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Abstract. We consider the evolution of a distribution &f location. Each vortex is influenced by all other surrounding
identical point vortices when stochastic perturbations in thevortices having a different angular velocity distributed about
Hamiltonian are present. It is shown that different initial the mean angular veloci according to a certain law. That
configurations of vorticity with identical integral invariants is why vortices, having for example the same valueg; it
may exist. Using the Runge-Kutta scheme of order 4, it ist=0 (i.e.01=0>=...=6p) will disperse. Hence, the rapid pro-
also demonstrated that different initial configurations with cess of vortices mixing with respect to angular position will
the same invariants may evolve without having any tendencyoccur.

to approach to a unique final, axially symmetric, distribution.  Consider a function that depends érand Q which de-

In the presence of stochastic perturbations, if the initial dis-scribes the distribution of vortices and that at tiree can
tribution of vortices is not axially symmetric, vortices can be be written in the formf (9o, €2). Here,6p=6(t=0). Function
trapped in certain domains whose location is correlated withf (6p, ©2) can be decomposed in two parts:

the configuration of the initial vortex distribution. _

S (6o, 2) = f(2) + f1(bo, ),

) where the averaged component,
1 Introduction

2

There exist 2-D vortex systems, the evolution of which canf(£2) = (271)_1/ doo f (0o, 2),
be modeled by a great number of point vortices. One can sup- 0
pose that a unique “gas” composed™$>1 vortices of the  does not depend orv. The function f1(6o, ©2;)
same sign is a closed macroscopic system, it should evolveomplies with the condition f1 (6o, £2)=0. Conse-
to a final state of statistical equilibrium, i.e. to an universal quently, f1 is a alternating—sign function with respect
configuration. to the first argument. One can always find an in-

In fact, two-dimensional turbulence evolution (even in the terval A#1,=001—6p>~7 where the sign of the func-
absence of dissipation and forcing) is governed by stronglytion f1 changes, i.e.f1(601, 2)~— f1(602, ). For >0,
nonlinear equations. On account of this, the field compo-9;,~6p; +;t and the distribution function becomes
nents interact intensively and have to quickly get mixed up. .
Therefore, one can assume that the system evolves to a stafd? — 1, Q) = () + f1(0 — Qt, Q).
of statistical equilibrium that is axially symmetric.

Let us first discuss the physical meaning and validity of Here, ¢—< belongs to the interval0, 27] (modulo ).
this largely used hypothesis. For different values of2; and Q2, the terms which in-

For this purpose consider a system consist of a great num¢°!ves the time dependence become predominant in com-
ber of point vortices. The angular velocity of each vortex Parison with initial angles. Hence, the functigi changes
is Q;=6; (cf Eq.1) where¥; is the angular vortex coordinate S'9" When(Q?_Ql)tN”’l i.e. for angular velocity varia-
andé; its temporal derivative). The magnitude @f can be ~ tONS AQ=Q>—Qq~m 1= This simple estimation shows
estimated by2~T'/d2, T being the total circulation anda  that fi=/f—f becomes an alternating-sign function with

characteristic domain diameter corresponding to the vortice§€SPect to the second argument as well. rAsoco, the
interval between any2 and Q2+AQ becomes very small,

Correspondence tde. Béecu i.e.|AQ|«|L|, and the functiory; becomes more and more
(emilie.becu@ed.univ-lille1.fr) oscillating with respect to the second argum@nt
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These arguments are of a general nature and can be applie * #
to any variables (“phases”) which change in a finite domain
(Landau and Lifshitz1987 Landau and Lifchitz1979a b).

In this way, the contribution of the alternating-sign func-
tion f1=f— f is generally neglected. In fact, in real systems, o-&
the presence of a physical dissipation suppresses all pro

cesses on small time scales. The analogous mechanism (nuo. 4

merical dissipation) exists in numerical experiments when 11

an artificial dissipation occurs at small scales. Finally, ex- 5 ;

perimental processes retain a statistically indifferent intrinsic

average caused by experimental conditions (cf for example

experiments on study of quasi-final turbulence configuration 0% e 0_E 0% ®

Marteau et al.1995 Danilov et al, 2002 Danilov and Gu-

rari, 200Q and the references presented in these works).  Fig. 1. The graphic representation ef ande, corresponding to
In this context, several questions arise. If a real or an ar-Hy=0.25 for N=750 andk =260.

tificial dissipation is absent, what is the influence of non-

vanishing fluctuations in the Hamiltonian of the system on

possible scenarios of its evolution? Can different initial Pointin and Lundgrenl959 Sommeria et a|.1991, Brands

repartitions of vorticity be built which have the same global et al, 1999 Pavlov et al.2002and references therein).

invariants (energy, enstrophy, moments, etc.)? If it is pos-

sible, do the systems, starting from different initial distri- 2.2 Numerical simulations

butions of vorticity but having the same global invariants, ) . . ) o )

evolve to a unique, universal, final state? Or do the system&onsider an incompressible fluid containings-1 vortices

evolve to different final states? Or even to no final state? s itVith intensity y;, i=1, ..., N. The vorticity concentration

of vital importance on the processes of permanently existing$ taken in the form2=3; y;6(x, x ;) W_heres(z) (x,x') is

small-scale end rapidly varying fluctuations? All these quelerac’s function. The equations of motion of the centers of

tions are motivated by the fact that systems with extremelythe vortices arey;d,x;=d; H, y;0,y;=—d; H which con-
weak dissipation are observed in nature. stitues a hamiltonian system. For the unbounded space, the

Hamiltonian, i.e. kinetic energy of the fluid, expressed in
terms of the canonical variables, y;, H:% fD dx v2, can

