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Abstract. We study plasma transport at a thin magnetopause
(MP), described hereafter as a thin current sheet (TCS),
observed by Cluster at the southern cusp on 13 February
2001 around 20:01 UT. The Cluster observations generally
agree with the predictions of the Gas Dynamic Convection
Field (GDCF) model in the magnetosheath (MSH) up to the
MSH boundary layer, where significant differences are seen.
We find for the MP a normal roughly along the GSE x-
axis, which implies a clear departure from the local average
MP normal, a∼90 km thickness and an outward speed of
35 km/s. Two populations are identified in the MSH bound-
ary layer: the first one roughly perpendicular to the MSH
magnetic field, which we interpret as the “incident” MSH
plasma, the second one mostly parallel toB. Just after the
MP crossing a velocity jet is observed with a peak speed of
240 km/s, perpendicular toB, with MA=3 andβ>10 (peak
value 23). The magnetic field clock angle rotates by 70◦

across the MP.Ex is the main electric field component on
both sides of the MP, displaying a bipolar signature, positive
on the MSH side and negative on the opposite side, corre-
sponding to a∼300 V electric potential jump across the TCS.
TheE×B velocity generally coincides with the perpendicu-
lar velocity measured by CIS; however, in the speed jet a
difference between the two is observed, which suggests the
need for an extra flow source. We propose that the MP TCS
can act locally as an obstacle for low-energy ions (<350 eV),
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being transparent for ions with larger gyroradius. As a result,
the penetration of plasma by finite gyroradius is considered
as a possible source for the jet. The role of reconnection
is briefly discussed. The electrodynamics of the TCS along
with mass and momentum transfer across it are further dis-
cussed in the companion paper by Savin et al. (2006).

1 Introduction

The magnetosheath/cusp transition was first investigated
over thirty years ago through the HEOS, Hawkeye, Prognoz-
8 and Prognoz-10 missions (e.g. see Paschmann et al., 1976;
Haerendel et al., 1978; Farrell and Van Allen, 1990; Vais-
berg et al., 1983; Klimov et al., 1986; Blecki et al., 1998;
Kessel et al., 1996; Eastman et al., 2000; Dunlop et al.,
2000), and more recently re-explored with the Polar mission
(e.g. Grande et al., 1997; Russell, 2000; Scudder et al., 2002;
Fritz et al., 2003) as well as the Interball mission (e.g. Fe-
dorov et al., 2000; Dubinin et al., 2002; Savin et al., 1998,
2004a, b and 2005a, b;); finally, the cusp bibliography based
on Cluster data is now large enouth (see Lavraud et al., 2002
and 2005; Cargill et al., 2004; Dunlop et al., 2005 and refer-
ences therein).
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Fig. 1. Data from 19:15 to 20:15 UT on 13 February 2001. From top to bottom: x GSM component of the electric field, as measured by SC1
and as calculated through the GDCF model; magnetic field GSM clock angle as calculated from SC1 data and from GDCF; SC1 GSM three
magnetic field components together with the GDCF GSMBy ; total magnetic field intensity and CIS-HIA ion number density, corrected
by a 1.38 factor obtained by intercalibrating the CIS-HIA data with the Whisper data; parallel and perpendicular CIS-HIA temperatures;
three GSM components of the CIS-HIA proton velocity; total speed and total perpendicular speed; Alfvén Mach number; parallel and
perpendicular plasma beta.

The cusps are believed to be the main places of trans-
port of plasma into the magnetosphere and therefore contain
modified MSH plasma. Their extent and location are known
to respond to Interplanetary Magnetic Field (IMF) and to
solar wind pressure (e.g. Frank, 1971; Newell and Meng,
1994; Woch and Lundin, 1992; Yamauchi et al., 1996).
The cusps with their often complex magnetic topology and
plasma structure relate to processes occurring elsewhere on
the magnetopause (MP) and in the adjacent MSH in fashions
which are at present not fully understood.

In this paper, we study a crossing of the high-latitude MP
at the southern cusp, observed by Cluster on 13 February
2001. The general features of this event have been described
by Cargill et al. (2004), who did not draw any definite con-
clusion on the nature of the MP crossing and by Dunlop et
al. (2005), who showed evidence for an indentation region
on the MP across the outer cusp and well defined plasma
and magnetic boundaries, consistent with a funnel geome-
try. We further analyze this case in two companion papers.
Here we present the observations, describe the MP crossing
as a thin current sheet (TCS), located between the “incident”
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MSH plasma and a high speed jet, study the TCS movement,
thickness and orientation, and show that proton finite gyrora-
dius penetration through the TCS can account, at least in part,
for the observed high speed jet; moreover, we briefly discuss
the possible role of reconnection in this event. In the com-
panion paper (Savin et al., 2006), cited further as “[S]”, we
discuss plasma acceleration, wave-particle interactions and
Hall dynamics at the MP TCS.

