) to 0 (the minimum) as the
Meinesz's resultsBell (1975 followed, combining various  altitude is increased. This shows that monofractals are at best
data sets (including those of abyssal hills) to produce a coman approximation of topography near the mean.
posite power spectrum that was scaling over approximately As argued inLovejoy and Schertzef1990Q; Lavallée et
4 orders of magnitude in scale also wigh=2 (here and be- al. (1993, it is more appropriate to treat topography as a
low we use the exponent of the angle integrated spectrumscale invariant field, generally requiring multifractal mea-
the angle averaged spectrum has expofenD—1, where  sures and exponent functions (rather than a unigue scaling
D=2 is the dimension of space). More recent spectral studexponent, such as the fractal dimension). An infinity of frac-
ies of bathymetry over scale ranges from 0.1 km to 1000 kmtal dimensions (one for each threshold or equivalently one
can be found iBerkson and Matthewd 983 (8~1.6—1.8), for each statistical moment) are then needed to completely
Fox and Haye$1985 (8~2.5), Gibert and Courtillo{1987 characterize the scaling. A few multifractal studies of topog-
(B~2.1-2.3) andBalmino (1993 (~2). Attempts were raphy that show that it is multiscaling in various regions of
even made ayles and Thomad 978 to generalize this the world and over various ranges in scale can be found in
to many natural and artificial surfaces: the resulting specd.ovejoy and Schertzg1990); Lavallee et al(1993; Weis-
trum exhibited scaling over 8 orders of magnitude with2  sel et al(1994); Lovejoy et al.(1995; Pecknold et a1997);
(see however the critique Berry and Hannay1978 and  Tchiguirinskaia et al(2000; Gagnon et al(2003. A simi-
Sect.6.2.2. lar mono vs multifractal issue also arises in the study of frac-

If the topography has a power law spectrum, then iso-tures and other artificial surfaces (e.§lorel et al, 2000);
lines (such as coastlines) are fractal sets, they have no tawhile the monofractal model is quite popular, isolated re-
gent Perrin 1913 and are nonrectifiable (infinite in length) sults Bouchaud et al.1993 Schmittbuhl et a].1995 point
(Steinhaus19549). In particular,Richardson(1961) found to multifractality.
that the length of various coastlines varies in a power law There is also much indirect evidence for the scaling of
way with the length of the rulers used to measure thigiamn- the topography. For example the albedoes and surface emis-
delbrot(1967), in his famous paper “How long is the coast of sions at different wavelengths are nonlinearly coupled with
Britain”, interpreted these scaling exponents in terms of frac-the topography over wide ranges of scales. Since scale in-
tal dimensions. Later, with the advent of fractional Brownian variance is a symmetry principle, if there is a break in the
motion (fBm) models of terrainMandelbrot 1975 Good- scaling of the topography it should be observed in the lat-
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ter and vice versa. The findings bfarvey et al (2002 and acteristic topography of the sea floor. In the framework of
Gaonac’h et al(2003 that the remotely sensed radiation plate tectonicsTurcotte and Oxburgli1967) (seeParsons
fields from volcanoes are multifractal therefore suggest theand Sclate(1977) for a review) have reproduced the char-
multifractality of the corresponding topographies. Similarly, acteristic decrease of the altitude from the ridge using the
the scaling of surface magnetic susceptibilRjlkington and  equation of heat transport with appropriate boundary condi-
Todoeschuck1995, rock density (eary, 1997 Lovejoy et  tions, givingAhxAx/2 (see Tabldl). As can be seen from
al,, 2009, and the multiscaling of geomagnetisiroyejoy Parsons and Sclat€¢t977), the general approach is to start
et al, 20013 Pecknold et a).2001) and rock sonic velocities  with a set of linear or nonlinear partial differential equations
(Marsan and Beari999 are all relevant. and simplify them (by making various assumptions and ap-
Other indirect evidence in favor of scaling and multiscal- proximations) so that they can be solved. These determin-
ing of the topography comes from hydrology, as can be seeiistic models are generally too linear to explain the variabil-
from the abundant literature on the scaling of river basin geoAty of topography Mareschal 1989, a consequence of the
morphology (see in particul&odriguez-Iturbe and Rinaldo homogeneity hypotheses that reduce the problem to a small
(1997 and the references therein). This includes the clashumber of degrees of freedom. For example, in the thermal
sical scaling of river slopes, lengths, discharges and widthdoundary layer model ofurcotte and Oxburgl1967), the
with respect to the area of the drainage basins, but also tonantle is considered to be “smooth” below the length scale
the scaling Hurst 1951 Mandelbrot and van Nes4968 of a convective cell.
and multiscaling Tessier et al.1996 Pandey et a).1998 To take into account the high number of degrees of free-
of the temporal variation of river discharges. While the river dom and the variability over a wide range of scales, it is natu-
basin geomorphology relations suggest the scale invarianceal to use stochastic approaches which are typically based on
of many orographic/erosion processes, the scale invariancifinite dimensional probability spaces. For examBe)l
of the discharges suggests the scale invariance of topodd979 uses hills with random sizes that are uniformly dis-
raphy/runoff/infiltration processes. Indeed, the ubiquity of tributed over the bottom of the ocean to model bathymetry
scaling relations in surface hydrology would be difficult to (excluding mid-ocean ridges). Because the geodynamic
comprehend without wide range scale invariance of the to-equations considered here are difficult to solve without ap-

pography. proximation, it is fruitful to consider one of the symmetries
of the problem (i.e. scale invariance), which empirically ap-
1.3 Models of topography proximates the topography over wide ranges (see 3edit.

There are two main approaches to the problem depend-
The topography of the Earth is very complex and its mor-ing on if we are interested in modeling specific processes or
phology results from diverse processes, notably tectonicather the overall outcome of all the topographic processes.
forces (faulting, folding, flexure) and erosion, under the in- The first approach is mainly used to represent topography
fluence of gravity and other factor3yrcotte 1992 Lam- within river basins and aims at modeling the effect of spe-
beck 1988 and references therein). Although “equations”, cific landsculpting processes (such as fluvial erosion, sedi-
i.e. nonlinear partial differential equations, describing the ment deposition, diffusion, etc) on topography and drainage
evolution of topography are not known, some models existnetworks. For example, in this contehasg1992) presents
to explain certain of its features. Such physical models cama model that can produce topography with scaling proper-
be divided in two main categories: those with few degreesties consistent with observations. Another model that uses
of freedom and those with many. The former are gener-scaling as a basic principle in addition to stochasticity is
ally deterministic and model narrow ranges of scale, whereashe phenomenological Kardar Parisi Zhang (KPZ) equation
the latter are generally stochastic and cover wider ranges ofKardar et al. 1986. It was originally introduced to study
scale. To date, deterministic geodynamic equations, introgrowing and eroding surfaces, but it is also used to model
ducing physical characteristic scales at the beginning, havéopography $ornette and Zhand 993 (see alsdodds and
attempted to model the topography over only a fairly narrow Rothman(2000 for a pedagogical introduction). Other tools
range of scales. At best, they predict the general trend ofised to study the causes of topographic scaling includes self-
certain features of topography but do not predict its ruggedorganized criticality Rinaldo et al. 1993, minimization of
aspect nor its fine structure. For example, the large swelenergy functionalsKinaldo et al. 1992 1996 Sinclair and
around seamount chains can be explained by thermal exparall, 1996 Banavar et a).2001) and renormalization prop-
sion of the lithosphere caused by a heat source in the mantlerties of fluvial erosion equation¥€neziano and Niemann
(hotspot, plume; see for examplambeck(1988). Another  2000ab). An extensive review of the use of diffusion-like
well known example is the bathymetry of the sea floor as-equations to model topography within river basins can be
sociated with mid-ocean ridges. The ridges are sources ofound inRodriguez-Iturbe and Rinaldd@997).
hot material coming from the mantle that create new oceanic The second approach is more aimed at reproducing accu-
crust. The material injected at the ridge crest cools off, con-rately the statistics of topography, usually over wide ranges
tracts and moves away as part of the plate, creating the chapf scales. One such popular stochastic approach based on
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Table 1. An intercomparison between various models of the topography showing the essential similarities and differences. For additional
information about notation and definitions, see Tabknd Sect3. Here D=2 for horizontal planes and the dimensibry- is the fractal
dimension of lines of constant altitude in the horizontal. The deterministic mid-ocean ridge model is represented here by a fault in unit
direction vector through the poinkg. Here the variables are nondimensionalized and the height of the fault is normalized to one. Note
thaté is a Dirac delta function. The model d@urcotte and Oxburgl1967) usesH=1/2. The monofractal fBm model is characterized

by a fractional integration of ordefi’ of a Gaussian white noise with variangé. It can also be produced by simply summing over large
numbers or random Gaussian distributed faults (see BigHere H'=H-+D/2, where the extrd/2 in the exponent takes into account

the scaling of the noisel) is the dimension of space). The vali#e=1/2 is compatible with the commonly cited valdgr=1.5 for the

dimension of topographic level sets. Note tAameans equality in probability distributions. The monofractal fLm model is a generalization
of fBm obtained by replacing the Gaussian white noise with an independent Levy noise o&kird@x It has diverging moments fgr>«.
Here H'=H+«a/2. Finally, the multifractal FIF model is a generalization of fBm and fLm. Here the multifractal ggisethe result of a

¢y (X))
fLm process withH’=D(1—1/a) and a maximally skewed Levy noigg . The resultingp, is multiplicative because it is an exponentiation
of the additive procesE;, .

continuous in scale multiplicative cascade. Mathematically, it is givepyliy)=e' X, where the generatat, (x)oc fl’\ dx’' isan

Model Altitude Altitude increments Codimension (c)
(and noise statistics) (and statistics) of level sets
Mid-ocean ridge h(x):l—fdx’”_s(i% AhoAax|H c=D—Dp
(deterministic) (No noise statistics) (No altitude statistics)Drp=1
Monofractal fBm h(x):/dx’% Al L go|AxH c=H
(stochastic) $2(x)=Gaussian white noise (|Ah|?)o|Ax|E@ Dp=D—c
H'=H+D/2 §(@)=qH
Monofractal fLm  h(x)= fdx’% AL gyl AxH c=H
(stochastic) da (X)=Levy noise (Gca<2) (|AR|?)ox|AX|E@ Dp=D—c
. __ | qH forg<a
H'=H+D/o E(q)—{oo for g>a
Multifractal FIF  h; (X)= fdx/% Ah=¢; |AX|H c(y)=max, {gH—K (q)}
(stochastic) (p1y=2K@) (|AR|9 )| AX|E @ Dr(y)=D—c(y)