, L i . . be written in the form
2 Different initial configurations with the same global

invariants H=—(47) 1 Z yiviInlx; —x;l.
INRED)
2.1 Model . . .
Here,—(1/2n)In | x;—x; | is a Green function which sat-

. . isfies the equatiol\G (x, x')=8@ (x, x’). The kinetic en-
We have to select a model complying with all conserva- . . 1 .
tion laws and which would be pertinent even on small s aceergy of the fluid can be written al/=3 [, dx Y2, with
P ” P dx=dxdy, Q=—Ay, and velocity components=s;;d;,
scales. In consequence, some of the traditional methods can-.
. - . With e10=—g21=1 andes11=¢e22=0.
not be used and due to numerical difficulties at small scales. . . . .
For the following numerical simulations performed

In fact, it is known that one of the difficulties in the descrip- . L : )
. . . . in the present work, it is convenient to use dimen-
tion of turbulence is the expansion of the motion at small _. . L )
. o sionless variables. The transformation is accomplished
scales, to scales beyond those of viscous dissipation, whe 1
. ; Y xi—Rx;, yi—Ry;, t—tt, where t=27 R~
calculations come only from local mean—field at the scale of ! . . . .
. . . Note that the vortices have a identical intensity
numerical resolution. The behavior of the turbulence, cor- . .
. . . . y;=I'/N. Let (x;,y)—(;,J;), with x;=/2J; sing;
responding to explicit scales, is usually numerically mod- .
: o ) : : and y;=+/2J; cos6;. The variables (¢;, J;), where
eled in a statistical sense; another way consists to intro- 5 : .
Ji=ri/2, ri=|x;|, are introduced in order to keep the

duce empirically different forms of turbulent viscosity which ! : ;
: . canonical structure of the evolution equations. It follows
model energy transfer through intermediate scales, etc. How-

ever, it can be sometimes observed in two—dimensional turghat:
bulence that calculated magnitudes and phases of fluctuaa- 7= ig 5 — _ig 0
tions of higher modes do not satisfy conservation laws. For'™" — g, " RO A

this reason, we consider the model of point vortices, i.e. the ) ] S _ _
model of elementary vortex structures for which the vortic- 1"€ dimensionless Hamiltonian is then given by:
ity is strongly concentrated in small moving domains. This N N

model is attractive for several reasons and has been largelyy — _4n)~? Z Z N G,

used in many studies (€@nsager1949 Miller et al., 1992 m=1n=Lndm
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Fig. 2. Initial annulus of the distribution of vortices witk=260  Fig. 4. Distribution of vortices at~50 with K =260 andz1=0.108.
ande;=0.108.

Fig. 5. Distribution of vortices at~50 with K =260 ande»=0.624.
Fig. 3. Initial annulus of the distribution of vortices witk =260

ande,>=0.624.
Moreover, the circulatior” is fixed by the number of
vortices N. In the structure of the model, all other mo-
where tion integralsZ; (enstrophyZ,, ...) are automatically con-
served. For instance |&§=750 andK=260. The Hamil-
Gin = [Jm + Jn = 2/ Jn Jn COSOp — 6p)]. tonian H (e, K), with fixed K is a function ofe only. The

dependencél/=Hk (e) allows to graphically findz; andez
for a given value o] (see Figl). For example let the initial
value Hy=0, 25. Then, forK =260, the corresponding values
aree1=0, 108 ande2=0, 624 (see Fig2 and3).
0, = 2N te(s — DO(K — s5) + The evolution of a vortex distribution for a system with
14 @ (e the given initial conditions has been numerically studied
ZeNT (1= e)s = 1O — K), @ by using a 4th order Runge-Kutta scheme. The conserva-
in which s=1,2, ..., N and 1<K <N. The first vortex has tion of the energy H and of the angular momentum P has
the angular coordinat@ =0. The set of the firsk vortices ~ been checked during the calculations. The analysis shows
is distributed with a spacing of2v e, all the others are that parameters have small variations with errors defined by
distributed with a spacing a¥ ~1(1—e). Here, O<e<1. The  |Hi—Hol/|Hol<3-1073, |P; — Po|/|Po|<2-10"". Theit-
function ®(z) is Heaviside’s function® (z)=1 whenz>0 eration process has been performed fres0 tor=50 which
and®(z)=0 whenz<0. In this way, the initial distribution ~ corresponds to 50 reference cycles. Although quadratic
of vortices is not symmetric. However the kinetic moment, difference being relatively significant for the Hamiltonian
one of the motion integrals?, defined bypz_% Z”;Zv as  Which could lead in principle to intensification of a mixing

well as the enstrophzz and other moments are unchanged process because of the accumulation of numerical errors, no
for different values of the parameteksande. visible tendency to a gradual homogenization has been ob-

Consider an initial distribution of vortices on an annulus:
all vortices have the same radial coordinatesl. The an-
gular coordinates of every vortex are chosen as follows:

The Hamiltonian of the system is a function of the parame-Served.
terse, K : H=H (e, K). This Hamiltonian being conserved, The final results of calculations (fer=50) are presented
it is given by the initial value Ho which is calculated from in Figs.4 and5. The time at~50 agrees with the results
an initial vortex distribution : presented in the experiment Buang and Driscol(1994;
Fine et al.(1995 (Fig. 6). According to the experiments,
a formation of radically different configurations has already
been observed far-60 and this justify our compilations.

