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Abstract. We use a quasi-geostrophic numerical model to
study the turbulence of rotating flows in a sphere, with realis-
tic Ekman friction and bulk viscous dissipation. The forcing
is caused by the destabilization of an axisymmetric Stewart-
son shear layer, generated by differential rotation, resulting
in a forcing at rather large scales.

The equilibrium regime is strongly anisotropic and inho-
mogeneous but exhibits a steepm−5 spectrum in the az-
imuthal (periodic) direction, at scales smaller than the in-
jection scale. This spectrum has been proposed by Rhines
for a Rossby wave turbulence. For some parameter range,
we observe a turbulent flow dominated by a large scale vor-
tex located in the shear layer, reminding us of the Great Red
Spot of Jupiter.

1 Introduction

In many geophysical flows, global rotation deeply modifies
the nature of turbulence. This is the case for planetary flows
at large scales, such as the Earth atmosphere, ocean or fluid
metallic core, but also the giant gaseous planets like Jupiter
or Saturn.

Because of the dominance of the Coriolis force (i.e.
Ro=U/L��1, Ek=ν/L2��1, whereU is a typical ve-
locity of the flow, L a typical length scale,� the rotation
rate of the system, andν the kinematic viscosity of the fluid),
flow variations along the rotation axis are inhibited (Taylor-
Proudman constraint) resulting in a nearly two-dimensional
turbulence (Greenspan, 1968). An inverse energy cascade
takes place, so that large scale structures build up with al-
most no bulk dissipation. In addition, when the Coriolis
parameter is not constant in the whole domain (owing to
the presence of aβ-effect due to either a varying angle be-
tween the rotation vector and the thin layer or a height vari-
ation as in Sect.2), the incompressible flow obeys a partic-
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ular wave motion, the so-called Rossby waves (Greenspan,
1968). Actually, theβ-effect adds a vortex-stretching term
in the 2D Navier-Stokes equation, leading to a different dy-
namics (Schaeffer and Cardin, 2005). Rhines(1975) pro-
posed that the inverse cascade is blocked by theβ-effect at
the Rhines wave numberkβ≡

√
β/2U , and he suggested that

turbulence in equilibrium with Rossby waves may exhibit an
energy spectrumE(k)∼4β2k−5 (wherek is the wave num-
ber). One must consider two types of simplified models of
rotating flows in which Rossby waves may exist.

On the one hand, the shallow water model has been de-
velopped to model the large scale flows in the Earth atmo-
sphere or oceans (where theβ-effect comes from the vari-
ation of the projection of the rotation vector normal to the
layer). This model has already been used to study turbulence
using small scale forcing:Huang et al.(2001) report n−5

spectra in numerical simulations of two-dimensional turbu-
lence on the surface of a rotating sphere (wheren is the order
of the spherical harmonic). Even though the spectrum shows
the same exponent, this is not believed to be Rhines spectrum
(Galperin et al., 2001).

On the other hand, the quasi-geostrophic (QG) approxi-
mation has been used to study deep flows in a rotating frame,
like the liquid metal motion in the Earth’s Core or the atmo-
sphere dynamics of giant planets (where theβ-effect comes
from depth variations of the fluid). This kind of model has
been used with small variations by many authors, to study
thermal convection of rapidly rotating spheres (Busse, 1970;
Aubert et al., 2003), to investigate the instabilities of shear
layers (Busse, 1968; Schaeffer and Cardin, 2005), to model
oceanic flows over topography (Kiss, 2003) or to reproduce
the zonal jets of Jupiter (Yano et al., 2003).

These two kinds of models share the same governing equa-
tion, but have different boundary conditions. As a result, QG
models and thin shell models lead to flows which have many
features in common but which are not identical. This paper
focuses on deep rotating turbulent flows filling a sphere, us-
ing a QG-model and large scale forcing. Recently, in (deep)
rotating turbulence experiments (Baroud et al., 2002, 2003),
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Fig. 1. Schematic setup with an equatorial vorticity map obtained
from the numerical calculations.

it has been shown that for Rossby number up to 0.1, the ve-
locity fluctuations recorded by hot-film probes are strongly
correlated along the rotation axis direction, suggesting that a
QG-model may describe such turbulent flows quite well.