§(q)=qH—K(q)

scale invariance is the fractional Brownian motion (fBm) 70’s, the significance of scaling became even more widely
model of topographyMlandelbrof 1975. In this model, to-  appreciated, especially due to the impressive fractal simula-
pography is obtained by fractionally integrating a Gaussiantions in Mandelbrot(1975 1983. Unfortunately, the initial
white noise (see Tabl&). In comparison, the fractionally enthusiasm inspired by the images and the theoretical sim-
integrated flux (FIF) modelSchertzer and Lovejoyl987) plicity of a model with a single basic exponent (the suppos-
can be viewed as a multifractal generalization of fBm: it is edly unique fractal dimension) had by the end of the 90’s
obtained by replacing the Gaussian white naps@vith no been largely dissipated. In place of the larger picture, fo-
particular relation between different scales) with a scalingcus had turned to purely technical issues: over which scale
multifractal noisep, (i.e. with long range statistical depen- range?, which fractal dimension?, what link with location or
dencies). This multifractal noise is the result of a cascaddype of terrain?, what analysis methods?, etc. The problem
(see Sect3.1), which is a scale invariant random multiplica- was that the early scaling notions were simply inadequate.
tive process (Tabld). All of the models must be strongly Two aspects in particular were totally unrealistic: the first is

anisotropic to be realistic. monofractality (uniqueness @) and the second is the re-
striction to isotropy (“self-similarity”). This last point is par-
1.4 Obijectives of the present study ticularly important, because topography possess a variety of

morphologies/textures (e.g. mountain ranges) that are highly

For more than half a century, scaling has been a feature oRNiSOtropic.
many topographic models. With the advent of fractals in the
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Today, the scale invariance symmetry principle — having
been identified with unrealistic and restrictive special cases
(i.e. isotropic monofractals) — is typically disregarded or else
limited to small ranges of scale. Unsurprisingly, it is consid-
ered to be uninteresting and unphysical. However, the histon
of symmetry principles shows that their power should not be
underestimated. The example of the symmetry principle of
energy conservation is instructive. At first confined to me-
chanical energy, it was generalized at the end of the 18th cer
tury to include heat energy. As knowledge progressed, sci
entists were repeatedly faced with the choice of either aban
doning it or generalizing it. By the mid 19th century it in-
cluded chemical and electrical energy and — even though a
a general principle, it was initially criticized as being overly
speculative and philosophical — it was proposed as a univer
sally valid physical law. In the 20th century, it continued to
be generalized to include mass-energy.

In this paper, we argue that two key advances make
scaling applicable to topography: the generalization from
mono to multifractals and the generalization from isotropic
to anisotropic scaling. Our argument is divided in two parts.

In the first part of the paper, we survey and contrast vari-gig 1. Numerical simulation oMandelbrot(1975's random fault
ous topographic models (both deterministic and stochastic)implementation of fBm. The faults are power-law shaped (see Ta-
emphasizing their similar mathematical structures. We alsale 1, first and second rows) and their location and orientation are
explain, with the help of simulations, how one can obtain arandomly chosen. The simulation is done with Gaussian statistics
wide diversity of morphologies/textures by exploiting scaling andH=1,/2, showing development with 1, 4, 16 and 256 faults (left
and letting the geodynamics determine the notion of scaleto right, top to bottom). Th&urcotte and Oxburgfl967) model is

this is done in the framework of Generalized Scale Invari-in the upper left corner (one fault case).

ance Gchertzer and Lovejgyl985. The simulations allow

us to begin the exploration of the subtle interplay between . . .
singularities, structures, statistics and overall morphologies, The second issue concerns the multiscaling and the

We also clarify some misconceptions about multifractals and global fproplertle? c':f topograplry. More preC|se_Iy, t':' € large
multifractal variability with the help of simulations and ped- range of scales of this study allows us to quantify the extent

agogical examples. Among other things, we show how su-f"”c t_he range of topographic muItis.ca_lling gnq to characterize
perficially conflicting monofractal results can be understood!tS 'Sotropic (angle averaged) statistics with just three funda-
as a result of limited statistics combined with multifractal mer\tal e':x_p'onenta, C1 aqu (see Sects3.2.and3.3 for
variability. their definitions and meanings).

In a previous paperGagnon et aj.2003, we concen- The rest of the paper is organized as follows. Secf#ion

trated on the mono vs. multi fractal issue in rough surfaced'scusses the key issues of singularities, statistics and mor-

physics using topography as an example. We clearly demon.phomgy with many pedagogical examples, the aim of which

strated that on purely statistical grounds, monofractals arés tok convince .th”e readebrl thaft an 'Tm_ls_otr;)pm d5ﬁgl|nghframe—
not sufficient to describe topography and that multifractals WO'K 1S potentla_l y capable ot explainingimode mg_t e to-
are needed. We elaborate on this in the second part of th ography. Sectio introduces some notions of multifractal

paper. In addition, the use of the large topographic data set edorK. Sec’[lloqgﬂ, anﬂS'present, respectively, the gata sets

that have become available in the last few years allows the jndnd the ana:jyss r’:ec niques (po(;/ver ;‘peg;umhan trac$ mo-

vestigation of two issues which go beyond the mono versuénents) used In the present study. Seckors the core o

multifractal debate. the paper and presents the results of our analyses. We finally
The first issue concerns the nature of the differences beStMMmarize our results and conclude in Sect.

tween continents and oceans. Continents and oceans do not

have the same geological his_tory, o) that their topographie§ Singularities and morphology

are probably the result of qualitatively different (but still pos-

sibly scaling) processes. For example, the erosion on con2.1 A survey of scaling models of topography

tinents is due to water, wind and glaciers, whereas in the

oceans it has probably been due to marine currents (little erowwhen over a range of scales, the topography has no char-

sion, mostly sediment deposition). acteristic scale, it is natural to model it using combinations
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546 J.-S. Gagnon et al.: Multifractal earth topography

of scale invariant basis functions, i.e. mathematical singu-2.2 Scale functions and anisotropic singularities
larities. Perhaps the most famous such singular model is
the Turcotte-Oxburg model for the variation of altitude as In order to change the shape of the singularities while con-
a function of distance from mid-ocean ridg&aifcotte and ~ serving the basic statistical properties of the process, it turns
Oxburgh 1967. Mathematically the form is indicated in Ta- out to be sufficient to make the replacement everywhere in
ble 1 (first row) and a simulation is displayed in Fig(upper ~ Tablel:
left hand corner)Mandelbrot(1975 generalized this model , ,
by making singular faults the basic shapes and then summing< — | = X=Xz D — De (1)
Ia.rge numbgrs of faylts with ranFjom centers and orientati0n§_e_ to replace the usual distance by a new “scale function”
Wlth Gaussian _d|str|buted amplitudes. The result_ is a G_aus-and usual dimension of spageby an “elliptical dimension”
sian process with long range (power law) correlations; Fig. p, | These new quantities satisfy the following basic scaling
shows the first few construction steps. Due to the Ce”tralequation:
limit theorem (the gaussian special case), a process with the
same statistical properties can be produced by using singw x| = A7 x| ; T =A1"¢
larities of a quite different shape. Talle(second row) in-
dicates a model with point rather than line singularities; in WhereT}, is a scale changing operator which reduces the scale
this form the mathematics is more convenient for compari-Of & vector by a factok. In order for the scale function to
son with the other singular topography models summarizedPe scaling (i.e. have no characteristic scale), it must satisfy
in Table1. In this case, in the limit of many faults, because 9roup properties, hence it must admit a generétas indi-
all of the singularities have nearly the same amplitude (Gauscated. In the simplest “linear” casé, is a matrix. Once all
sian variables are rarely more than a few standard deviationfe unit vectors; are specified, the scale equatianiquely
from the mean), the basic Singu|arity Shape is not important:specmes the scale of all the other vectors; all the nonunit
we end up with a rough texture but without any more inter- Vectors (i.e|x,[|=2) are then generated by the actionZgf
esting morphologies (See F@’ Second row)' i.e. XA:T)LX1 (SeeSChertZer and Lovej0§/l985 for techni-
Notice that in Tablel, all the stochastic models are ob- C€al details on this Generalized Scale Invariance, GSI). The
tained by convolutions with singularities. Such convolutions Set of all vectors with scalgx|| <A is called a “ball”, denoted
are “fractional integrations” of orddi’ (if H'<0, itisafrac-  Bx; for physical scale functions;. must be decreasing (i.e.
tional differentiation). The lesson from fBm is that if we are Bv CB. for ’<A). We can see that if the replacements in
to represent real topography by such singular models, thefFd. (1) are made in the denominators of the models in Ta-
the statistics of the singularities must be more extreme tha®le 1, with scale functions satisfying the scale E2). {n fact
Gaussians so that the basic singularity shape may remain infhey then define the notion of scale), then the convolutions
portant in the limit of a large number of singularities. One Will have power law dependencies under “zooming”, i.e. the
way to make some of the singularities always stand out is tgnodels will be scaling as long as the noises are also scaling
use the fractional Levy motion model (fLm) obtained by re- (hence the special choices of Gaussian or Levy noises, or in
placing the Gaussian noise by a Levy noise of indexhe  the multifractal case, of multifractal noises).
Levy random variables can be regarded as a generalization of T0 understand the relation between usual distances and
the Gaussian variables to the case where the variance (segeneralized scales and see how to firfiin practice, itis in-
ond moment) is infinite; they have long probability tails such structive to do an example. To finjek||, we need to solve the
that the statistical momentgs of orderg>a diverge. Due fundamental Eq.2). Consider a (real) 2-[0; matrix which
to the (generalized) central limit theorem, sums of independn @ diagonal frame is given b§=diag(H,, Hy) (note that
dent (possibly weighted) Levy variables are still Levy vari- What follows can be generalized to complex eigenvalues or
ables. Figuré (third row) shows simulations of fLm. As one nondiagonalizable matrices). The idea is to use a nonlinear
can see, several Strong mountain peaks stand Out; in fact’ tH@)OI’dinate transformation to convert the initial problem, i.e.
strong peaks are too strong. Although far from Gaussian, redEd- @) with 7,=3"9, into an equivalent problem where
topography empirically seems to have finite variance (i.e. the$S the identity matrix:
probability density tail falls off faster tharn—2), so fLm can- Il = 2L 3
not be a good model. Before moving on to the statistically|| X =27l ®)
and visually more realistic multifractal model, let's consider \yhere x'=(x’, y') are the coordinates in the nonlinearly
the singularity shape in more detail. The shape of line (fault-transformed space. Itis easy to show that the nonlinear trans-
like) and point singularities depends on powers of distancegormationx’=sgnix)|x|Y/Hx, y'=sgn(y)|y|¥# does the job
from either a line or a point; in order to generalize this it o, the real diagonal matrix considered above. Equatg)n (

turns out to be sufficient to replace the standard Euclideans now easy to solve: it represents a pure isotropic scale trans-
distances by scale functions. Let us therefore digress a mogyrmation. hence the solution is of the form

ment to discuss scale functions.

; Del = Trac€G) (2

X' = (©@©) 1 4
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1000

e

Fig. 2. Comparison of isotropic versus anisotropic (with symmetric scale functions) simulations for three different scaling models. Top row
shows scale functions. From left to right, we change the anisotropy: the left column is self-similar (isotropic) while the middle and right
0.8 —0.05
0.05 12
right one it has the forn® (8")=1+0.65 co%6’) (in polar coordinates in the nonlinearly transformed space, see Eq. (4)). Second, third and
fourth rows show the corresponding fBm (wiih=0.7), fLm (¢ = 1.8, H = 0.7) and multifractal ¢=1.8, C1=0.12, H=0.7) simulations.