Figures4 and 5 show that vortex distributions having
0;j=0;—6; is calculated from Eq2). In this expression, only different initial distributions and characterized by identi-
terms depending on angles appeatr. cal global invariants, do not evolve to an universal axially

N N
Ho(e, K) = —(4N)"*> " >~ In(1—cosbj)).
i=1j=1j#i
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Hamiltonian isH;;=—In r;; and is characterized by a long—
distance interaction. IV>>>1, vortices are not only influ-

- enced by neighboring vortices, but in essence by all the vor-
. :& tices, including those far away. This observation allows one
: to conclude that: (a) each vortex of the system containing
a great number of vortices, moves quasi-independently with
98 0.06 1, o 60 600 respect to the motion of its neighbor; (b) the situation is as
if the selected vortex was in a self-consistent field created by

@ (r"fg\ c-— -.-°.'. . : all the vortices, including those far away.
j k\;y«/f‘/ '_ .- o > Let us introduce the expression
- Hi=D7! [, dx;H;j=(H;). Here, D is an integration
Fig. 6. “Vortex crystals” observed in the experimentstiiang and domain with a dimension defmed by the conservation
Driscoll (1994 Fine et al(1995. of momentum. The expressioH; can be interpreted as
the Hamiltonian of theith vortex averaged with respect
to positions of all other vortices. The average can be
symmetric distribution. It is observed that vortex “clusters” also carried out by using a probabilistic approach if one
are auto-organized in different ways. This can be explainedntroducesP(x;), which gives the probability of finding
by the fact that the Hamiltonian contains a non-vanishingthe vortex j in the vicinity of x;. In this case,H; can
fluctuating part which affects the evolution processes in thebe defined byH,-:fD dx;P(xj)H;;. Itis noticed that a
weakly dissipating system. If this fluctuating part has to beconcrete structure o (x;) would require an additional
disregarded, the system would evolve to the axially symmetspecial analysis; so, we limit ourselves to the simplest
ric configuration. This observation is qualitatively confirm to approximation wherP (x ;)=D" 1, Letus then introduce the
the recent experiments on “vortex crystal” formatiding et operatorM [...]=(N" lZ —D~ 1 [dx)[...]. After some
al., 1995 Huang and Driscojl1999) (see Fig.6). Indeed, = mathematical manlpulatlons the Hamiltonie8) takes the
in these experiments, it has been observed that a 2-D systefollowing form:
evolving without dissipation and forcing (physical or numeri-
cal), does not forget the structure of the initial vortex distribu-
tion. These observations are correlated with our calculations

Vorticity (103 sec!)

s=1
and confirm qualitatively the hypothesisB&tchelor(1967) N
that a quasi-final state of a perfect vortex system is fixed by _ Z (H. + }M‘A’/](HH — (H; .))>’ (4)
its history and “keeps in mind” its initial configuration. = P2 Y Y

Note also that a different final state can appear depend-
ing on the initial configuration: (a) “basic” states reaching a Thefirst term of the Hamiltonian defined by E4) flescribes

(c) states where no strong vortlces persist and which probaN>>1 According to the deflmtlon,HY depends only on

caused by individual interactions between vortices. These
effects are obviously significant near a peripheral zone of the
3 Perturbations and formation of vortex clusters vortices’ distribution. IfN>>>1, the last term of Eq.4) is

small. Indeed whemv>1, (a) the averaged guadratic de-
Let us now consider the evolution of a vortex gas in the pres~iation of H(ri). from the sumN— 12 Y | Hi; and (b) the

ence of chaotic internal and external perturbations. Hav'ngoperator norrrM are small. By replacing the exact expres-
in mind a possible comparison with experimental data, we, sion lM M, (H;j—(Hi;)) by its value averaged with respect
choose a configuration where the vortices are placed in a spi.",, 2 mot|onsf]of alijother (excep) vortices, W(x,), we

N

[izci:lit(C]ianllzgi]' 7)65|m|lar to the initial spiral distribution of vor- partly simplify the Hamiltonian. Such a procedure is similar
y 9.5 to the one oMidgal (1979, p. 158, when one passes from
the “multi-particles” description to the “mono-particle” de-
scription. According to its definition, the functioi (x;, ¢)
The dimensionless Hamiltonian (normalized with the char-has a zero average valy®;), i.e. it is a oscillating func-

acteristic spatial scalg and the temporal one) of a system  tion with respect to anglé; and/or with respect to time (see
composed ofV>>1 point vortices is Sect.2). The functionW; preserves all the information about

an initial distribution of vortices.
_ So, the problem reduces to a problem of a motion of
— 1 - )
= (@2N) ) _Z_lH‘/' C) a “particle” with a unit “mass” in a self—consistent field
= H, (ry)+W;(rs, 05, t). For simplicity of the notation, we will
Here, H;; is the Hamiltonian of the interaction between vor- further omit the indexi, considering the motion of a test
ticesi and j. For point vortices in an infinite plane, the vortex. We use the variables defined by the transformation

3.1 Analytical consideration
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(x, y)—> (0, J), with x=+/2J sin 6 andy=+/2J cosé (such definition, V (r, 0, t) is a periodic function with respect to
a transformation is largely used in some nonlinear problems)V (r, 0, r)=V (r, 6+2x, r) and can be expanded into a Fourier

The equations of motion of the test vortex become series:

1 ‘
0t = —0gH = —0gW, V(r,0,t) = > Z[Vm(r, ne™ 4+ c.c.l. (11)
00 =07H=Q(J)+0;W. (5) m

If there i hastic disturb in the Hamiltonian. | Here, the abbreviation.c. represents the complex conjuga-
there Is a stochastic disturbance in the Hamiltonian, Inter-y, “the gisturbance is a real function. For this reason,

nal and externaW; (ry, ;. 1)70. it can be assumed that a ), hosjtive and negative are present in the sum.1): the
vortex trajectory consists of two parts: regular and quctuat—FOurier coefficients satisfy the conditiof),=V* .