2 Overall description of the event

We make use of data from four Cluster instruments: CIS, de-
scribed by R̀eme et al. (2001), FGM, described by Balogh
et al. (2001), PEACE, described by Johnstone et al. (1997),
and EWF, described by Gustafsson et al. (2001). In the case
under study, Cluster entered the magnetosphere through the
southern cusp close to the GSM local noon. The Cluster or-
bit has been described in detail by Cargill et al. (2004) and
Dunlop et al. (2005). Here we only recall that Cluster space-
craft 1 (SC1) was leading the fleet, closer to the Earth along
the x GSM axis, while SC2, 3 and 4 were trailing in a plane
roughly perpendicular to the x-axis; the average distance be-
tween the spacecraft was∼600 km.

Figure 1 shows SC1 data in GSM from 19:15 to
20:15 UT on 13 February 2001. The vertical dashed line
at 20:00:58 UT marks the MP crossing, for which Cargill et
al. (2004) calculated a normal (in GSE)NB=(0.96,−0.21,
−0.16), averaged over the 4 spacecraft, and an outward speed
of 30 km/s. In the following we break the description of the
figure into individual paragraphs corresponding to the differ-
ent panels.

Electric field. The top panel compares the x component
of the electric field as calculated from EWF measurements
under the hypothesis thatE×B=0 (black line) withEx (ma-
genta line) as predicted by the Gas Dynamic Convection
Field Model (GDCF). GDCF is a Spreiter code (e.g. see
Song et al., 1999, and Savin et al., 2002a, c for details),
for which we used as inputs interplanetary data provided
by the SWEPAM and MAG instruments on board ACE at
L1. A general agreement between the two quantities is ob-
served, exception made for the 19:28–19:31 UT period and
from 19:57 UT onwards. At 19:57 UT the modelEx de-
creases, while the SC1Ex rises to about 6 mV/m; then the
modelEx stays positive, while the SC1Ex goes through a
minimum∼0 around 20:00 UT, displays a large bipolar os-
cillation roughly centered at the MP crossing and oscillates
around 0 from 20:02 UT onwards.Ex is a good proxy for the
electric field along the quoted MP normal.

Clock angle.The second panel displays the magnetic field
clock angle as calculated from SC1 data (black line) and
through the GDCF model (magenta line). Until 19:57 UT
a general agreement is observed, exception made for the
19:28–19:31 UT period, when they differ by 30–60◦, and the
19:49–19:55 UT period, when a difference of the order of

20◦ is observed. From 19:57 UT onwards the two clock an-
gles totally disagree: the GDCF clock angle keeps close to
180◦, while the SC1 angle first oscillates around 200◦, then
jumps by∼70◦ at 20:00:58 UT and oscillates around 140◦

from 20:02 UT onwards.

Magnetic field components. The third panel shows
the SC1 magnetic field components and the GDCFBy .
We notice that between 19:57 and 20:00 UTBy displays
a dip through a−30 nT minimum around 19:58:30 UT
which does not appear to be related to IMF changes; fur-
ther on, at 20:00:58 UT the observed field turns towards its
usual magnetospheric direction just inside the southern cusp:
|Bz|>By>|Bx |, with Bz<0 andBx∼0; this configuration is
more clearly established at 20:08 UT.

Proton density and B.The fourth panel contains the total
magnetic field intensity and the CIS-HIA proton number den-
sity multiplied by a 1.38 factor obtained by intercalibrating
the CIS-HIA data with the WHISPER data (see Décŕeau et
al., 2001). The total field oscillates around 60 nT from 19:15
to 20:01 UT, when it drops to about 20 nT; after that, it oscil-
lates at the new level for a few minutes and oscillates around
40 nT from 20:03 to 20:08 UT, when it jumps to the normal
magnetospheric value of 80 nT. The proton density varies be-
tween 10 and 25 cm−3 between 19:15 and 20:00 UT. At the
MP itself it displays a small peak, which is hardly seen in
Fig. 1, but will be further discussed in [S], followed by a de-
crease through a minimum of 9 cm−3 at 20:05 UT and a short
lived maximum at 20:07 UT.

Proton temperature.The fifth panel shows the parallel
and perpendicular proton temperatures: in the MSH gener-
ally T⊥>T||; however, around 19:30 and 19:50 UT and from
19:55 to 20:00:58 UTT⊥∼T||; after the latter time, in corre-
spondence with the dip of the total magnetic field,T⊥ reaches
its maximum andT⊥>T||.