We note that in the case of fBm, one mainly perceives textures, there are no very extreme mountains or other morphologies evident. One
can see that the fLm is too extreme, the shape of the singularity (particularly visible in the far right) is quite visible in the highest mountain
shapes. The multifractal simulations are more realistic in that there is a more subtle hierarchy of mountains. When the contour lines of the
scale functions are close, we change the sipelle= A rapidly over short (Euclidean) distances. For a given order of singubarity’ will

therefore be larger. This explains the strong variability depending on direction (middle bottom row) and on shape of unit ball (right bottom
row). Indeed, spectral exponents will be different along the different eigenvectats of

columns are anisotropic and symmetric with respecuo( ) The middle column has unit ball circular at 1 pixel, while for the

wherer’ = (x"2 + y?)%2 is a radial vector in the nonlin- ||x|| = (@(0")~ (x¥Hx + yz/Hy)l/Z.
early transformed space ai(6’) is an arbitrary function
of the polar angle’ in the nonlinearly transformed space
(i.e. tan®’ = y’/x’). The nonlinear coordinate transform
is then used on EqA] to obtain the scale function in the his way. First consideG =1, wherel is the identity matrix:
original x space (as opposed to the nonlinearly transforme_ he resulting topography models will be “self-similar” in the

, . .
x' space). For the example considered, the scale function 'Sense that their statistics will vary in power law ways under

When scale functions are used to define the basic singular-
ities, the shapes can be extremely varied, hence demonstrat-
ing the possibility of modeling topographic morphology in
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Fig. 3. Comparison of isotropic versus anisotropic (with “spiral” scale functions) simulations for three different scaling models. Top row
shows isotropic (left) and spiral (middle, right) scale functions. Spiral scale functions are obtained \asrcomplex eigenvalues; here

G (0515
~\15 15
C1=0.12, H=0.7) simulations. Note how the use of spiral singularities does not affect the fBm simulations much (compare v#th Fig.

On the other hand, spiral singularities lead to too strong singularities for the fLm, but subtle variations of mountains and plains for the
multifractal.

. Second, third and fourth rows show the corresponding fBm (#ith0.7), fLm (@=1.8, H=0.7) and multifractal¢=1.8,

isotropic “zooming” (blow-ups) (see the left hand column in fractals/multifractals are “self-affine”. The case whérds

Fig. 2). When the unit ball is a circle (or more generally nondiagonal and the eigenvalues are real is a generalization
a D dimensional sphere), then we obtdir||=|x|. How- in which the main stretching/shrinking occurs along fixed
ever when the unit ball is not circular (spherical), then therenonorthogonal eigendirections; F(middle column) show

will still be preferred directions. These preferred directions the resulting differential stratification. When the eigenval-
will be the same at all scales, the anisotropy is “trivial’. ues are complex, then the eigenvectors rotate continuously
Things become more interesting as soorGas no longer  as functions of scale, giving rise to spiral type singularities,
the identity. IfG is a diagonal matrix, then the singularities see Fig3. Finally, outside our present scope but presumably
x|~ (wherey is the order of singularity, see Se&.1) important for realistic topography modelling, we can con-
are quite different in different directions and the resulting siderG as a nonlinear operator (rather than a matrix). In this
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case, the anisotropy depends not only on scale but also on tr «rﬂ ¥l '1: RS N T
location. This allows for spatially varying morphologies. In 1& " ,‘F iy ,\?;?p:-;.-.‘. ~;"'§ﬁ¥)‘}ﬂ\
this case, the linear GSI discussed above is simply a locally i AT _
valid approximation. M. Multi ~ RN LB B
ll(lli\q b.ll ‘:i%"ih'll“' il H.lt‘ 1\\ N IV

2.3 Spurious breaks in the scaling

Ensemble theo
slope -2.17 Y Sphero-scale

In spite of the systematic finding of scaling or near scal-
ing statistics, many geophysicists reject all wide range scal
ing, often because of their conviction that geomorphologic
processes are scale dependent: they consider a priori th
the scaling is broken. For examplderzfeld et al.(1995);
Herzfeld and Overbeck1999 have attempted to demon-
strate broken scaling by estimating power spectra and var -
iograms on a few bathymetry transects which they showec
to have poor scaling. Rather than giving a purely theoreti- _,
cal explanation as to why their results are not surprising anc Single line,
how they could be compatible with the scaling hypothesis, slope -2. L
let us consider a simulation of their transect (see &igThe ; il
figure compares the energy spectra of two individual tran-
sects as well as the ensemble average over all the transects.
One of the transects passes through “Mt. Multi” (the high-
est peak in the range), another through a randomly (.:hoseglzo.lz andH=0.7). The energy spectra of the transect pass-
T[ran_sea not far away. One can see that_ th‘_e Mt. Mult Scal'ing through “Mt. multi” (the highest peak in the simulation) and
ing is pretty poor; a naive analysis would indicate two rangesirough another (randomly chosen) transect are shown as well as
with a break at about 10 pixels with high frequency exponentihe ensemble over all the transects. We can see that the scaling in
B~2.5, low frequencyB~1.5. Clearly this significant break the transect containing the extreme event “Mt. Multi” is clearly bro-
has nothing to do with the scaling of the process (which isken, even though the ensemble scaling is very good. Figure taken
perfect except for finite element effects affecting the high-from Lovejoy et al.(2005.
est factor of two or so in resolution). In comparison, the
randomly chosen transect has better scaling, but BAt2.
On the other hand, the isotropic (i.e. angle averaged) spegroduced by the process yet they are almost surely absent
trum averaged over an infinite ensemble of realizations ha®n any given realization. This means that they do not have
B~2.17. Even the average over the transects shows sign#he property of “ergodicity”. What may be nothing more
of a spurious break at around 16 pixels (the scale where théhan normal multifractal statistical variability can thus eas-
north-south and east west fluctuations are roughly equal inly be interpreted as breaks in the scaling. The second rea-
magnitude, the “sphero-scale”); this explains why the theo-son for erroneously concluding that the scaling is broken is
retical line does not pass perfectly through the curve correthe assumption that the scaling is isotropic. If the scaling
sponding to the average of the transects. Obviously, had wé anisotropic, then breaks in the scaling on 1-D subspaces
chosen a different random seed for the simulation, the resultgtransects) do not imply anything about the scaling of the full
for the individual transects would have been different (evenprocess.
the average over the transects would have been a bit differ-
ent), see the example in the next section. 2.4 Apparent nonstationarity, inhomogeneity, parameter
Conclusions about broken scaling in Figare therefore variations... or simply random exponents?
unwarranted. The most important reason to explain apparent
scaling breaks is that scale invariance is a statistical symmewWhen the statistical properties of a process are independent
try, i.e. defined on an infinite ensemble (see Seé@. This of spatial position, the process is statistically homogeneous;
means that scaling is almost surely broken on every single reif independent in time, it is statistically stationary. These no-
alization, hence it is important to have a large data base (i.etions of statistical translational invariance are therefore prop-
large range of scales, many realizations) to average fluctuaerties of an infinite ensemble of realizations; indeed each re-
tions and approximate the theoretically predicted ensemblalization will be inhomogeneous. In spite of this, the rel-
scaling. In fact, due to the singularities of all orders (seeatively low realization to realization inhomogeneity of the
Sects2.1and3.1) the realization to realization variability of prevalent Gaussian or quasi Gaussian models (see e.@, Fig.
multifractals is much greater than that of classical stochasieft hand column) has obscured this fact so that the exis-
tic processes; for example, rare (extreme) singularities aréence of strong inhomogeneities — even if only on a single

I{]gmk

Mt mult,
; slope-2.5

Fig. 4. Figure showing a bathymetry simulation (with=1.9,
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Fig. 6. Compensated power spectrum (ké€17E (k)) of the multi-
fractal simulation in Fig5. The extreme factor of 2 in wavenumber
falls off too rapidly: this is an artifact due to the difficulty of dis-
cretizing singularities on numerical grids.

Fig. 5. 1024 x 1024 self-similar multifractal simulation with some
trivial anisotropy and parameters=1.9, C1=0.12 and H=0.7.
The spectral exponent gB=1+2H —K (2)=2.17.

realization — often leads to claims of statistical inhomogene- 1;
ity/nonstationarity. In the case of multifractals, it is partic- 10
ularly tempting to invoke statistically inhomogeneous mod- 2
els (corresponding to different physical processes in differen: 4
locations) since their occasionally strong singularities often
stand out from a background of more homogeneous noise.
However, the basic multifractal processes are statistically sta-

tionary/homogeneous in the strict sense that over the regiorl}i :

. . o o g. 7. On the left, we have a histogram of the compensated spec-
over which the)_/ are deflneq (Wh|ch is ne.cessarlly finite), the, | exponent & B=p—finec=F—2.17) values obtained after divid-
ensemble muI'FlfractaI stgtlstlcal prqpertles are mdependenitng Fig. 5 into 64 128<128 squares, and computing the isotropic
of the (space/time) location (and this, for any spectral slop€yower spectrum in each square (the vertical axis is the number of
B). Rather than discussing this at an abstract level, let usccurences out of the total of 64). In each case, we fit the slope
see what happens when we analyse a self-similar @24  to the lowest factor of 16 in scale (we remove the highest factor of
multifractal simulation (Fig5). Figure6 shows the compen- 4 due to numerical artifacts at the highest wavenumbers). On the
sated (i.ek?17E(k)), isotropic spectrum obtained by inte- right, we have a histogram of the IpgE; (E1 is the spectral pref-
grating the Fourier modulus squared over circles of raglius actor,E(k)=E1k~) showing a variation of a factor of about 1000
in Fourier space. The low frequencies are quite flat, indicat-fom the smoothest to the roughest subregion.
ing that the simulation has roughly the expected ensemble
spectrum. At high frequencies, there is a drop-off which is
an artifact of the numerical simulation techniques. We canvariation in local estimates of H a£0.3/2=+0.15, which
now consider the “regional” variability in the spectral ex- is of the order of the difference observed between continents
ponentg by dividing the simulation into 88 squares, each and oceans (see Se6tl.]), although this spread i will
with 128x 128 pixels. Figurd (left) shows the histogram of decrease as the size of the data set increases. Similarly, use
the 64 regression estimates of the compensated spectra: ti§é the monofractal formulad=7/2—8/2 would lead to a
mean is close to zero as expected, but we see a large scaorresponding wide spread of “local” fractal dimension.
ter implying that there are some individual regions having In Fig. 7, we can also see the large variations in the log
as low as 1.2, some as high as 2.7; the standard deviatioprefactors (i.e. logy E1, whereE (k)=E1k~#). If this is in-
is £0.3. As we shall see later, this would imply a random terpreted in terms of roughness, the roughest of the 64 re-

-075 050250 02505 005 1 15 2 25 3
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gions has about £times the variance of the smoothest re- CASCADE
gion. While it would obviously be tempting to give different [ EVELS
interpretations to the parameters in each region, this woulc

be a mistake. Note that this does not imply that the roughes

and the smoothest would be associated with identical ero 0=
sional, orographic or other processes. The point is that ir

g
)=

a fully coupled model involving various geodynamical pro- multiplication by 4
cesses, all the processes would be scaling and would hav independent random
correlated variations. Figurealso demonstrates the fact that (multiplicative)

if data from special locations (such as near high mountains increments

are analysed that we may expect systematic biases in ot 1--
statistics and parameter estimates. These conditional stati:

tics are discussed quantitatively and theoreticallydmejoy

et al. (2001h. This underlines the need for coupled multi-
fractal processes, possible through the use of a state vect:

and vector mulitfractal processes (based on “Lie cascades 2-

; _ multiplication by 16
(Schertzer and LovejgyL995 Lovejoy et al, 20018).

independent random
(multiplicative)
increments

3 Properties of multifractals

gl v
: . Ny
3.1 Multifractal processes and scale invariance n /4? -4%’-'://

In Sect.2, we discussed the crucial role of singularities.
Multifractals allow singularities of various orders to be dis- cade, the noise (represented by in the above picture) in each

tributed over fractal sets with varying fractal dimensions square is multiplied by a random increment, here given by the prob-

(rather than a unique dimension as for monofractal processegijistic law in Eq. 5. Figure taken fronSchertzer and Lovejoy
such as fBm, fLm). In this section we show how the key (1985

(multiplicative part) of the process can be viewed as a step

by step build-up of variability from an initially uniform state.