ing (we follow here the idea formulated for Kapitsa’s pen- Then Eq. 8) reduced to -

dulum, seeKapitsg 1951). For regular variables averaged

with respect to stochastic fast fluctuations, the procedure 05[1 _ _}8 Z (imV 1) ™ + ¢ C)

averaging leads to: 2 4 " )

O =—dpH 40 =Q() +5e ) ((a, V() €™ + c.c.). (12)
= —0139gW(J,0) — J1dg; W(J,0) + ..., m
8,0 =0,H When the fluctuation is neglected=£0), the solutions are

_ S — J()=J°, 0(t)=8(J%)r+6°, with 69 being the initial phase.
= Q)+ 13,y W(J),0) + 61056 W (J,0) + ... (6) Let us consider the case where disturbances are localized
Subtracting one eq_uation from the other, we obtain fornear alevelp, near wherH’ has a distinct maximum, i.e. the

J1=J—7 andf;=6—@ excitation is important near this level. In this case the deriva-
o tive 3;V,, |, =0. We can simplify Eq. 12) near Jy by

0rJ1=—0pW(J,0) + ... putting r1=r—rq, With |r1|<ro=+/2Jy, and keeping only

901 = 10, + ;W (T, 0) + ... 7 principal terms in the right-hand side of the equations. Ta-

) ) king 6=601+% (Jo)t, we obtain
We look for solutions in the forni ~Ue™'®*, Jq1, 81~e™'?": 1
0r1 >~ —&(2rg)”~ X

h= 2800, X Y lim Vi (ro, 1) "0 4 ¢ o,
LW m
11 - 1 o
O=7— ——0U(J,0)0;90) — —03,UJ,0). (8) 9b1=2(@) Qo)+ ... =roQ (Jo)r1 + .... (13)
lwlw Lw

Substituting these expressions in Eg), omitting the imagi- We suppose how that the cond|t|qns of the_ problem are
. . ] . .such that there is only one, a governing term, in the sum on
nary terms (field variables are real; appearance of the imagi- L ;
. . . . m. The simplified Eqgs.X3) for this spectral component be-
nary numbet is equivalent to a difference in phase of a har-

monic function ofr /2) and putting in the A2 factor (average come '
of a harmonic function on the period), we find dr1 = —ie(2rg) " Tm V(1) ' MO1tmRC0D 4 o o
. Q 9;61 = o' (Jo)ry. (14)
0;J = —0gH = — 289U899U+... . . . . .
2w Since V,,(t) is dependent on time it can be expanded into
— Q 2 a Fourier series of the fori,, (1)~ )", Viun expl—inyt]. It
=%\ H)+ 42 @U) ) can be shown that the term in the resulting sum with respect
_ _ / ton, Vi, exp—i(mQ (Jo)—ny)t] that satisfies the condition
0,0 =0;H =Q(J) + 2w239U819U + .. Amn=m(Jo)—ny — 0, is the most important (see also
o Chirikov, 1969 1978 1979 Zaslavskii and Sagdeg%988),
=0y <H(7) + 2(89U)2) + ... 9) and hence is the only term that need be kept. In this case
4o F1l~&/ Amn and WhenA u,=m S (Jo)—ny — 0, ande#£0,
Here,Q'=3,Q (7). the magnitude of, can be significant.
We can define the “effective” Hamiltonian as The complex coefficient V,,, is written in the
_ form V,,,=|V]|expig). Introducing a new variable,
Hett = H(J) + (Q' /40®) (39U)? = Y=m61+Amnt+o+7, One obtains
/
=H+H =H(ri) +eV(r, 6,1). (10) 5y~ —emrg Y| V| sin v,
Note that this is equivalent to the situation where a testd; ¥ = Ay + mroS2'|y, r1, (15)

vortex moved along an averaged trajectory defined by th . .
averaged Hamiltonia#ess Which is a coordinate dependent GEZ gﬁ?:ictaggc;m%;?égﬁo?;nhlgh order. The systerg) €an

function. The disturbance of a fundamental state is char- . N
acterized by a small non-dimensional parameterl. By r1 = —0yH, 3y =0, H,
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Fig. 7. Observation of 3 “super vortices”, zones which trap local- ] ) ) o
ized vortices. The initial vortex distribution on the spiral is shown. Fig- 8. The numerical calculation showing the self-organisation of
2-D vortices into “super-vortices”. The vortices, which are in the

disturbed domain, stay but others circumvent these zones.
with the Hamiltonian
H = (1/2mroS |ro(r1)* — em|V|(r0) ! COSY + Ay 71

Moreover (5) are isomorphous to the non linear pendu-
lum equationsy+Q3, siny =0, with Q2 =m2e(ro)~|V|

of “super-vortices”. An example of such a situation is the
effect of a regular structure formation, similar to observed

, . 1 “yortex crystals”, which would occur whem#0 (there
rof'ly,. The different aspects of the theory and appllcatlonsis a angular inhomogeneity in a initial distribution of vor-

ofan_on Iin_ear ascillator n_10de| fo laden pa_rt_iclfas ina p.lasmatices), a7y H;(J)#0 and the stochastic fluctuating part of
are given in the above cited works. Equilibrium positions the Hamiltonian, which is essentially localized on the circle,

correspond to pointg;=kx, wherek=0, +1, £2, .... If k varies quickly in the test time~Q' (J) /o2 < 1
is even or zero, i.ef; =0, &2, +4r, ..., the corresponding g y D fet < L

points are points of a stable equilibrium of the pendulum. If ) ] )

k is uneven, i.eyy=+n, £3x, ..., the corresponding points 3-2 Numerical confirmation