Proton velocity. The sixth and seventh panels display the
proton velocity vector and the total and perpendicular speed
respectively. The velocity is generally almost parallel toB,
but is mainly perpendicular during four periods also charac-
terized by enhanced flows: around 19:30 and 19:50 UT, from
19:55 to 19:59 UT and from 20:00:58 to 20:02 UT. By con-
trast, from 19:15 to 20:00 UT the GDCF velocity (not shown
in the figure) is almost parallel toB, at an angle<14◦ on
average.Vx is generally of the order of -50 km/s and ap-
proaches 0 at 20:02 UT. Throughout the plotVz dominates
as expected from the Cluster position, whileVy is generally
positive. Between 20:00:58 and 20:02 UT we observe a large
jet, 230 km/s on average and perpendicular to the magnetic
field, mainly in Vz andVy ; it is also worth noting thatVy

changes its sign at 20:00:58 UT from about 100 to−70 km/s.

Alfvén speed and plasma beta.The eighth panel shows
that the Alfv́en Mach number is of the order of 0.5 most of
the time, but increases to 1 over one minute prior to the MP
crossing and reaches a maximum value of 3 in the jet. Fi-
nally, the protonβ|| andβ⊥ (last panel) are generally∼1,
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Fig. 2. Five successive CIS-HIA ion 3D flux distributions with 12 s resolution (starting times in UT at the top). For each acquisition period,
15 cells are piled up vertically, each corresponding to a given energy, lowest at the bottom (23 eV), highest at the top (1259 eV). Each cell
displays color-coded ion flux as a function, in the S/C system, of the azimuthal angle on the horizontal axis (from 0◦ on the left to 360◦ on
the right) and the polar angle on the vertical axis (from−90◦ at the bottom to 90◦ at the top). The magnetic field direction is shown in each
cell by the crosses and rhombi which mark respectively the vector tip and end.

but are>>1 for several minutes after 20:00:58 UT, through
a maximum value of 23 in the jet.

We conclude that the spacecraft is in the MSH until it
crosses the MP at 20:00:58 UT. In the following section we
demonstrate that ion flux crosses this boundary, which im-
plies that the MP in this case cannot be described as a tangen-
tial discontinuity. The data show evidence that the MP is also
approached around 19:30 and 19:50 UT and from 19:55 to
19:59 UT. To this regard, we recall that around 19:30, 19:50
and 20:00 UT 10–20 keV O+ (not shown) is observed, which
can be considered as a proxy for the approach to the MP (e.g.
see Phan et al., 2003). Between 20:00:58 UT and 20:06 UT
the outer cusp is observed. Cargill et al. (2004) in their analy-
sis of this event carried out a successful test for a deHoffman-
Teller frame at the 20:00:58 UT boundary; they then tested
the Waĺen relations and concluded that “consideration of all
components gives negative slopes of approximately 0.8”. It
is well known that many authors regard this satisfactory for
a rotational discontinuity (see e.g. Hultvist et al., 1999, and
references therein). Accordingly, the interpretation of the ob-
served MP transition as an RD could qualitatively account
for the acceleration observed through it. However, Cargill et
al. (2004) obtained, for the x, y and z components, the fol-

lowing slopes:−0.54,−0.82,−0.6 for Cluster 1 and−0.52,
−1.12,−0.36 for Cluster 3. They concluded that “any iden-
tification of the MP as a rotational discontinuity is thus non-
definitive: the plasma flow is directed predominantly in the y
direction, perpendicular to the local magnetic field, no large-
scale density jump is seen, a decrease in the field magnitude
and a rise in temperature are observed, the magnetic field ro-
tates by 90◦ to point predominantly in the Z-direction. A va-
riety of MHD boundaries satisfies some of these conditions,
but none satisfies them all (see also Lavraud et al., 2002).”
On these grounds, in this paper and in [S] we propose an al-
ternate explanation for the acceleration observed in this case
at the MP.

3 Detailed description of the MP transition

Figure 2 shows five successive CIS-HIA ion 3D flux distribu-
tions with 12 s resolution between 20:00:22 and 20:01:22 UT.
The 20:00:58 UT MP crossing occurs just at the beginning of
the fourth acquisition. For each acquisition period, 15 cells
are plotted vertically, each corresponding to a given energy,
lowest at the bottom (23 eV), highest at the top (1259 eV).

Nonlin. Processes Geophys., 13, 365–376, 2006 www.nonlin-processes-geophys.net/13/365/2006/
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20:00:4020:00:40 20:00:50 20:01:00 20:01:10 20:01:20

Fig. 3. Pitch angle distribution of colour coded differential energy flux from the PEACE high energy detector (HEEA) between 20:00:34 and
20:01:22 UT for 13 energy channels from 33 to 250 eV. For each distribution the pitch angle on the vertical axis varies between 0◦ (bottom)
and 180◦ (top). The MP at 20:00:58 UT is marked by a vertical dashed line.