This multiplicative process is often called a “cascade”; it is P\(X)
the generic multifractal process.

Cascades are phenomenological models of processes
which have the following properties: (1) They have a scale _ y2
by scale conserved quantity; it is this conserved quantity that
is modulated by nonlinear interactions as it goes down the )\yl,,,,,,
scales. (2) Localness in Fourier space, i.e. structures of a
certain size interact most strongly with structures of not too
different sizes. (3) Scale invariance; over a range of scales,
the mechanism doesn’t change. To illustrate these points and
show how cascades are related to multifractals, let us con- L
struct a very simple cascade, thenodel (e.g.Schertzer and 4 k X
Lovejoy, 1985. This model is very close to the model dé L/

Wisj (1951 for the distribution of mineral ores.

To help the reader through this section, a summary of our
notation is provided in Tabl@. Consider a certain quan- Fig. 9. lllustration of Eq. 6) using a 1-D example of a cascade. For
tity ¢ uniformly distributed in aD dimensional space of different thresholds; = 1" andz;=2”2 (with y2>y1), the corre-
size LP (to apply this to topography, just replagewith 2). sponding sets (defined lay, >1) have d!fferent fractal dimensions
Supposing that the system (including its surroundings) has & (¥2)<Pr (yp) or fractal codimensions:(y2) > c(y1)).
very high number of degrees of freedom, we want to know
how the quantityp will be distributed in theD dimensional
space after undergoing a large number of nonlinear interacef scalesho=L/ [ (typically 2); we then separate the initial
tions with the whole system. Consider a simple discrete scalécube” of sizeL” into Ag cubes of sizéé). In thex-model,
ratio model g-model); the continuous in scale extension is the quantity¢ in each new cube at each step is modulated
given in Tablel. The first step is to specify an integer ratio according to the following probabilistic law:

Fig. 8. Example of a 2-D cascade process. At each step of the cas-
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Table 2. Summary of notation and important quantities.
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Symbol  Quantity Definition Referente
l Length scale — Eq.6)
L Maximum length of a process — Ed)(
A Resolution A=L/I1 Eq. 6)
Ty Scale changing operator T=r"C Eq. @)
G Generator D x D matrix or operator Eq.)
D Dimension of space — Se@.1

Dp Fractal dimension of a set — Sesdtl
c Codimension of a set c=D—Dp Sect.3.1
y Order of singularity — SecB.1
t Threshold =AY Fig. 9
o Scaling multifractal noise — Sead.1

K(g) Moment scaling function K(g)=max;{qgy—c(y)} Sect.3.2

Ah,  Height increment h(x+1"TAX)—h(x) Eq. @)
o Degree of multifractality Qa<? Sect.3.2
C1 Sparseness of the mean singularity <@ Sect.3.2
H Degree of smoothing — Se@.3

&@q) Structure function exponent &(@Q)=qH—K(q) Sect.3.3
B Spectral exponent B=1+£(2) Sect5.1

1 specifies the section or the equation where the symbol is defined or explained.

Pr(pe = A3") = 2§
Priue =2y ) =1—1§ (5)

c(y)=D—Dpg(y), whereDrg(y) is the fractal dimension of
the set (see FigQ). Thus, the initial uniformly distributed
quantitye is now a hierarchy of interwoven sets, one for each
threshold, each of them having a different fractal codimen-
y1+>0, y_<0 are positive/negative singularities ands the  sion: a multifractal. In comparison, a monofractal process
codimension of the space occupieddayThede Wisj(195]) has a unique fractal dimension for all thresholds. The scale
model is obtained by restricting this model so that the mearby scale conserved multifracta), will be referred to as a
ne=1 on each cascade step (microcanonical conservation)nultifractal noise.

whereas the abovex“model” only enforces this conserva-

tion on the ensemble average (canonical conservation). Iti$-2 Moment scaling function and universal multifractals

now known that microcanonical conservation results in mucho to ch terize the statisti f stochasti
less variable processes and is generally unrealistic. Equa= < oy 0 Characterize e siatistics of Stochastic processes

tion (5) corresponds to an increas?%t) ora decreasex(;‘) Is via probability distributions. For a multifractal process, the

in ¢. Note that the parametegs. andy_ cannot be chosen probability distribution is a power law, as given in E).(
independently if we wan to be conserved, as prescribed Equivalently, we can characterize the statistics of stochastic

by assumption (1). Aften steps is broken up into(A{)))” processes by the moments of the probability distribution (Pr),

o . .
cubes and the succession of decreases/increases leads té)fg):fo dPr x?. Inthe case of multifractal processes, this
highly heterogeneous. In fact, it leads to a whole hierar- gives Schertzer and Lovejoyl 987, 1991):
chy of singularitieg; with values between” <y, <y" (see  (¢7) = 1K@ (7)
F.Ig. 8). The cascade just desc'rlbed is artificial pecause of 't§/vhereq is the order of the moment anki(¢) is a nonlin-
discrete in scale nature. Letting the scale ragobecome o5 convex function.k (¢) characterizes the scaling of the
continuous (i.eo—1; n—o00; A=Ap=constant), we obtain o ments of the multifractal noise, hence it is called the “mo-
(Schertzer and Lovejoy1 987): ment scaling function”. If the multifractal noise is conserved
(6) with scale (i.e.{¢;)=1), then it implies thak' (1) = 0; for

a nonzero procesk (0) is also trivially equal to zerokK (¢)
where the notatiorp, stands for¢ at the scaleL/x, AY andc(y) are related to each other via a Legendre transform,
is the threshold corresponding to the singularjtyand K (g)=max,{gy—c(y)}. Itis easy to see the equivalence
c(y) is a nonlinear convex function called the codimen- between studying singularitigsand momentg. In the case
sion function. Equationg) means that the set defined by of singularities, we fix a threshold’ and then find the codi-
the conditiong, >A” has a (fractal) codimension given by mensionc(y) of the set satisfyingp,>AY. In the case of

where pe is a “multiplicative increment” multiplyinge,

Pr(g, > V) ~ A=)
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moments, we fix a momegtand then take the averagﬁf{); a multiplicative process (the cascade). We saw that the cas-
depending ory, certain orders of singularities dominate the cade generates a scale by scale conserved ggisbarac-
average (for example, a high favors strong singularities terized by a moment scaling functidfi(¢) (a convex func-
compared to weaker ones). The bottom line is that analyztion with the constraint¥ (0)=0, K (1)=0). The spectrum
ing a certain moment is equivalent to probing a certain sin-of the conserved noise has expongetl—K (2)<1. So to
gularity (a one to one correspondence given by the Legendreharacterize topography (havifir2), we clearly need an
transform), but it is usually more convenient to do momentsextra fractional integration; this is the Fractionally Integrated
analysis. Flux model described in Table The fractional integration

A priori, the only constraint oK (¢) is that it must be con-  of the multifractal noise leads to the following statistics for
vex, which implies that an infinite number of parameters arethe height incrementsS¢hertzer and Lovejoy.987, 1991):
generally needed to describe it; without further constraints, u
it would not be manageableSchertzer and Lovejo{1987, Ahy =27 ¢ )
1991) have shown that there exists a class of stable and ama(f/?/hereAhk = AR(AX) = h(X + AX) — h(x) (With |AX] =

tive multifractal processes called “universal multifractals”, L./ are the height fluctuations a distance= L/ apart
which are thus generic outcomes of multifractal processe%as usual, the anisotropic generalization is obtained using

independent of many of the details (s8ehertzer and Love- |AX] — [ AX]]). The parameteH can be interpreted as a de-

joy (1997 for the debate about this issue). Here we postulategree of smoothness where highgrmeans smoother filds
the functional form given in Eq8) on theoretical grounds (it |

can be viewed as a consequence of a “multiplicative centraﬁ'gureﬂo_l%how examples of changing the degree of frac-

e . ; i onal integrationH in conjunction witha, C1.
limit theorem”), but we will see in Sec6.2.4that the esti- 9 conjuncti L _

! . . : : As mentioned earlier, statistical moments analysis is more
mated error with thisk (¢) is quite low, so that this can also

; - : onvenient than direct height analysis. We takegtepower
be wgwegl as a way of pargmetrlzmg the data.\. The un|versain both sides of Eqg. (9) and then the ensemble average which
K (g) is given by the following functional form:

leads to
C1
a—1

wherea andC; are the two basic parameters characterizingWhere(|Ah;|?) is thegth order structure function arilg)

the scaling properties of the multifractal noige. The pa- IS the corresponding scaling exponent. The special case
rametera is the degree of multifractality and varies from 0 ¢=2 corresponds to ensemble averaged variograms. Equa-
to 2, wherex = 0 is the monofractal case and= 2 isthe  tion (10) models the statistical properties of topographic
log-normal case. This parameter describes how rapidly thé'€ight increments and is the culminating point of the mul-
fractal dimension of sets at different thresholds vary as theyfifractal FIF model. Note that if the multiscaling noige
leave the mean singularity. It is not very intuitive; the ac- IN EQ. (10) is replaced with a noise with no particular rela-
companying simulations (see Figj0) may be the best way tOn between scales (i.& (¢)=0) such as a Gaussian white
to visualize the effect of varying. The paramete€; is the noise, then we obtain fractional Brownian motion (see Ta-
fractal codimension of the set giving the dominant contribu-Pl€ 1 for a comparison). This last comment is particularly
tion to the meang=1) and is bounded below by zero. The important when it comes to data analysis and will help us
value C1=0 implies that the set giving the dominant contri- to distinguish between multifractal and monofractal behav-
bution to the mean is space filling (i.e. its fractal dimension is0 (Se€ Sect5.2). It also helps to clarify the advantage of
equal to that of the embedding space), so it can be interpreteH‘U“'fraCta'S over monofractals: the multifractal noisgis

as quantifying the sparseness of the mean field. Again, comuch more variable than Gaussian white noise, leading to a
pare Figs10-11 or see the simulations of Fig2to see the ~Much better characterization of extreme events, such as very

K(q) = (9" —q) (8)  (AmY) =279 £(q) =qH - K(q) (10)

effect of varyingCy on a multifractal process. high mountains. N o
An important caveat is in order at this point. The 2-D anal-
3.3 Fractionally integrated flux model yses in this study are restricted to isotropic (i.e. self-similar)

statistics. By isotropic analysis, we mean that the resolution
We have discussed (Tahlgseveral scaling models and have A in real space is degraded isotropically or that the energy
seen that fBm/fLm are additive, being the result of a gen-in Fourier space is integrated over wavevectors of constant
eral scaling linear operator (a fractional integral/derivative) length. In the example of the-model, one could break the
acting on a basic scaling noise (Gaussian and Levy, re2-D noise¢ in “rectangles” instead of “squares” to obtain
spectively). These lead to exponent functions linear in thean anisotropic cascade. The effect of using isotropic statis-
momentg (e.g. the structure function exponeflg), see tics is to wash out different geomorphologies/textures. As
Eqg. (10)). We saw that in order to obtain more general scal-explained in Sect2.2, another scaling exponedt — a ma-
ing behaviour, we could retain the fractional integration of trix or, more generally, an operator — is needed to charac-
a noise, choosing the basic noise instead to be the result dérize scaling anisotropies, in addition to the usmalC1,
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Fig. 10. Isotropic (i.e. self-similar) multifractal simulations showing the effect of varying the parametansl H (C1=0.1 in all cases).