are hyperbolic, i.e. points of unstable equilibrium. Through

these points pass the “separating lines”. The transformaThese remarks agree with the numerical calculations (Figs.
tion of 6—1 means that we have passed the rotation ref-and8) based on the discussed equations. For calculations,
erence,y=mob+e+mw=mo1+A,,t+e+n. If A,,=0, the  we took N=750 test vortices initially accommodated on
points of the equilibrium positions in this rotation reference a 6 spiral branch with a maximal radiug=0, 375. We
are defined by the expressiondy=kr+C* (c is an arbi-  used a “rough functionV =(1— cos ¥;)) expl— (r; —ro) /b?]
trary constant). The stable equilibrium positions are given bywith »=0, 1, £=0.5. The corresponding result is shown in
61, =k /mo, with k even and the unstable equilibrium posi- Fig. 7. The second test has been performed with the func-
tions are given by, =km /mo, with k uneven. The possible tion V= cos ¥; exp—(ri —ro)/b?], for 16 test vortices and
trajectories of a test vortex are topologically different nearthe parametergy=1, b=0, 1, =0, 5 (Fig. 8). The numeri-
the stable and unstable equilibrium points. In the first casecal results show that a vortex initially localized in a region
these lie on closed orbits, where the situation is as if vorticesof “capturing”, will be enclosed in this area (1). The re-

are kept near these points. gion of “capturing” is defined from a minimum of the po-
The result of qualitative analysis shows that the theory istential, V. These regions are separated from the rest of the
valid if area by a “separating line”. There are a few possibilities: (a)

O<e<d <1< 1/e, point vortice_s localized init.ially in the do.main_ 1 clus_ter to-
gether forming “super-vortices”; (b) vortices initially in do-
where §=Q4 o). with Qo=Q(ro)=(""13, H)l,,. which  mains (2) and (3) move stochastically, penetrating from (2)
can be approximated tfyo~r()_2Ho because there is no spe- into (3) via the hyperbolic points (zones). The domains (2)
cific scale. and (3) finally form a quasi-homogeneous patch having a ra-
This simple analysis permits one to establish conditionsdiusr ;>rinit Of a relatively small concentration of vortices,
and possible scenarios for the self-organization of point vor-while domains with a higher concentration of vortices will
tices into clusters which become apparent in observationde organized in domains (1).
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4 Discussion CCD era
(===l l=——
. Ex Ef B—o» N
The present work was motivated by a few reasons and obser _ ¥ ) R z
vations electrons P {1
Experiments byHuang and Driscol(1994; Fine et al. : L 1 Rw
(1999 on 2-D freely evolving turbulence without forcing and — 1 Phosphor

dissipation show that the relaxation of a turbulent system to
a basic state can be sometimes arrested (Fig. 6). The folsig. 9. Experiment of plasma: scheme of experimental apparatus.
mation of regular vortex lattices (“vortex crystals”) can be
observed. These “vortex crystals” are composed-e2®in-
dividual “super-vortices” with an intensity-46 times larger  variables — depending logographically of distances between
than the surrounding vorticity. This regular structure rotatesthe “bars”).
in conjunction with the background and does notundergo any Tpe integral quantities which can be assimilated with
defor.mation While'the time-~10* times larger than charac- energy, enstrophy, etc, measured in these experiments for
teristic reference time. the sequences leading to the different final configurations
The experiments have been conducted in electronic plasmgFig. 6), do not change during the experiments, i.e. the sys-
placed in a very strong magnetic field. In such a situation,tem is not dissipative.
the system can be described in the framework of the model These qualitative arguments explain why we choose the
of point vortices. model of point vortices. In the framework of our model and
Really, the motion of individual electrons include fast and in the presence of stochastic fluctuations and in absence of
slow components. First, the “heated” electrons move alonga dissipation, the clustering of point vortices can stop due to
of the magnetic field lines (axig). In presence of an ener- the spontaneous formation of reguiinamicalvortex struc-
getic “closure fitting” on the dispositive ends, “heated” elec- tures.
trons are submitted to successive reflections from these clo- The observed regular structure can be explained without
sure fittings with a characteristic time,~L/vi,~T 2. incorporating special physical arguments beyond the descip-
The electrons follow in the same time circular trajectoriestion. A good qualitative agreement between results of our
around field lines,B, with a characteristic time (of Lar- analysis and the experiments concerning the evolution of the
mor) 1, ~w; *~B~1. Finaly, they participate in a collective great number of “vortices” was observed.
motion which is a rotating macroscopic collective motion  The numerical simulations showed that different initial
around the axig whose characteristic time i&o~B/E.  configurations of vortices having identical dynamical invari-
If the fields are intense, one can assume the conditiomynts, do not evolve to an universal axially symmetric distri-
Teo>Ti, T Let Ar be an exposure time of observa- pytion. This can be explained by the fact that the fluctuating
tion on the monitor (Fig. 9) that satisfies the condition part of the Hamiltonian, which can be neglected in some ex-
Teol> A>T, 7. In this case, the averaging with respect periments and numerical studies, plays an important role in
to fast motions permits one to eliminate altlependencies  the study.
of fields from the consideration. As concluding remarks, let us present some explanations
After averaging with respect to fast motions along the and give useful references (see aldiler et al., 1992
magnetic field and, in this way, “smearing” the electric Danilov and Gurati 200Q Pavlov et al, 2002 concern-
charge in a spatial domain of volumié~a?L, this elec-  ing some numerical approaches to the problem of the 2-D-
tron system is similar to a system df macroscopic charged turbulence evolution.
"bars”, L~1m, of very small diameters (Larmor’s radius, Two-dimensional flows of an incompressible fluid is usu-
a~5p.m) aligned with the magnetic inductioB, and mov-  a|ly described by the evolution equation for vorticity, having
ing on a timescale of the order of the macroscopic time with-the form 3 Q+[Q, ¥1=F+D. Here, all notations are stan-
out changing their orientation. The “bars” never touch; in gard, the vorticity field can be both continuous as for the most
fact there are no contacts between electrons. The charact%art of works and discontinuous as in our modethe forc-
istic time, Tx (the turnover time), of the collective azimuthal jng, andD the dissipation. IfF=0, or if, after averaging, a
motion of the “bars” (of electrons whose fast longitudinal flyctuating part of the forcing can be grouped with the Hamil-
motions have been averaged), is macroscopically great.  tonjan (Sect. 3)H — Hef, the omission of dissipative terms