Each cell displays color-coded ion flux as a function, in the
non-rotating S/C system, of the azimuthal angle (from 0◦ to
360◦ on the horizontal axis) and the polar angle (from−90◦

to 90◦ on the vertical axis). In each cell crosses and rhombi
mark tips and ends of magnetic field vectors respectively.
As shown already in Fig. 1, the magnetic field clock angle
abruptly rotates by∼70◦ at the MP. Prior to the MP crossing
the protons display two populations which partly overlap in
energy but have different directions, roughly parallel and per-
pendicular toB respectively. Careful inspection over the pre-
ceding 20 min of similar plots of CIS-HIA distributions (not
shown herein) reveals that the roughly perpendicular popu-
lation is continuously observed and that the parallel one is
present for about 5 min prior to the MP crossing. Therefore,
we interpret the first one as the main MSH plasma popula-
tion, while the nearly parallel one resembles the “reflected”
population often observed in the MSH boundary layer (e.g.
see Fuselier et al., 1997). In the first distribution on the left
the perpendicular population peaks around 120◦ in azimuth
and around 300 eV in energy; by contrast in the top 5 en-
ergy channels the parallel one shows up around the magnetic
field vector tip, i.e. at 260◦ in azimuth and−40◦ in polar an-
gle. In such angular bins the lower energy channels display a
lower flux, to which both populations probably contribute. In
the second distribution the perpendicular population is some-
what enhanced. The third distribution from the left is the last

before the MP crossing and shows already a definite change,
so that the two populations are harder to distinguish. Nev-
ertheless, we remark three flux peaks in the middle energy
channels, around 130◦ in azimuth, roughly perpendicular to
B, while the main distribution is now around the magnetic
field, extending from low to high energy with a peak around
400 eV. After the MP crossing at 20:00:58 UT, when, as de-
scribed in Fig. 1, the speed enhancement starts, a single pop-
ulation is observed, roughly perpendicular to the local mag-
netic field, but at azimuthal and polar angles similar to those
of the parallel population in the MSH and energies some-
what higher, peaked around 700 eV, and with higher fluxes.
We also notice that, for all angular bins, the flux at energies
below 100 eV is much lower than before the MP crossing.
Careful inspection of similar plots for the successive CIS-
HIA distributions shows that the jet population is continu-
ously observed for about 60 s after the MP crossing.

Figure 3 shows the pitch angle distribution of colour coded
differential energy flux from the PEACE high energy detec-
tor (HEEA) between 20:00:34 and 20:01:22 UT for 13 en-
ergy channels from 33 to 250 eV. The MP at 20:00:58 UT
is marked by a vertical dashed line. For each distribu-
tion the pitch angle on the vertical axis varies between 0◦

(bottom) and 180◦ (top). The five lowest energy channels
show bi-directional unbalanced electrons, flowing mainly
anti-parallel, while electrons above 100 eV flow mainly par-
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Fig. 4. 4 s resolution CIS-HIA omni-directional differential proton
fluxes as a function of energy, pertaining to three S/C spins around
the MP crossing (central times are given in UT).

allel to the magnetic field both in the MSH and across the
MP until 20:01:10 UT. As the IMF is southward oriented,
this can be interpreted as due to dayside reconnection of the
magnetic field line threading through the Cluster position.
Intensification of the higher-energy parallel flux just prior to
the MP in conjunction with the velocity rise (see Fig. 1) is
another feature which fits with dayside reconnection as the
source of the heated electrons. However, it is not clear why
perpendicular fluxes are substantially lower than parallel and
anti-parallel fluxes at the lower energies. Another feature,
unexplained by a remote source, is the presence of intense
quasi-perpendicular electrons at higher energies 77–230 eV
just prior to the MP.

In Fig. 4 we display, as a function of energy, 4 s reso-
lution omni-directional differential proton fluxes from CIS-
HIA pertaining to three spacecraft rotations around the MP
crossing. The use of omni-directional distributions is justi-
fied in this case by the fact that the parallel and perpendicular
populations in the MSH and the jet population have already
been clearly identified. The red line shows proton fluxes
measured just prior to the MP crossing, between 20:00:54
and 20:00:58 UT: a broad maximum extends from 60 eV to
500 eV, which we interpret as due to the contributions of the
parallel and perpendicular populations in the MSH. Inspec-
tion of the CIS-HIA on board calculated moments shows
that the proton velocity at this time is∼175 km/s, mainly
parallel toB. The black line shows proton fluxes measured
at the MP and immediately downstream (central acquisition
time is 20:01:00 UT): the spectrum is peaked at 400 eV and
its high energy tail coincides roughly with that of the pre-
vious one; on the other hand, at lower energies the flux is

greatly reduced (by one order of magnitude at 20 eV). At
this time the on board calculated velocity is perpendicular
to B and∼240 km/s. The blue line shows proton fluxes fur-
ther tailward (central acquisition time is 20:01:08 UT): the
high energy tail of the distribution coincides with that of
the previous one, while the peak now occurs around 500 eV.
These observations confirm that the change of the 3D dis-
tributions described in Fig. 2 occurs just at the MP cross-
ing on a time scale probably shorter that the spacecraft 4 s
spin period. We can give a crude estimate of the MP thick-
ness by multiplying the 30 km/s MP speed quoted by Cargill
et al. (2004) by 2–4 s; this yields 60–120 km. On the other
hand, the magnetic field intensity during the MP crossing is
∼30 nT, which yields for 0.2–1.0 keV protons a Larmour ra-
dius ρ∼68–153 km. These qualitative calculations and the
observations we have described in Figs. 2 and 4 lead us to
propose that lower energy protons could be stopped by the
MP TCS, while higher energy ones could move freely across
it.