From left to right, H = 0.2, 0.5 and 0.8. From top to bottorm=1.1, 1.5 and 1.8. A4 increases, the fields become smoother and as

a decreases, one notices more and more prominent “holes” (i.e. low smooth regions). The realistic values for topography &ee Table
correspond to the two lower right hand simulations. All the simulations have the same random seed.

H. We thus argue that isotropic statistics do not vary muchvarious techniques including stereo-photography and in situ
from place to place even if morphologies/textures vary appreimeasurements of altitude (often combined using complex ob-
ciably (see Figs2—3 and Figs.12-14 for some isotropic vs  jective analysis techniques) and are then gridded so as to ob-
anisotropic simulations). For additional simulations and “fly- tain a height field. They are essentially characterized by their
bys” of topography and other geophysical fields, we refer thehorizontal and vertical resolutions.

reader to the following websitéhttp://www.physics.mcgill. Due to their method of construction and the highly vari-
ca/~gang/multifrac/index.htm Additional simulations ex-  able nature of the topographic field, DEMs have various lim-
ploring anisotropic topographies may also be fountame- jtations (e.g.Weissel et a].1994), including insufficient dy-

joy et al.(2009. namical ranges. The latter is defined as the ratio of the typ-

ical maximum signal to the noise level, which is usually de-

termined by the vertical discretization. An insufficient dy-
4 Data sets namical range means that there is frequently not much pixel

to pixel variability in the height measurements (i.e. adjacent
In this study, several Digital Elevation Models (DEMSs) that pixels frequently have identical digital counts) so that gra-
span various ranges of scales are analyzed. DEMs are gridiients are not well represented, i.e. the surface is artificially
ded representations of topography. They are constructed viamooth at the smallest spatial scales. We study this quan-
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Fig. 11. Same as Figl0, but with C1=0.3. The effect of increasing4 is to make high areas much more sparse. It is interesting to note the
presence of isolated high peaks in very flat areas.

titatively in Sect.6.2.2 Another problem is oversampling, ETOPOS5 (global topography including bathymetrafa
which results when the altitude is sampled more frequentlyAnnouncement 88-MGG-Q2988; GTOPO30 (global con-
than is warranted by the source data; this implies an artifi-tinental topography) Land Processes Distributed Active
cially smooth DEM at the highest wavenumbers. The cur-Archive Center 1996; United States (DEM of the United
vature of the Earth can also be a problem; because DEM$tates) (United States Geological Survey990; Lower Sax-
are gridded representations of the topography, it is necessamyny (DEM of a 3 kmx 3 km section of Lower Saxony, con-
to project a sphere on a plane to produce the DEM. Wherstructed with the help of the High Resolution Stereo Camera
averaging many transects at different latitudes, this can inAirborne Wewel et al, 2000).

duce changes in the highest wavenumbers. The main point is

that each DEM has its own characteristics and problems, but

these problems usually manifest themselves at the highest ér Analysis techniques

smallest wavenumbers. On the other hand, different physical

mechanisms would induce clean breaks in the scaling. In this section, we present two analysis techniques used to
analyse scaling properties: power spectra and trace moments

Four different DEMs are analyzed in this study. We refer (a specific multiscaling analysis technique). In both tech-
the reader to Tabl8 for their individual characteristics (res- nigues, ensemble averages are made over all available data.
olution, vertical discretization, etc.) and to Fids-17 for This is very important, because scale invariance is a statis-
the regions analyzed on each of them. The data sets ardical symmetry (see Sectg.3 and2.4), meaning that an in-
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Fig. 12. Isotropic (i.e. self-similar) multifractal simulations showing the effect of varying the param@ieasid H (¢«=1.8 in all cases).
From left to right, #=0.2, 0.5 and 0.8. From top to bottor; =0.05, 0.15 and 0.25. A# increases, the fields become smoother. When
C1 is low, field values are close to the mean everywhere; wheis large, all values are below the mean except in some specific locations
where they are very large. The values closest to the data (seeSyatderespond to the middle row (middle and right columns).

Table 3. Characteristics of the DEMs and regions studied.

Data sets Horizontal Vertical Numbers of Length of
resolution discretization transects analyzed transects (km)

ETOPO5 5 210 km) im 500 and2160 40000

GTOPO30 30" €1 km) im 1225 4096

u.S. 90m Im 2500 5898

Lower Saxony 50cm 10cm 3000 aRB00 3 andf0.512

1 Analysis with constant angular resolution.
2 Analysis on treeless region.

finity of independent samples are needed to obtain accurate.1 Analysis of the height: Power spectra

scaling. In this study, all samples (transects or squares) ana-

lyzed are correlated because they come from the same regiqdower spectra are widely used to study scaling. In 1-D, it is
and from the same unique Earth. This means that the avele ensemble averaged squared modulus of the Fourier trans-
ages in this study are at best approximations to the requiregyym. |n 2-D, it is usual to use the “isotropic” spectrum
ensemble averages. which is also angle integrated in Fourier space (sometimes
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Fig. 13. Anisotropic (self-affine) multifractal simulations with varyir@y and H («=1.8 in all cases). From left to righ#7=0.2, 0.5 and

i 13 (with H,=1.2 and H,=0.8) and the
y
sphero-scale is 1 pixel. Transects in the up-down (y) or left-right (x) directions do not have the same spectral exponents: they are related

through the ratiagx—1)/(8y—1)=H./Hy, wheregy, B, are the 1-D spectral exponents in they directions, respectively.

0.8. From top to bottom¢1=0.05, 0.15 and 0.25. The scale changing operata@r4s

angle averaging is used; this increases the spectral exponetibn characterized by the exponefit A better way to dis-

by 1). Before estimating power spectra, we removed lineattinguish them is to consider their noige which has com-

trends (in 1-D analyses) and we used Kaiser windows (in 2-pletely different properties: a delta correlated Gaussian white

D in analyses) to avoid problems at the lowest wavenumbersnoise for fBm viz. a scaling singular multifractal noise for

The (isotropic) power spectrum of a scaling process is giverFIF. We are therefore lead to the use of “trace moments”

by (which directly characterizep) so that the distinction will

EK) o k|~ (11) be_far more appar.er)t. The _first stfep_is to obtﬁifrom.the
height increments: in principle this involves removing the

wherek is the wavenumber anf=1+£(2)=1+2H—K (2) A2~ in Eq. ©). From the convolutions in Tablé, we see

is the spectral exponent. It can be seen that the simple scalingnat to invert the fractional integration, a fractional differen-

result is recovered iK (2)=0. The power spectrum is only tiation of orderH or greater must be performe8c¢hertzer

a second order moment, so that this method alone cannot bend Lovejoy 1987, 1991). For H <1, an adequate numeri-

used to distinguish between simple and multiscaling. cal approximation to this fractional differentiation is to take
) o the modulus of the finite difference gradiehayallee et al,
5.2 Analysis of the noise: Trace moments 1993, which corresponds to a differentiation of ordée=1

(this is sufficient, because we ha¥b~1/2 in topography).

As can be seen from Tablg the fBm and FIF models may .
be hard to distinguish because they both share a convolu'yIore generally and equivalently, one can take the absolute

www.nonlin-processes-geophys.net/13/541/2006/ Nonlin. Processes Geophys., 53052006



558 J.-S. Gagnon et al.: Multifractal earth topography

Fig. 14. Same simulations as Fi@3, but with a sphero-scale equal to 64 pixels instead of 1 pixel. We still have left-right “mountain chains”
but at scales smaller than 64 pixels, we have up-down “ridges”. This is what a typical pixel @Bkiguld look like if blown up by a factor
of 64.

value of wavelet coefficients at the finest available resolutioning is verified if we find a nonlineak (¢). For the monofrac-
(Muzy et al, 1993 Audit et al, 2002. (Technical note: Be- tal fBm, the moments of the normalized flux are equal to 1
cause of the insufficient dynamical range of the DEMs (seefor all ¢, i.e. K (¢)=0. In other words, if after doing the frac-
Sect.4), many spurious zero gradients are present in the antional differentiation we get a Gaussian white noise (with no
alyzed transects. Those zero gradients particularly affect thecale/resolution dependence, kg4)=0), the data are com-
low ¢ statistics, so they are eliminated by a fractional inte- patible with a fBm process.
gration of orderH=0.1 (a filtering in Fourier space with a
power law), which is a scale invariant smoothing.) After the A recent article byv/eneziano and lacobell{4999 points
removal ofA~ in Eq. @), we are left with only the underly- out that this method (i.e. taking the absolute value of the gra-
ing noiseg,. The next step is to study the scaling of the sta- dients before doing the trace moments analysis) may produce
tistical moments of; and compare them with EGZ), Todo  apparently spurious multiscaling. The reason is that taking
this, we normalizeb, so that the ensemble average of all the the absolute value of the gradient is a nonlinear operation:
samples ig¢; )=1. Then spatial averaging is performed over it breaks the scaling at the highest resolution. However, we
sets (lines or squares) of sizeL /A, theqth power is taken  seek the scaling behavior @, at larger and larger scales
and the average over all data available is taken: this givegsmaller and smallex); this scaling is rapidly re-established
the moments of the normalized noise for a given value ofso that although it does take a certain range of scales (typi-
q. This procedure is performed for different valuesyaind  cally a factor of 2—4) before the averaged absolute gradients
K (g) is determined from the logarithmic slopes; multiscal- start to scale again, the expondtitg) can nonetheless be
well estimated by this technique (all this has been extensively
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studied using numerical simulationisaivallée et al. 1993.
With the large topography data sets available in this study, the ;
scale range is so large that this is not so difficult. In any case =
functional box-countingl{ovejoy and Schertzed 990 and
generalized structure functionkgvallée et al. 1993 Weis-

sel et al, 1999 also clearly indicate multiscaling over wide
ranges of scale; breaks are indeed confined to the highe
wavenumbers of each data set.