If a/L«1,i.e.a—0, the effects containing the factay L in the governing equations signifies that we consider the ef-
can be neglected. fects of formation of dynamic regular structures at an initial
The coordinates of these “bars” in the plane perpendiculaistage of decaying turbulence (see further) when viscous ef-
to the magnetic field are;, y;, i=1, ..., N. We obtainthus  fects have not yet become apparent.
the two-dimensional system whose motion in the y plane In numerical analysis whef#0, and D#0, the forcing

is controlled by equations isomorphous to the equations oterm is usually localized in the vicinity of a small space scale
motion of two-dimensional point vortices (with the Hamilto- (large wave numbeék), and the dissipation operatbrcom-
nian — energy of interaction expressed in terms of canonicabines frictional and viscous terms. The latter usually contains
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tral methods is implemented via fast Fourier transform (go-
ing back and forth between tlkeandx-spaces, and replacing
convolutions with products). One looks for the spectral en-
ergy densityE (k, t).

Forced 2-D turbulence can attain a statistically stationary
state (Fig. 10), if the energy and enstrophy injected by a
source are balanced by the dissipation.

The decaying case, whef=0 and D#0, seems natural
and requires no large-scale artificial dissipation. In some lim-
iting regime Batchelor 1969 postulated the energy spec-
trum of the decaying turbulence to evolve according to the
law E (k, t)=E®%/?t f (EY?kt) defined in terms of a single pa-
rameter — the total (nearly conserved) enefigy and the di-

r mensionless functiorf (of the only possible dimensionless

104 T T AT T T AT combination ofE, k andz). By the same argument we could
100 10t 102 107 10 get the decay law for the total enstropbig~¢—2. Once
k again, the dimensional arguments would give a slope ®f

. o o for the energy spectrum of the decaying turbulence at large
Fig. 10. Schematic view of the kinetic energy spectrum of 2-D tur-

bulence. k¢ is the forcing wave-number. On the right is the en- .Unlik the 3-D neh nlv verv limited experimen
strophy interval characterized by the enstrophy fluswhich trans- € the 5-U case, one has only very €d experimen-

forms into the enstrophy dissipation range for lakge-(5/v3)1/6 tal verification of the 2-D_turbu|ence laws. On_e could sim-
(Newtonian fluid). On the left is the energy interval characterized Ulate it (to some extent) in the laboratory environment, but
by the energy flux. only within a limited range of scales. Therefore, the bulk
of 2-D-turbulence results were obtained in numerical simu-
lations, with somewhat tenuous and speculative links to ex-
the classical viscous termD=vAQ, with a constant co- periments and observation.
efficient of viscosityy (Newtonian fluid), but may include There are also analytic theories, advanced in the 60s
other dissipative effects. For computational purposes, on@nd 70s and based on certain closure assumptions. Their
often applies the so-called hypofriction and hyper-viscosity premises, however, are also hard to verify experimentally or
rule, D=((—1)"1a, (= A)"+(=1)" 1y, A™)Q. Ther,-  numerically.
term serves to suppress the upscale energy cascadg,the  Let us add some useful references for both numerical ex-
viscosity halts the downscale enstrophy cascade. For inperiences and modal spectral calculations on the decaying
stance, the natural physical dissipation in 2-D or quasi-2-turbulence (se®anilov and Gurari2000.
D flows is due to bottom friction in geophysical applica- McWilliams (1984 has shown decaying turbulence to
tions, which correspond =0 (Ekman friction). Such fric-  evolve into long-lived coherent vortices, which persist for
tion equally damps all modes, with large and small spacemany turnover periods. The first examples of coherent vor-
scales. Hypofriction with a negative power for the Laplaciantices in decaying turbulence appeared in the early papers of
in D(n>0), was proposed for a turbulent phenomenology. It Fornberg(1977; Basdevant et al(1981), but McWilliams
selectively suppresses the greatest modes of the system adémonstrated this phenomena in different systems and for
recreates a dissipation-free (inertial) interval in the energyvarious initial conditions. Figure 11 shows a typical vorticity
range, but it has no direct physical relevance. It has the adfield of decaying turbulence.
vantage that the inertial (enstrophy) interval may be pushed The paper oMcWilliams (1984 takes an initial spectrum
to higherk without increasing the computational grid. E (k, 0) with a slope of-3 at largek, and resolves the system
The evolutional equation can be written in the equivalenton a 256 grid. As the system evolves its spectrum steepens
form 9,Q+{Q2, §H/3Q}=F+D where the functional Pois- to —5, and the enstrophy transfer drops to zero. But the vor-
son bracket{., .} is introduced (see Goncharov and Pavlov, ticity kurtosis shoots from the initial Gaussian value of 3 to
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2001;Pavlov et al.2002 2001). several dozen. Vortices form at intermediate scales (between
In the absence of forcing-dissipation, the equation con-the initial state and the box size).
serves a few integrals: kinetic energ§, enstrophy,Z,. The vortices can slow down the cascade processes (see