Starting from this hypothesis, we recall that the domi-
nant electric field component across the MP isEx , which
lies mostly along the MP normal as calculated by Cargill
et al. (2004). Ex drops by 5 mV/m over just 2 s, between
20:00:58 and 20:01:00 UT (as shown in Fig. 1 and, in more
detail, in Fig. 8), i.e. over 60 km, given the MP speed of
30 km. The integration ofEx across such a distance yields
a potential jump of∼300 V (cf. Vaivads et al., 2004), sug-
gesting that protons crossing the MP could be accelerated
and gain an energy of the order of 300 eV. To check this,
at least semi-quantitatively, we extract, from the 12 s resolu-
tion 3-D CIS-HIA distributions, proton fluxes summed over
45◦ in azimuth and polar angle in the tailward direction. Fig-
ure 5 shows such fluxes for two successive distributions, cen-
tered respectively at 20:00:52 UT (black curve), just prior
to the MP, and 20:01:04 UT (blue curve), just after it. The
two spectra cross each other around 300 eV, being the black
curve higher at lower energies and lower at higher energies.
If we make the hypothesis that the higher energy MSH pro-
tons penetrate through the thin current sheet thanks to their
large gyroradius and are energized byEx , we should obtain
the fluxes on the MP cusp side (blue curve) by appropriately
shifting in energy the MSH fluxes. In fact, between 1 and
4 keV the blue curve roughly coincides with the red curve,
which is obtained by shifting to the right the higher energy
part of the black curve (MSH fluxes) by 200 eV. Similarly,
at energies higher than 5 keV the blue curve roughly coin-
cides with the cyan curve, obtained by shifting the higher en-
ergy part of the black curve by 300 eV. This suggests that in-
deed larger gyroradius protons are able to penetrate through
the MP roughly parallel toEx and are energy shifted by the
cross-MP potential.

As we are considering the fine structure of the MP sheet, it
is natural to make also use of CIS-HIA data from SC3 (while
such data are not available for SC2 and 4), which is trail-
ing SC1 at 600 km distance. The MP was crossed by SC3

Nonlin. Processes Geophys., 13, 365–376, 2006 www.nonlin-processes-geophys.net/13/365/2006/
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Fig. 5. Same format as in Fig. 4a, for fluxes summed over 45◦ in
azimuth and polar angle in the tailward direction from 2 full 3D
distributions (12 s resolution).

slightly later than by SC1 (cf. Cargill et al., 2004) and careful
examination of the data (see Fig. 8 below) suggests that this
occurred around 20:01:02 UT. Figure 6 displays four subse-
quent omni-directional spectra in the same format as in Fig. 4
(4 s resolution). As for Fig. 4, we have carefully compared
such omni-directional spectra with the corresponding 12 s
3-D spectra (not shown herein). The spectrum centered at
20:00:58 UT (black line) pertains to the MSH and shows a
lower energy and a higher energy peak, which we interpret as
due to the two distinct MSH populations described in Fig. 2.
The spectrum centered at 20:01:02 (blue line) is measured
just around the MP crossing and displays a slight depletion
at lower energies. The violet and red lines are measured in-
side the high speed jet, centered at 20:01:06 and 20:01:10 UT
respectively, and clearly show a depletion at lower energies,
as already seen for SC1 in Fig. 4. Again we propose, as
for SC1, that larger gyroradius protons can move across the
boundary, while smaller gyroradius protons are confined in
the MSH boundary layer.

Figure 7 displays four SC1 4 s omni-directional spectra:
the last MSH spectrum, red line (centered at 20:00:56 UT), is
shown for reference. The black and green lines refer to spec-
tra centered at 20:01:00 and at 20:02:33 UT respectively, the
first one, peaked at 500 eV, on the MP side of the speed jet,
the second one, peaked at 100 eV, on the opposite side, 30 s
after the end of the speed jet. The spectra between 20:01:00
and 20:02:33 UT (not shown in the figure in order not to over-
load it) display a gradual shift to lower energies. Finally, the
mantle is here represented by the thin blue line spectrum,
centered at 20:08:27 UT, which displays a dense and cold

Fig. 6. Four SC3 4 s resolution omni-directional spectra in the same
format as in Fig. 4 around the TCS crossing.