6 Results and discussion

6.1 Analysis of continents and oceans
Fig. 15. ETOPOS5 data setData Announcement 88-MGG-0p2

The morphologies of continental and oceanic topography ard 988. See Table for its specific properties. The white and black
clearly different. In the scaling framework, these differencessquares indicate the areas studied in Sdt. The white rectangle

can arise in several ways. One effect that we already menindicates the area used for the narrow strip analysis (500 transects
tioned (see SecB.3) is that the anisotropy varies not only of 40000 km).

from scale to scale but also from place to place: another

set of scaling exponents are needed to characterize thesg p h . fth | e |
anisotropies. In this paper we limit ourselves to isotropict e fact that estimates of the spectral exponent require large

analyses (analysis of scaling anisotropy is quite difficult (e‘g”amo.gnts of data gnd wide ranges of scgles (se-e S&tin
Lewis et al, 1999). For example, the 2-D spectra are an- addition, for multifractals the values @fin any single real-

gle integrated or in the case of trace moments we averag ation Is trtandom vgtr:z(dep:er;gmgtog.paramett'ers);l pl;) ssibly
on squares at each scale. In both cases, we “wash out” th&' 9€ SCatter (see Se@4). In the studies mentioned above,

anisotropies and consider only the isotropic statistics. wehe analyses are on small data sets*(¢0mpared to 19

have also seen in Se@that due to their strong singularities, points Egre)_, t\:"h'(;:h r?sglthm fuzlgy or ever]rrt]J.roken sperc]-
individual realizations of multifractals can have strong vari- tra, making it hard to find the scaling range. This means that

ations from one region to another even though the process ifie spectral exponents may not be well estimated in those

strictly homogeneous, stationary (statistically translationallyswd'es'
invariant). This means that it is not trivial to test the scaling
and estimate the parameters.

The continent/ocean comparison is made using power
spectra and trace moments on ETOPO5. Threex512
pixels squares¥5120x 5120 km) are analyzed in the case o

6.1.2 Trace moments analysis and the universal multifrac-
tal parameters

£ The trace moments of the continents and the oceans are

continents and five in the case of oceans (shown onlsg. ~ Shown in Fig.19. According to Eq. ), a log/log plot of the
The ensemble average is performed over the three (fivefiormalized moments of the noigg versusi should give

squares of continents (oceans) for the two methods of analyStraight lines (with different slopes for eaghif the process
sis. is multiscaling. As can be seen on Fi¢, the trace moments

are straight for scales greater than 50 km; as with the spec-
6.1.1 Power spectrum analysis tra, they flatten a little at small scales, presumably for the

same reason (probably a little oversampling). However, we
A comparison between the averaged spectra from continentsee clearly that the behavior is totally different from that pre-
and oceans is shown on Fif§8. According to Eq. {1), a  dicted by the monofractal fBm model; in the latter, all lines
log/log plot of the spectral enerdy(k) versus the wavenum- would be quite flat, there would be no systematic resolution
berk should give a straight line if the process is scaling. Thedependence. The multifractality stands out as a systematic
spectra are fairly straight over 2 orders of magnitude, imply-roughly linear trend with nonzero slope. Indeed, the standard
ing that they are scaling over that range. There is a break irerrors of the slope indicate that for typical valuesgofthe
the scaling at approximately 50 km, which is probably due toslope is 5-10 standard deviations away from the fBm value
oversampling. Note that there is a systematic difference irzero, so that the fBm hypothesis can be easily rejected with
the slope of the spectracontinents=2.09 (c.f. 8~2 (Vening standard statistical tests. We could mention at this point that
Meinesz 1951) and Boceans=1.63, in agreement witBerk- although it has never been proposed for the topography, there
son and Matthewgl 983 (8~1.6—1.8) but less than the val- exists a monofractal model for the multiplicative noise called
ues ofBell (1979 (B~2), Fox and Hayeg1985 (8~2.5) the “B-model” in which¢ is confined to a fractal support (this
and Gibert and Courtillot(1987 (8~2.1-2.3). The dif- corresponds te=0, see Sect3.2). The g-model is quite
ferences between the values@inay be a consequence of different from fBm since the latter has a nonfractal (space
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Fig. 16. U.S. part of the GTOPQO30 data séafd Processes Dis-
tributed Active Archive Centerl996. See Table3 for its spe-
cific properties. The black rectangle indicates the area studied..

on GTOPO30 (1225 transects of 4096 km) and the white rectanc-i:'g' 17. Lower Saxony DEM Wewel et al, 2000. See Table3

gle indicates the area studied on the U.S. DEM (2500 transects offor its specific properties. The global analy§|s of 56“?-'3 QOne
5898 km). on the upper half of the above DEM to avoid contamination from

man-made structures. The total area covered is 3000 transects of
3000 m. The small white rectangle (500 transects of 512 m) is the

Table 4. Universal multifractal parameters for the conti- treeless section analyzed and compared to the full DEM analysis.

nents/oceans analysis.

10 T

Type of region o C1 H
Continents 182+0.17 013+0.04 0664+0.04
Oceans B7+0.15 015+0.02 046+0.03 o .

Continental margins .80+0.05 0124+0.02 0774+0.02 -

filling) support corresponding t6¢; = 0. In Fig. 19, the
B-model would give nonzero slopes that would vary linearly
with ¢ (the K (¢)’s in Fig. 20would follow K (¢)=C1(g—1)). =
We see below that this is also incompatible with the data. We | Lo Oceans
may also note that the fLm is not compatible with the data ei-
ther; this is because statistical moments substantially larger
thatg=2 have no obvious anomalous behaviours (visible as
a “multifractal phase transition”, i.e. a discontinuity in the e ar w0 45 0
derivative ofK (¢) atg = 2).

The slopes of the trace moments for eackield K (q);
from this we estimate the parametarandC4 for continents
and oceans. EquatioB)(is gsed to fit the Curve§ on Figo Fig. 18. Log/log plot of the spectral energy versus the wavenumber
and the results are shown in TadleThe errors in the table {5 continents and oceans. The slopes{8) are—2.09 for conti-
are equal to one standard deviation of the individual values of,ents and-1.63 for oceans.

«a and (1 for continents and oceans. By taking into account
the error, we conclude that continents and oceans may have
the samer andCj.

log, E(k) (m?)

log, k (cycles'm)
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Fig. 19. Log/log plot of the normalized trace moments versus the
scale ratio=L/ [ for continents (left) and oceans (right), both with
L=5120 km. The values of the exponenbf each trace moments

are, from top to bottom, 2.18, 1.77, 1.44, 1.17, 0.04, 0.12 and 0.51.
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Fig. 21. Scatter plot of the parameters, (H) for the three different
types of region (circles, stars and X's represent continents, oceans
and continental margins respectively).

and oceans. On the other hand, the mechanisms responsi-
ble for H (related to erosion-like processes) are likely to be
different. It also means that the simple dimensional analysis
(with H=1/2) proposed by ovejoy et al.(1995 does not

hold on continents.

6.1.3 Continental margins

of the moment; (circles correspond to continents and squares to|n gddition to the continents and oceans, it is also of interest

oceans).

The values ofr andC; combined withg yield the values
of H for continents and oceans (see H4.and following
discussion). The results are shown in TatleThe H value
for oceans is quite near the commonly cited valuélefl/2
(e.g.,Bell, 1979, but theH value for continents is system-

to consider the statistics of the transition region from one to
the other, i.e. the continental “margins”. These regions have
very large topographic gradients and may therefore have a
different H. Also, since Sec®.2 deals with the global anal-

ysis of topography, i.e. the combined analysis of continents
and oceans (on the same transect), this region is important.
So we apply the same procedure as for continents and oceans
on 5 square regions that include a continental margin (not

atically larger. This can also be seen on the scatter plots o§hown on Figl15, but very near the squares already drawn).

Figs. 21 and 22, where there is a clear stratification of the
H values but not of thee and C1 parameters (where there

The final universal parameters are given in TahleAs can
be seen, once again theand C1 parameters do not differ

is only a certain spread). This result is compatible with thesignificantly from those of continents and oceans, butidhe

hypothesis that the statistics of the noise(determined by

parameter is significantly higher. This can also be seen from

«a and Cp) are the same for continents and oceans, but thehe scatter plots (FigRl and22). It is not clear what is

height statistics (see Eqg.and10) are different becausd
is different. The higher value @f for continents means that

the physical explanation for this higher value Bffor con-
tinental margins, except that it implies a smoother variation

they are smoother than the seafloor. It means that the undefrom high to low altitudes. Since the algorithms used to in-

lying physical mechanisms responsible for the values of

terpolate between continents and oceans smooth the data, we

and C1, whatever they are, may be the same for continentsshould be cautious in our interpretation of this result.
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Fig. 22. Scatter plot of the parameteiSy, H) for the three different g 23, |og/log plot of the spectral energy versus the wavenum-

types of region (circles, stars and X's represent continents, oceanger for the four DEMs. From right to left: Lower Saxony (with

and continental margins respectively). trees, top), Lower Saxony (without trees, bottom), U.S. (in grey),
GTOPO30 and ETOPOS5. A reference line of slep210 is on the
graph to show the overall slope of the spectra. The small arrows

6.2 Global topography analysis show the frequency at which the spectra are not well estimated, ac-
cording to Eq. 13) (for ETOPOS5, it is well estimated on the whole

In this section, we use power spectra and trace moments tgange). The “semi error bar” symbols indicate the amount of offset

analyze the four DEMs. For convenience, the data are andue to the resolution dependent factér® (see Eql4for details).

alyzed in 1-D (transects) that are chosen so as to maximiz€igure taken fronGagnon et al(2003 with some modifications.

the range of scales analyzed (i.e. we take the longest possible

transects on each DEM). The regions analyzed are shown on

Figs.15 (ETOPO5),16 (GTOPO30 and the U.S. DEM) and part of the DEM to avoid problems (indicated on Fig).

17 (Lower Saxony DEM). See TabRsfor details. In the ini-  Its power spectrum is also shown on F2§: we can see that

tial analysis of ETOPO5, only 500 transects from a narrowit follows the “overall” spectrum, hinting at scaling down to
strip around the equator are used. This is done in order to obthe meter scale. The fact that the spectrum containing trees
tain a relatively constant spatial resolution (the original DEM is shifted vertically compared to the tree-free one is easily
has constant angular resolution), so that it can be compare@xplained. Trees are not part of natural topography, they are
with the results of the other DEMs. Below, we also analyze Ssuperposed on top of it; they thus add spectral energy to the
the ETOPOS data as a function of angular resolution (usingspectrum, resulting in a vertical shift. The spectrum of the

all the 2160 transects of the data set). full ETOPOS data set is given in Fig@4. It is straight over
~2.7 orders of magnitude and the valuepfs given in Ta-
6.2.1 Power spectrum ble 5. We can see that the values pfare similar for the

_ _ narrow strip analysis and the full analysis.
Figure 23 shows the results of the power spectrum analysis

over the four DEMs (the spectrum is on the narrow strip for6.2.2  Quantitative analysis of insufficient dynamical range
ETOPOS5). The log/log plots on Fi@3 give straight lines

over 6 orders of magnitude (the individual valuespofre  Before interpreting the data further, we must consider the ef-
given in Tableb), indicating that the scaling is well respected fects of artefacts due to the inadequate dynamical range of
from planetary scales down to a few meters. In fact at 40 mthe DEMs. The following rough argument can be used to
there is a “bump” that breaks the scaling in the Lower Sax-find the wavenumbekmnax at which the spectrum starts to
ony spectrum. The same break in the scaling is also observele corrupted by this effect. LeAhimax=Amax—hmin be the

in the trace moments analysis (see S6.4. This break  maximum range of altitude on the data set akf, the

can probably be explained by the presence of trees (irregsmallest possible nonzero difference on the data set (which
ular white patches on Fidl7) on the Lower Saxony DEM is equal to the height of one unit of vertical discretization).
(Gagnon 2001). Below we will concentrate on a tree-free The ratio Ahmax/ Ahmin defines the dynamical range of the
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Table 5. Universal multifractal parameters for the four DEMs (and other studies).