Furthermore, this evolutional equation gives rise to an infi-McWilliams, 19904, since they carry the bulk of enstro-
nite set of conserved integrals, called Casimirs (momgpts  phy, but do not stretch and filament one another. Paper of
isolevel areas of vorticity in they-plane, etc). Santangelo et a[1989 made a systematic study of decay-

The basic equation for a flat domain is usually solveding turbulence and its spectra in an attempt to reconcile the
by pseudo-spectral methods. In the Fourier representatiomultitude of reported spectral slopes. It uses a high resolu-
(discrete or continuous), this equation takes on the formtion 1024-grid and long time integration of the initial Gaus-
0; Qk+Jk=Dk+ Fx. Here,Jx denotes thd&th Fourier mode sian field of zero mean value and the initial energy spectrum
of the Jacobianl (2, ¥), i.g. of {2, § H/5Q} which in spec-  E(k, 0)~k[1+(k/ko)? t11~1 for ko=6, andy =6.
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The initial evolution creates vortex filaments via stretching  * prs
by the large-scale velocity field. They carry over small-scale  FEss
eddies as passive tracers, hence developing a si8pe the :
enstrophy range. At the next stage large coherent vorticesw i
evolve from the local vorticity extrema, and start breaking  §
down into smaller size vortices. Due to two different mech- ™
anisms of vortex formation, no universal distribution of vor-
tices by size and intensity appears as evident in their spectra

The energy spectra have an interval of steep slope at smal
k, and a shallower (closer te3) interval in the small vortices
range. The total energy remains nearly constant during the *
evolution, while the enstrophy declining does not, however, .
drop to zero. Indeed, large-scale stable vortices lock up a
sizable fraction of enstrophy, and will not let it cascade to 8
small scales.

The main conclusion oBantangelo et al1989 is that _
the —3 spectrum could appear only at an intermediate stagea [
of the process. Large vortices destroy scale invariance anc [,
steepen the low-mode spectra. Besides, the paper claim® ==
that the resulting spectral shape strongly depend on the ini-
tial state of the system. In pa_lrticular, an ini_tially steep SPEC-Lig. 11. Vorticity and energy spectra in stationag, b) and de-
trum producest/ ko-size vortices that dominate the future caying (c, d) turbulence. (a) Realization of vorticity field at the
evolution of the system. Shallower initial spectra, like the guasistationary stage of evolution, (b) time-averaged energy spec-
—3 used byMcWilliams (1984); Benzi et al.(1988, give a  trum, forced at wave numbets e [58, 62] and stabilized by the
broad spectrum of vortex sizes. PaperSaintangelo et al.  bottom friction; (c) Realization of vorticity field at the late stage of
(1989 sets the borderline initial slope for the two patterns the decay process,=124; (d) Evolution of the energy spectrum
somewhere between3 and—6 . during the decay phase, -0, 5, 40, 70, 124). The initial spectral

The appearance of coherent vortices in the decaying turbuP€ak a=45, and initial energy equals 1.
lence allows them to be studied as statistical vortex ensem-
bles Benzi et al, 1988 McWilliams, 1990a Carnevale et
al,, 1991 Benzi et al, 1992 Weiss and McWilliams1993. enstrophy decreases a4, in stark contrast to results of
For this purpose, one needs to select coherent vortices frorgatchelor(1969.
the small-scale turbulent background. The simplest selec- The prominent role of vortices in the decaying turbulence
tion rule identifies regions of vorticity field that exceed a pre- motivated the development of vortex modeGa(nevale et
scribed threshold (in terms of rms vorticity). Another censusal., 1991 Benzi et al, 1992 Weiss and McWilliams1993.
analyzes the determinant of the velocity gradient and seekéuthors of these works assume that vortices behave like
regions where it takes negative values. Papé@eaizi et al.  point vortices, at large separations, and each is determined
(1989 claims that the two methods give similar results. The by two parameters — the vortex radius and (uniform) vortic-
initial —3 spectrum (at 512-resolution) evolveskita™3. The ity level. When two vortices collide, that is come within a
authors estimate the vortex contribution to the energy specdistance 17(R1+Ro) of their radii, they merge into a single
trum to have a slope of6+«, depending on the vortex size vortex of radius(R{-+R3)*. Such collisions conserve en-
distribution. That yields an energy slope-e#.1, closetothe  ergy and decrease enstrophy, and thus can account for the en-
observed value. At the final stages of evolution the dynam-strophy loss due to vortex straining and filamentation in real
ics of coherent vortices can be well approximated by pointsystems. Different initial conditions in papers Garnevale
vortices. et al. (199)); Benzi et al.(1992; Weiss and McWilliams

Paper by McWilliams (19903 studies the character- (1993, however, lead to divergent results. ThBenzi et
istics of 2-D vortices, particularly their time evolu- al. (1992 has vortex sizes distributed initially according to
tion. It takes an initial state with the energy spectrum the R=3 law, which corresponds to the3 spectrum of nu-

E (k, 0)=k8(k+2k0)~18, on a 458 grid. The vortices are se- merical simulationsBenzi et al, 1988. The terminal size-
lected by comparison with the “ideal” vortex profile. Their distribution comes close t® 2, which gives a—4 energy
number decays in time, @é~¢—%71. The maximal vorticity ~ slope (close to—-4.1 Benzi et al, 1989. The number of
decreases, but its mean absolute value over all vortices revortices decays as %€, which differs from the: %7 law
mains nearly constant. The mean vortex size grow®ds  (McWilliams, 19903, thet~%75 law (Carnevale et al1991),
and the mean separation €% The vortices maintain a and ther=%72 law (Weiss and McWilliams1993.