Fig. 7. SC1 4 s omni-directional spectra at four different times
(same format as in Fig. 4).

low energy mantle population, peaked just below 100 eV and
a higher energy shoulder above 200 eV. To this regard, the
inspection of 12 s 3-D distributions reveals that the lower en-
ergy ‘mantle’ population is parallel to the magnetic field and
the higher energy population is mainly perpendicular, resem-
bling the shape of the spectra in the 20:01:04–20:02:33 UT
period but with much lower density.

To conclude the description of the MP crossing we com-
pare the cross-field drift velocityVd=E×B to the proton ve-
locity perpendicular toB. Figure 8 displays the three GSE

www.nonlin-processes-geophys.net/13/365/2006/ Nonlin. Processes Geophys., 13, 365–376, 2006
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Fig. 8. Three components of the difference in [km/s] between the
ion perpendicular velocity and electric drift velocityV⊥−Vd in
GSE.
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components ofVperp−Vd for SC1 from 19:55 to 20:05 UT
with 4 s resolution, whereVperp=Vob−(Vob·B)B/B andVob

is the on board calculated proton velocity. From 19:55 to
20:00 UT the three traces keep close to 0, implying that
Vperp andVd practically coincide. This occurs in spite of
a non-equilibrium plasma with two co-existing ion distri-
butions with different moments, as shown in Fig. 2, which
should not necessarily follow a single-fluid Ohm equation
(cfr. Sibeck et al., 1999). Between 20:01 and 20:02 UT all
three components depart significantly from 0. In particular,
this is true for the y component, which deviates from 0 also
in the 20:02–20:05 UT period. The average ofVyperp-Vdy

over the interval 19:55–20:02 UT is∼2 km/s, while the cor-
responding standard deviation is 15 km/s. Inside the magne-
tosphere, between 20:04 and 20:05 UT, the averageVyperp-
Vdy is ∼−20 km/s (with standard deviation 14 km/s). To be

cautious, one can attribute such two different average values
to different offsets in theEx component of EFW in the MSH
and in the more dilute magnetospheric plasma (anyway, the
offset difference appears to be much smaller for the other
electric field components). The average ofVyperp-Vdy over
the 20:01–20:02 UT speed jet (marked by the violet bar at
the right bottom side of Fig. 8) is∼64 km/s, with standard
deviation 45 km/s, amounting to 29% of the average veloc-
ity measured in the jet. If we attribute to the jet the sameEx

offset as in the 20:02–20:05 UT period, this would reduce the
average deviationVyperp-Vdy to 44 km/s, i.e. to 20% of the to-
tal speed. However, between 20:01 and 20:02 UT the offset
in the EFWEx measurement is probably closer to the MSH
one, as in the jet the density is half way between the MSH
value and the value after the jet. In conclusion, we take as a
fair and reasonable estimate for|Vperp−Vd | in the jet a value
of 57 km/s, i.e. 25% of the total speed. The discussion of this
difference in terms of local input due to ion finite gyroradius
penetration in further pursued in [S].

4 Magnetopause TCS width, orientation and motion

It is known that the motion of the cusp boundaries can oc-
cur at speeds up to 60 km/s and be due to global motion of
the cusp, to its expansion or to its deflation. For the cusp
entry on 13 February 2001, close inspection of the full mag-
netic shear reveals that the spacecraft crossing order does not
imply a simple outward motion of the boundaries across the
spacecraft fleet (cf. Cargill et al., 2004). Therefore, in this
paragraph we consider in more detail the motion, normal and
thickness of the MP layer.

First of all it must be remarked that such quantities can be
determined on various spatial and temporal scales. The nor-
mal and speed quoted by Cargill et al. (2004) refer to 2 min-
utes around the MP crossing, from 19:59:30 to 20:01:30 UT.
Here we will consider both somewhat longer time periods,
4 and 3 min, and much smaller ones, of the order of a few
seconds.

We first determined the large scale MP velocity fromEx

data. For this purpose we used a four minute period around
the MP crossing, from 19:59:00 to 20:03:00 UT. We recall
that SC2, 3 and 4 lie in a plane almost parallel to the MP
plane, while SC1 is leading the fleet by about 600 km and
is the first to cross the MP. Cross correlation of the Ex data
from the four spacecraft shows that theEx waveforms for
SC2, 3 and 4 have small lags and high correlation coeffi-
cients, around 93%, while the SC1 waveform looks clearly
shifted in time with respect to the other three. The best cross-
correlation coefficient between the signals on SC1 and 3 over
the same 4-min interval is found to be 0.8 for a time lag of
18 s. Under the assumption of MP planarity and time station-
arity, the three lags between the Cluster spacecraft yield a MP
velocityVMP=(26.2; 0.2;−15.7) km/s in GSE, using the con-
stant velocity approach (CVA, see Haaland et al., 2004). We
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calculated the MP normal at the four S/C fromB minimum
variance analysis over the 19:58:47–20:02:07 UT period and
got results within 7◦ from each other. As an example,NB3∼

(0.97; −0.19; −0.15), i.e. close to the Cargill et al. (2004)
normal and at∼25◦ from VMP. These 25◦ might be regarded
as an estimate for the validity of the MP coplanarity and sta-
tionarity hypotheses, but they can also have a specific physi-
cal meaning (we will return to this point in [S]).