Data sets Horizontal Regions analyzed 8 o C1 H References
resolution (in pixels)
ETOPOS5 (narrow strip) ~10km 500<4000 217 172 014 071 —
ETOPOS (full analysis) ~10km 2160<4000 212 181 0.13 0.69 —
GTOPO30 ~1km 1225<4096 204 177 0.08 0.60 —
u.s. 90m 250665536 208 151 0.09 0.61 —
Lower Saxony 50cm 30006000 1.86 200 0.17 0.60 —
Global parameters — — — 179 0.2 — See S6A@.5
Deadman’s Butte 50m 53512 193 19 0.045 0.51 Lavallee etal(1993
French topography 1km 5%512 — 1.7 0.075 — Lavallee etal(1993
U.S. 90m 2x512x512 191 1.70 0.07 0.52 Pecknold et al(199%)
data set. Because the spectrum of a scaling process is a de- 1
creasing power law, the amplitude of thgin=1 sinusoid
is roughly proportional taAhmay (Or E(kmin)Ak%AhzmaX) 10— m
and the lowest possible amplitude (which is proportional
to Ahmin) roughly corresponds to thémax sinusoid (or 9 7
A2
E (kmax) Ak~Ahy..), hence @ ol i
2 4 N\ B =
<Ahmax> ~ E (kmin) _ <km|n> (12) < 7L _
Ahmin E (kmax) kmax Lng
(@]
(=}

whereg is the spectral exponent. If the minimum/maximum
heights on the transedig,in andimaxare measured in nondi-
mensional digital counts and the wavenumbers in hondimen-

sional inverse pixels, then we have 4l _
kmax ~ (hmax — hmin)z//3 (13) 3 ‘ ‘ ‘

-8 7 -6 5 4
The wavenumbers at which this formula predicts that the log, Kk (cycles’m)

spectra start to be corrupted are shown with arrows on

Fig. 23. This approximate formula works particularly well

for the U.S. spectrum, where it explains the drop in the highFig. 24. Log/log plot of the spectral energy versus the wavenumber

frequencies. In fact, this problem of insufficient dynamical for ETOPOS (full analysis).

range, which is related to the problem of insufficient statis-

tics and the statistical nature of scale invariance (i.e. if more

and more realizations are analyzed, the probability of havawvavenumber fall-offs or flattenings are artefacts of the par-

ing higher/lower altitudes increases, so it increases the dyticular data set. It also suggests that the corresponding scale

namical range and the chance to observe good scaling ovésreaks that are attributed to physical characteristic scales in

that range), can probably explain some scale breaks seethe literature are artefacts. This result is quite different from

in the literature that are interpreted as characteristic scalethat of Sayles and Thoma4d979 who argued that surfaces

of the process. There is also the problem of oversamplingnatural and artificial) exhibited scaling over 8 orders of mag-

(see Sectd) that can lead to a fall-off of the spectra at high nitude. In their case, the range of scaling of their individual

wavenumber. data sets was very limited (they used 23 data sets to cover
An important point is the fact that the spectra from our dif- their 8 orders of magnitude) and the shifts in spectral ampli-

ferent data sets fall on a single straight line. Note here theytude were made more or less arbitrariBefry and Hannay

are all in the same units and are only shifted in the vertical1978 in order that they would line up over a wide range. In

by a small multifractal correction determined by K(2) (see Fig. 23, only the Lower Saxony spectrum (with trees) does

below). In addition, the range of scaling of each data set isnot follow the overall line, but the tree-free subsection does

roughly 3 orders of magnitude and their ranges overlap. Thidine-up. In our case, the vertical displacements are not arbi-

point is important: the overlap makes it clear that the hightrary so the wide range of scaling is significant.
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log, A

log, A

Fig. 25. Logl/log plot of the normalized trace moments ver-
sus the scale ratia=Lpgy/! for each DEMs. The values of
g of each trace moments are, from top to bottom, 2.18, 1.77,
1.44, 1.17, 0.04, 0.12 and 0.51. Upper left corner: ETOPO5
(narrow strip analysis).LETopos=40000km; upper right cor-
ner: GTOPO30,LgTop036=4096 km; lower left corner: U.S.
DEM, Lys = 5898 km; lower right corner: Lower Saxony DEM,

Liower saxony= 3000m.

Fig. 26. Log/log plot of the normalized trace moments versus
the scale ratio.=LgTopoy/! for ETOPOS5 (full analysis). Here
LeTopos=40000 km. The values af of each trace moments are,
from top to bottom, 2.18, 1.77, 1.44, 1.17, 0.04, 0.12 and 0.51.

1km, 90 m and 50 cm for the four different data sets, we see
that using the “global” valu& (2)=0.22 (see Sect6.2.5,
the corrections necessary to bring them all to an “effective”
6.2.3 Multifractal resolution corrections to spectral ampli- 50 cm resolution are 8.84, 5.32, 3.13 for 10km, 1km, 90m
tudes respectively. We see from Fig3that these corrections con-
siderably improve the alignment of the spectra.

The small shifts in the vertical are due to the resolu- The Spectra of F|923 are from continents (except for
tion dependence of the multifractal nois¢g and the  ETOPOS5, which is a continents/oceans mix). To calculate
fact that the different data sets have quite different spathe theoretical spectral exponent predicted by the univer-
tial resolutions. To see this, consider the fractional inte-sa| multifractal model, one must use tt& value of con-
grations implied by the convolutions in Table Since  tinents Heontinents=0.66, see Table}) and the multifractal
the Fourier transform of a convolution is a multiplication correctionk (2) (calculated with the global values afand
and the spectrum is determined by the square of the abe; found with trace moments, see Se82.9. This gives
solute transform, we haveP™()=EP™ (k) |k|=HH2H)  g_q op oo K(2)=2.10. A reference line of slope
and E,f'F(k)zEg'F(k) Ik|=2" for the height spec- —2.10 is shown on Fig23 to show that the overall slope
tra, where the noise spectra argfP™(k)os? and I(Slggj)sie éot—? ('T roulgh agtjre;]ment WlWedf}”:ngbelneS_Z

FIE 2 —(1-K©2)_ K2 —(1—-K (2 , DUl IS also Close 10 the one predicte Yy univer-
hE¢ (yoc(g7) kA7 K@ =2EE Jk7EEE). - We thus sal multifractals (with parameterg=1.79, C1=0.12 and
ave

H=0.66).

E]qum(k) o 0,2 |k|—(1+2H)

FIF K@) I —(1+2H-K(2)) 6.2.4 Trace moments analysis and the universal multifrac-
Ey () o a T Ik (14) tal parameters
¢From Eq. 14) we can see that in addition to the multifrac-
tal correction to the spectral exponent, there is also a resTrace moments analysis was performed on the four DEMs;
olution dependent factoxX@, wherex is the scale ratio see Figs25-26. Reasonable straight lines are obtained on
which is inversely proportional to the resolution of the DEM. all the DEMs, showing that Eq7) is obeyed. The slopes of
When comparing spectra from data sets having different inthe straight lines are equal #(g): the fact that the slopes
trinsic resolutions, there will be an additional offset of this are nonzero implies that the fBm model is not adequate and
amount. For example, using the nominal resolutions 10 kmtheir nonlinear variation witly implies that the monofrac-
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Fig. 27. Plot of the moment scaling functioki(¢) as a function of  Fig. 28. Plot of the moment scaling functioki(¢) as a function of
the momeny for the four DEMs (+'s correspond to Lower Saxony, the moment; for ETOPOS5 (full analysis).

squares to U.S., X’s to GTOPO30 and circles to the narrow strip

analysis of ETOPOS5).

From Eq. (5) and Fig.27, we see that the values @f can be

tal B-model is not adequate either (this is quantified below).ﬁsggéﬁg ?i)r/]Orlr;eizufr:)r;gat”heh\éag;e[gofsvggreléé[qi;eclgEr;es
' s . S

Th in which all the tr momen nver rre- X . . :
s snzg té fﬁe “ef(;ecfilvet” gutt:rcsecalg ofthtz ggscgd?ee Icf:o € is determined by the largest singularity presgnithe statis-
P ' tics “saturate”). Note that these are second order multifractal

there were an infinite ensemble of topographies, it would be S T L
the largest scale of the cascade. In the extreme case whefgase transitions; the second derivativekly) is discon-

we have a unique data sét is bounded above by the scale Inuous. First order transition due to divergence of statistical
of the data set; the trace moments will poinitel (roughly mome,nts may also occur and may explBiouchaud et al.
as observed). If the scaling is broken=1 would be less (1999's results on fractu_re surfaces. . _

than the largest scale of the data set. It is interesting to note !N Order to test the universality hypothesis and estireate
that the effective outer scale of ETOPO5480 000 km (see andCy, the K (¢) curves of Figs27 and 28 are fitted with
Fig. 25, upper left corner). This means that the variability Ed- (7) in the range &g <2<g; (to obtain accurate moment

of the topography is the same as that of a cascade startinﬁStimf"tes)' The values obtained for the parameters can be
at approximately 20 000 km, which is the size of a great cir-S€€N i Tabl®. These results can be compared to other stud-

cle (the maximum possible size on the earth). In the case ofes on topography (see Tabig. Even if those analyses are

GTOPO30 (Fig:25 upper right corner) and the U.S. DEM ©N different parts of the world and are on different ranges
(Fig. 25 lower left corner), the effective outer scale is larger of scales, the parameters obtained are not too different from

than the DEM outer scale, presumably differing slightly be- those found here. Qf course, it is important to remember that
cause the fitted lines on Fig5 (upper right and lower left and(C; are statistical, and that the data sets here are larger.

corners) do not reproduce the flattening of the trace momentblOte also thatthe parameters for the full analysis of ETOPO5
at high (as discussed in Se@.1.2. are quite similar to the narrow strip analysis; this justifies the

To see more clearly the exact form of the correspondinguse of only 500 transects to compare with other datasets.