nearly Gaussian profile, but unlik@énzi et al, 1988 this The point-vortex dynamics analyzed IBarnevale et al.
profile is not universal. The difference between the two case$1991); Weiss and McWilliamg1993, provides scaling laws
could be attributed to different initial conditions. Finally, the for the vortex number, size distribution, distance distribution,

1o m = 1 -

5 18-
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and enstrophy, which agree with the pseudo-spectral resultpation, as claimed by the author, but may include other fac-
obtained byMcWilliams (19903. Based on the numeric re- tors, such as sharp boundaries of the vortex patches, in the
sults of McWilliams (19903, particularly the conservation contour dynamics.

of average vorticity amplitude (over all vortice§)arnevale Let us stress that the entire decay process is due to the en-
etal.(1997) proposed a hypothesis for decaying turbulence,strophy dissipation at short wavelengths. Without such dis-
consistent with the numerical observations. sipation, the system would relax to a statistical equilibrium

Except energy conservation, as in the Batchelor theorystate with an equipartition energy spectrim' (see, for in-
(Batcheloy 1969, Carnevale et a(199]) postulated the con-  stance, a paper dfiolloway, 1986. One could expect the
servation of vorticity extrema. The latter follows naturally, numerical dissipation to be equally important. Indeed, the
when one views decay turbulence as the process of vorkey process of large scale condensation (vortex merger) is
tex merging. The enstrophy decay is confined to the vor-largely determined by small-scale dissipation.
tex periphery (caused by filamentation), but it does not af-  The criticism about in respect of pseudo-spectral methods
fect vortex cores. Assuming the conservation of vortex €X-(see paper oDritsche| 1993 is based on the notion of a
tremas2,, one could introduce the time and length parameterse|| identified (sharp) vortex boundary, while these methods
t=Q,,", I=vE/Q,. Assuming further a power decay law gperate with smooth fields, without jumps. It is not clear
for the number of vortices/, with an exponeng : Ny~1~%, {5 what extent vortex patches could represent smooth fields.
and writing the energy and enstrophy (confined in vortexon the other hand the different behavior of pseudo-spectral
cores) asE~N,R*Q},,  Z>~N,R’Q],, one gets the mean gecaying turbulence from that of contour dynamics could be

vortex size to grow ai(r/7)*/* (energy conservation), while  interpreted as a difference in initial conditions, in the spirit
the distance between vortices grows @gr)¢/2, and the en-  f the paper oBantangelo et a{1989.

strophy of the entire flow decays alswr__z(r/t)g_/z. Such Papers ofChasnov(1997: Bartello and Warn(1996;
conclusions also agree with the numerical studies. Chasnov and HerrinL998 describe the dependence of the

The proposed scaling differs from the classical Batche-yg oy characteristics on the enstrophy dissipation mecha-
lor results, as well as the selective decay theory (see for 'Mhism. The main result is that one should not expect the statis-

stanceSalmon 198_8'_ The latter postulgtes that turbulent tics of coherent vortices to be universal. They should rather
decay should minimize enstrophy, subjected to the energyoanq on the type of viscous dissipation and the Reynolds
constramt Carnevale et al1992. This theor_y was applied number (if the latter is not too large).

to describe late stages of turbulent decay in papeidatf

taeus et al(1991ab) and others. Paper @arnevale et al.

(1992 shows selective decay to predict higher decay rates .

than numerical simulations, as it fails to account for the roleS  Conclusion

of coherent vortex structures in slowing the decay process.

The validity and utility of pseudo-spectral methods for The evolution of strongly localized vortices (with a single
two-dimensional turbulence dominated by vortices has beer$ign of vorticity, without forcing and without dissipation) in
questioned by:)ritschel (1993 It has been argued that a ﬂOW in the presence Of StOChaStiC perturbations haS been
pseudo-spectral methods introduce significant numerical disehalyzed. The analysis have been made in the framework of
sipation on the vortex periphery, thus giving a wrong descrip-& 2-D point-vortex model.
tion of vortex mergers and the resulting filamentation (see It was shown that relaxation of system to an axially sym-
Legras and Dritschell993. Paper ofMariotti et al. (1994 metrical configuration can be stoped due to the spontaneous
demonstrated that thin filaments on the periphery, subjecteformation of a regular structure of localized vortices. The
to strong hyper-viscous dissipation, bring about a sharp in-observed clusters can be explained without an incorporating
crease of the overall dissipation rate of vorticity. Further- of special physics arguments beyond a 2-D euler model. A
more, the hyper-viscosity could cause undue oscillations ofgood quantitative agreement between plasma experiments at
iso-contours on the periphery of vortex cores. He proposedre— oo and the numerical integration of the proposed model
an alternative method of contour dynamics, augmented byn the evolution of the great number of vortices, was found.
the so-called surgery. It allows in principle a higher spa- An analytical consideration and a numerical analysis
tial resolution than pseudo-spectral methods and, hence, were performed to find out if the predictions of statistical
broader spectral range. The dissipation scale (which cutsnechanics (it predict a relaxation of system to the axially
off fine structures) corresponds to resolution 7000 in pseudosymmetrical configuration) could be due to the existence of
spectral methods. The paper finds that the vortex size distria fluctuating part of the hamiltonian in the model and the
bution is not self-similar, and steepens as the system evolvesbsence of dissipation. It was be noted that even a small
The corresponding energy spectra vary from nearly at level of numerical dissipation can completely destroy the
large scales to~2 at small ones. It also finds that some other observed process of a vortex structure formation.
characteristics, like the growth rate of vortex sizes for large
vortices and the decay rate of enstrophy, are markedly dif-
ferent from the pseudospectral results. The reason for such Bdited by: A. Provenzale
departure, however, is not only the overall decrease of dissiReviewed by: two referees
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