We now turn to smaller scales. Figure 9 displays EFW and
FGM data (in GSE) from the 4 Cluster spacecraft for a close-
up of the MP crossing between 20:00:40 and 20:01:20 UT
(SC1-4 data are shown in black, blue, violet and red respec-
tively). From top to bottom we have:Ex , magnetic clock-
angle,Bx , By , Bz. Two vertical dashed lines indicate the
MP crossings by SC1 and SC3 (black and magenta lines re-
spectively). As a starting point for our analysis we consider
the SC1 clock angle and notice that around the MP cross-
ing it rotates by about 40◦ over 3 s; subsequently, we iden-
tify the corresponding rotations for the other three spacecraft
and evidence them all as thicker portions of the 4 clock an-
gle curves. Correspondingly we draw thick portions for the
curves pertaining to each field component and spacecraft. We
remark that the TCS identified for SC1 and SC3 correspond
to the plasma separatrices in Figs. 2 and 5.

We tried to perform a minimum variance analysis of the
magnetic field data for each spacecraft for the small interval
we have just described. Such analysis does not produce ac-
ceptable results. The reason can be found through a careful
inspection of the variousB components, which shows that,
while at the TCS all fourBy ’s change consistently sign from
negative to positive, the behavior ofBx andBz is rather ir-
regular. Having discarded theB minimum variance, we used
the maximum variance analysis for the electric field over 5–
6 s around the MP crossings and obtained the following GSE
normals (eigen values in brackets):

SC1: 0.9,−0.43, 0.07 (0.0025, 0.065, 5.26);
SC2: 0.95,−0.3, 0.087 (0.0026, 0.469, 4.2);
SC3: 0.967,−0.2, 0.158 (0.0024, 0.138, 2.44);
SC4: 0.964,−0.23, 0.133 (0.0025, 0.32, 1.31).

On this basis, we accepted as common normalNE=(0.95,
−0.3, 0.087), which is at 16◦ to the averaged large-scale nor-
mal from Cargill et al. (2004) and at 40◦ to the average large-
scale velocityVMP (see discussion above). We then calcu-
lated the MP velocity by two different methods. Firstly, we
used again the CVA, this time on a 20 s time period, compris-
ing of the four MP crossings, and obtainedVCV A∼74*(0.78,
−0.43,−0.46) km/s. This MP velocity does not agree at all
with VMP=(26.2; 0.2;−15.7) km/s calculated fromEx cross-
correlation and yields a MP thickness at SC1dCVA∼166 km
alongNE . Dunlop et al. (2004) also argue that the “timing”
normals (i.e. CVA ones) are affected by complicated MP ac-
celerations. Then we used the CTA (Constant Thickness Ap-
proach; see Haaland et al, 2004) and obtained a MP width
dCTA∼90 km, a normalNCTA∼ (0.815, 0.579, 0.02) and four

speedsVCTA∼41, 35, 43, 33 km/s, for SC1 through 4 respec-
tively. This yields that the x component of the MP velocity
at SC1 be∼32 km/s.

These values strongly support the analysis made in Sect. 3:
firstly, 90 km is the gyroradius of a∼350 eV proton in
a 30 nT magnetic field, which fairly well agrees with the
low-energy cutoff observed in Figs. 4 and 6 across the
TCS; in the second place, the large-scale MP velocity value
(|VMP|∼30 km/s) lies in a 21% window from the averaged
CTA one (38 km/s), that is an acceptable agreement between
MP velocities calculated over different spatial scales. As a
conclusion of this analysis, we take 90 km as the width of the
TCS, x GSE as a good proxy for its normal and 30–35 km/s
as the x component of its velocity, directed towards the Sun.
We will return to the differences in the normal directions in
[S].

5 Summary and conclusions

We summarize and discuss our findings on a kinetic effect,
namely the penetration of ions through a TCS by finite-
gyroradius, to explain plasma and field observations made
by Cluster at a MP crossing in the southern cusp around
20:01 UT on 13 February 2001.

First of all, we wish to briefly discuss the possible role of
reconnection in this event. The orientation of the MSH mag-
netic field in the one hour period displayed in Fig. 1 is such
that reconnection is expected to occur at the dayside magne-
topause. The PEACE electron data shown and discussed in
Fig. 3 suggest that the magnetic field lines crossed by Cluster
around the MP TCS be probably connected to such a dayside
reconnection site, although the same electron data show un-
expected features. We tend to exclude that Cluster is close
to a reconnection diffusion region. We realize that a com-
mon way of interpreting the crossing of a MP in such a situ-
ation would be to postulate the local change of bulk velocity
according to the Walén relation. However, as recalled ear-
lier, the Waĺen test in this case is not fully satisfactory, as al-
ready established by Cargill et al. (2004). For this reason, we
proceeded to further analyze the TCS on a gyroradius space
scale.