K (g)’s, these are shown on Fig87 and28. Although the ) )

K(g)'s are nonlinear, the asymptotes are linear. This lin-6-2:5 Global moment scaling function

ear behavior is the signature of a multifractal phase transi-

tion (Schertzer and Lovejoyl992. This phase transition is The similarity between the andC1 parameters between all
caused by the fact that, on a given realization, there is a maxthese studies suggests that it may be possible to introduce
imum singularityy, (the highest gradient on the dataset), im- @ “global” K (¢) function that would describe the statistics

plying that forg>g;, K (¢) becomes linear: of the Earth's “topographic” noisé at all scales. This is
certainly the simplest hypothesis that one could make about
K(q) = ys(qg —qs) + K(gs) for g > g (15) the Earth’'s noise. Even in the case with both continental
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2.0 I diction is that the regional data sets are missing variability
18- . i due to the planetary scales down to their outer scales. How-
. ever, knowing the globak (¢), we can estimate this miss-
16 ing variability and adjust the trace moments by a theoreti-
14 cally determined amount. The first step is to fix the outer
scaleLqyter Of the entire process, approximately 20 000 km

With trees

UAﬁl'z (see Fig.25). Next we calculate.=Lqyter/! Of each DEM
5;%1-0 (this corresponds to a shift of the trace moments on the hor-
v_0.8 izontal axis). Then, in order to take into account the fact
§0.6 that the variability of the regional data sets is artificially low,
- we use the basic factorization property of cascades. Let

04 s Marge=L/(data set scale) be the ratio of the missing range

0.2 7 of scales. IfAsmai=(data set scal¢fpixel scale), then fac-

0.0 torization (valid for the cascade quantiybut not directly

for k) means
0.2 \ \ \ \ \ \ \ p g p K@) .
0 1 2 3 4 S 6 7 8 <qﬁ)hl«alrge)\sma”) = <¢)Llarge> <qs)hsmall> = Alarge<¢}tsmall) (16)
log, A

whereK (g) is the globally averaged (¢) discussed previ-
ously and(qbi’small) is obtained directly from the analysis of

Fig. 29. Log/log plot of the normalized trace moments versus each data_‘ Se_t_' On alog/log plot, the multlpllcatlye factor_du_e
the scale ratio.=Louter/! (With Louter=20 000 km) for the three  tO the variability of the larger scales becomes a linear shift in
DEMs (circles correspond to ETOPOS5, X's to U.S. and squares tothe trace moments, corresponding to a theoretically predicted
Lower Saxony). The solid lines are there to distinguish betweenlinear vertical shift in Fig25. Figure29 shows the trace mo-
each value of; (from top to bottomg=2.18, 1.77, 1.44, 1.17,0.04, ments of three DEMs shifted according to Etg)(the trace
0.12 and 0.51). The trace moments of the Lower Saxony DEM withmoments of GTOPO30 are not shown in F2§.because its
trees forg=1.77 and;=2.18 are on the graph (indicated by arrows). scaling range is already contained in the U.S. range, so we
The theoretical lines are computed with the glokaly) function avoid overcrowding the graph).
discussed in Sec6.2.5 Figure taken fromGGagnon et al(2003 As can be seen from Fi@9, the lines obtained are not
with some modifications. exactly straight, but oscillate slightly around a straight line
(this is more apparent for large valuesgf These oscilla-

and oceanic data (ETOPOS5), it is reasonable to make thd0ns may be due to scaling anisotropies, which are only par-
hypothesis that they are described by the sdsiig), be- tially eliminated by our isotropic analyses (see the ensemble

cause the primary difference between the two appears to bgPeCctrum of “Mt. Multi” in Sect.2.3 for a similar type of

H (i.e. « and C; are similar, see Sec6.1.2. There are behaviour due to anisotropy). With this caveat, the trace mo-
also morphological differences (i.e. anisotropies) betweerM€Nts obtained on Fig9are nearly straight and continuous
oceans and continents (and also between different places V" nearly 6 orders of magnitude (there is a break4@ m
oceans/continents), but they are largely washed out by the ugdat is probably due to treeagnon 2001), meaning that

of isotropic statistics (angle integrated power spectra, coarsé® Earth’s topography is multiscaling over that range. We
graining over squares at all scales in trace moments). cr?n quant:cfyhth;_s statgmt:pt on mulltlfrlactalrlltydby estimating
So here we argue that fgr, the statistics are the same at the error of the fit. To do this, we calculate the deviation (nor-

all scales and can be described by a glaka) function. malized residuals) between theory (i.e. the straight lines on

A simple way to obtain an estimate of the globlyg) is Fig. 29) and data with the following formula:
to take the average of the parameters obtained in this study a1/ K@
(@=1.79+0.18 andC;=0.1240.04, where the uncertainties 2 = |10g10 ((#])) ™" —logyg <)~ 4 )
are equal to one standard deviation). To see whether this

globalK (¢) is plausible we must test that the cascade is conWherek (¢) is the global moment scaling function discussed
tinuous from planetary scales down to small scales, i.e. tcabove and we average ovek§<2 and the scale range
check whether the trace moments of all the data sets lie 020000km to 40m. For the estimated global parameters
straight lines when put on a single graph. However, we can«=1.79 andC1=0.12, we getA=0.16, corresponding to
not mechanically superpose the trace moments for the differ+10*=+45% in the statistical moments, with the overbar
ent regional data sets. This is because (recall from Sedt.  indicating averaging over all's andg’s. Considering that
each regional data set will satisfy lgg)=1 ati=1 (with we are dealing with four different data sets that cover nearly
A=1 corresponding to the outer scale of the regional datag orders of magnitude in scale, that we are estimating-ai

i.e. different for each). The reason for this apparent contramoments and that the fit is done with only two parameters

1/q (17)
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(with no optimization of the parameters nor minimization of examples, that the hypothesis of wide range scaling is well
error), then the fit is fairly good. This is an indication that defined and not in contradiction with other results in the lit-
the hypothesis of a glob& (¢) is a reasonable assumption erature. The existence of apparent breaks in the scaling is in
for the isotropic noise. In contrast, the use of a multiplica- fact a result of normal multifractal variability.
tive monofractal modek(=0) to fit all the curves would give All of this shows that anisotropic multifractals hold
A=0.55 (or £355% in the statistical moments). Fractional promise for modelling topography. But this is only a proof of
Brownian motion cannot be used to explain these results eiprinciple: what about real topography? In the second part of
ther, becaus& (¢)#0 whereas fBm predict& (4)=0. For  the paper, we showed that, indeed, topography is multiscal-
example, taking a typical well estimated trace moment ating over the largest scale range — nearly 6 orders of magni-
g=2.17, we obtain a slop& (2.17)=0.24+0.03, which is  tude — and on the largest data sets — a hundred times the data
8 standard deviations away from zero. For oth@nd other  used in previous studies. Restricting ourselves to isotropic
data setsK (q) is typically 5-10 standard deviations from statistics (i.e. averaged over all directions), the fundamen-
zero. The trace moments are therefore not flat, definitely rultal result is that from planetary scales down to roughly 40 m
ing out the monofractal fBm model. (broken apparently due to the indirect effect of trees), the
scaling is remarkably accurately followed. Indeed, not only
can the noise statistics for weak and strong gradients (low
7 Conclusions and high order moments) be well represented by a unique
moment scaling functiork (¢) parametrized by two basic
The earth’s topography is a fundamental geosurface. Itis imexponents ¢ and C1), the overall agreement between the
portant in numerous applications and its immediacy has chalnoise statistics and that predicted by the two parameters is
lenged generations of mathematicians, physicists and geosci-45%. In contrast, thg-model (monofractal noisey=0)
entists to devise realistic descriptions and models. Its highgives an error 0f-355% and the fBm (homogeneous noise,
variability over huge ranges of scales continues to defy tra-K (¢)=0) is typically 5-10 standard deviations away from
ditional scale bound notions of variability. In this paper we the data, hence the inadequacy of monofractal models.
showed how to tackle this variability using scaling ideas. We By systematically comparing various subregions of the
first showed how new ideas of scaling can be used to make reglobe, we also showed that while the continents, oceans and
alistic models of topography with interesting morphologies. continental margins have roughly the same noise statistics
We then showed that in real topography scaling is accuratelycharaterized by andC1), their height statistics (character-
obeyed over wide ranges of scale and quantified that statezed by H) were significantly different (see Tab#. This
ment. suggests that the physical mechanisms responsiblgdfor
Surprisingly, the notions of scaling used in modeling (whatever they are) are different, while the ones responsible
and analyzing the earth’s surface have not changed mucfor « andC; are similar. It also justifies the use of a unique
since their early development: they are still generally quasi-global moment scaling to characterize the Earth’s topogra-
Gaussian (the monofractal fBm). To appreciate the restricphy as a whole (see Tabifor a summary of the parameters
tive nature of this framework, we recalled that scaling mod- obtained).
els are generally based on mathematical singularities which While the finding that each topographic level set has its
are the basic scaling functions. A general feature of suctown fractal dimension surely restores a degree of realism
singular models is that they produce large, strong structureso the popular monofractal picture of topography, the anal-
which can stand out even in the limit when an infinite num- yses done in this paper are isotropic (angle averaged): the
ber are superposed. The Gaussian case is exceptional stale by scale and location by location anisotropy has largely
this regard; the morphology of the singularities gets “washedbeen washed out. As discussed previously, the development
out” in the infinite limit since all singularities have nearly the of Generalized Scale Invariance has shown that — at least in
same strengths. In order to achieve interesting and realistiprinciple — realism can be restored by allowing the notion
morphologies/textures, we need not only more wild statisti-of scale itself to be defined by the physics. In other words,
cal variability but also singularities with interesting shapes. Generalized Scale Invariance could be used to model to-
While the former is possible using multifractals, the latter pographies with various morphologies in different locations
is possible with the use of scale changing operators, genera- where the scale changing operdfpmwould be constrained
tors and scale functions, i.e. in the framework of Generalizedby the physics responsible for these morphologies — all of this
Scale Invariance. We illustrate the resulting subtle interplayin a scaling framework. The development of realistic topo-
between singularity shapes, statistical variability and result-graphic models and the corresponding anisotropic analysis
ing morphology with many examples from numerical simu- techniques are clearly the subjects of future research.
lations. From the simulations, one can see that multifractals The “complete explanation” of topography can then be
give rise to subtle hierarchies of mountains and plains thatoughly divided in two parts: its description and its under-
are very appealing visually when compared to fBm or fLm. lying physics, with a non-trivial link between the two. This
We also show with the help of simulations and pedagogicalpaper mostly deals with the description part and an implied
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symmetry constraint on the underlying mechanisms. An ac-Data Announcement 88-MGG-02: Digital relief of the Surface of
curate and complete characterization of the statistical prop- the Earth, NOAA, National Geophysical Data Center, Boulder,
erties of topography is important in applications where it is  Colorado, 1988.
used as a boundary, such as atmospheric/oceanic currer#g V.Visj,. H. J.: Statistics of ore distribytions Part I: Frequency dis-
models, synthetic aperture radar interferograms or radar scaltiot(;'g:t'gnsé Ogﬁzsgﬁéar:n“aens' gef_""_ '\gjcnzfl)i,nlg&ulnzi\z;r%siﬁ’t ylgaf’nld geo
te”n.g mOdeI.S' It pOt.entla”y (_axplalns many of the classical morbhology, Annu. Rev. Earth Planet. Sci., 28, 571-610, 2000.
§Callng relations of rlver. ba_sln hydrology. More generally_, Dietler, G. and Zhang, Y.: Fractal aspects of the Swiss landscape,
just as energy conservation is an often used model constraint, Physica A, 191, 213-219, 1992.
so should scale invariance: scale invariance and multifractalgoy ¢ G. and Hayes, D. E.: Quantitative methods for analyzing
ity can be useful model selection criteria. the roughness of the seafloor, Rev. Geophys., 23, 1-48, 1985.
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