We compared the Cluster observations with the predictions
of the Gas Dynamic Convection Field (GDCF) model in the
MSH and found a general good agreement between the two.
However, the observations depart from the model starting
from the MSH boundary layer. In particular, we found that,
close to the MP, on its inbound orbit, Cluster measured an
anti-sunward electric field opposite to the GDCF predictions
and that the Cluster clock-angle rotation also mismatched the
GDCF predictions. The main electric field component on
both sides of the MP is found to lie along x GSE and displays
a bipolar signature, positive on the MSH side and negative on
the opposite side. As it will be further discussed in [S], we in-
terpret this field as due to a positive surface charge at the MP,
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which moves outward at 30–35 km/s. Further on, the careful
examination of 3-D proton spectra and of the field data sug-
gested us the existence of a Thin Current Sheet (TCS) at the
MP, observed by SC1 between 20:00:57 and 20:01:01 UT.
Starting from the conclusion by Cargill et al. (2004), who
ruled out that such discontinuity is tangential in nature, but
could not determine whether it can be classified as rotational,
we further studied the TCS and concluded that it has a width
of 90 km, a normal mainly directed along x GSE and a speed
of 30–35 km/s towards the incoming MSH plasma.

3-D distributions of protons have been carefully exam-
ined for SC1 between 19:50 and 20:10 UT, around the
20:00:58 MP crossing. Two populations have been identified
in the MSH boundary layer: the first one roughly perpendic-
ular to the MSH magnetic field, which we interpret as the
“incident” MSH plasma, the second one mostly parallel to
B. We do not make specific hypotheses on the origin of the
second population, but recall that many authors regard this,
in the presence of reconnection, as a “reflected” population
(see e.g. Fuselier et al., 1997). In the last distribution just
before the MP crossing, between 20:00:46 and 20:00:58 UT,
the main distribution is observed around the magnetic field,
extending from low to high energy, while the one roughly
perpendicular toB is still seen with a peak around 400 eV.
Correspondingly, just in front of the MP the Alfvén Mach
number increases from 0.8 to 1.0 andβ rises from 1 to 5. Af-
ter the MP crossing a single population is observed, roughly
perpendicular to the local magnetic field, which results in a
large speed jet, whereV ∼230 km/s on average, the Alfvén
Mach number goes through a maximum of 3, andβ oscil-
lates around 10 with a peak value of 23. TheE×B velocity
just before the MP coincides with the perpendicular velocity
measured by CIS, implying that the local electric field is re-
sponsible for deflecting the flow of the MSH plasma along
the MP. Instead, in the speed jet a difference between the
two is observed, amounting to about 25% of the total speed.
We suggest that the measuredE can account for the main
plasma flow, but the jet can be, at least partly, interpreted in
terms of finite gyroradius penetration through the TCS (see
[S] for further details on that).

We further studied the transition around the TCS by con-
sidering omni-directional proton fluxes in order to increase
the time resolution to 4 s. For that purpose we used both SC1
and SC3 data and showed that they made comparable ob-
servations, suggesting that the high energy parts of the dis-
tributions appear to largely coincide on the two sides of the
TCS, while the low energy portion appears to be greatly re-
duced across it from the MSH to the cusp side. We propose
that the experimental data can be explained by the hypoth-
esis that the TCS acts locally as an obstacle for low-energy
ions (<350 eV), being transparent for ions with larger gyro-
radius. As in the jetβ∼10, ions crossing the MP due to the
finite-gyroradius effect should nearly conserve their momen-
tum parallel to the MP surface. In fact, we observed that
in the last 12 s 3-D distribution and in the corresponding

4 s omni-directional distributions measured before the MP
crossing the parallel flow dominates (see Figs. 1, 2, 4), while
the flow becomes perpendicular downstream of the MP and
the low energy component both parallel and perpendicular to
B is greatly reduced. Asβ>>1, the plasma dominates the
flow, so that downstream of the MPB adjusts to it and toE
through a nearly 90◦ rotation. We further presented evidence
on a 12 s time scale that protons which cross the TCS by fi-
nite gyroradius penetration are locally energized by theEx

field by 200–300 eV. This does not take place for the lower
energy protons which do not cross the TCS because of their
small gyroradius.

The electrodynamics of the TCS, mass and momentum
transfer across it and the probable spatial extension of the
jet are further discussed in [S]. In that paper further consid-
erations are also made on the role of dayside reconnection.
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André, M., Vaivads, A., Buchert, S. C., Fazakerley, A. N., and
Lahiff, A.: Thin electron-scale layers at the magnetopause, Geo-
phys. Res. Lett., 31, L03803, doi:10.1029/2003GL018137, 2004.
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