Usually the QG approximation is restricted to asymptoti-
cally small slopes, but by averaging carefully the mass con-
servation equation and the Navier-Stokes equation, it can be
extended to slopes up to order one. In addition to the bulk
viscous force, we derive the Ekman friction term from the
Greenspan(1968) formula, providing a quite realistic dissi-
pation at all scales. This improved QG-model is described in
details in Sect.2.

We apply our QG-model to a fluid-filled sphere rotating
at an angular velocity�, while the polar caps rotate slightly
faster or slower (by an amount1�) than the equatorial parts
(Fig. 1). The differential rotation is controlled by the Rossby
numberRo =1�/�, while the importance of the viscous
forces compared to the Coriolis force is given by the Ekman
numberEk =ν/R2�.

In a previous paper (Schaeffer and Cardin, 2005), we stud-
ied the instabilities of the Stewartson layer, summarized in
Sect.3. Here we increase the forcing (i.e.Ro ) to study the
turbulence regime in such systems (Sect.4), keeping in mind
that zonal movements and Ekman friction influence the shape
of the spectrum (Danilov and Gurarie, 2004).

2 The quasi-geostrophic model

We want to describe the fluid dynamics of a rotating fluid
in a spherical container. We use the cylindrical coordinate
system(er , eφ, ez), with ez parallel to�. The half height of

Table 1. Most extreme computations for different Ekman numbers.
NR andmmax are the radial (physical) and azimuthal (spectral) res-
olution of the computation performed with time-stepdt (in rotation
periods units) at Rossby numberRo . The flow is then dominated
by wave numbermd . The Reynolds numberRerms is computed
from non-zonalrmsvelocities. For comparison purposes the criti-
cal Rossby numberRo c as well as the azimuthal wave number at
the onsetmc are given.

id Ek NR mmax dt Ro Ro c Re rms md mc

e6+ 10−6 400 128 0.1 0.04 0.008 1.85 103 1 10
e6− 10−6 400 64 0.1 −0.08 −0.01 1.85 103 3 8
e7+ 10−7 500 170 0.05 0.015 0.002 7 103 2 19
e8+ 10−8 600 170 0.01 0.02 6 10−4 60 103 2 34
e8− 10−8 600 170 0.05 −0.02 −7 10−4 40 103 5 31

the spherical container is thenL(r)=
√

1 − r2. The quasi-
geostrophic model we use is derived by carefully averag-
ing along the rotation axis both the incompressible Navier-
Stokes equation and the mass conservation equation (Scha-
effer, 2004; Schaeffer and Cardin, 2005). With u the veloc-
ity field andω the vorticity along the rotation axis (ω.ez),
and under the assumption thatu×ez is independent ofz, we
obtain

∂ω

∂t
+

(
ur
∂ω

∂r
+
uφ

r

∂ω

∂φ

)
−

(2 + ω)

〈
∂uz

∂z

〉
= Ek ∇

2ω (1)

with 〈.〉 thez-averaging operator and

ur ≡
1

r

∂ψ

∂φ
(2)

uφ = −
∂ψ

∂r
− βψ (3)

ω = −∇
2ψ − β

(
∂ψ

∂r
+
ψ

r

)
−
dβ

dr
ψ (4)

whereψ is a pseudo-stream function andβ is related to the
slope of the container by

β ≡
1

L

dL

dr

∣∣∣∣
z=L

=
−r

1 − r2
(5)

Using the Ekman pumping boundary condition given by
Greenspan(1968), the vortex stretching term is also inde-
pendent ofz and reads:

∂uz

∂z
= βur −

Ek 1/2

2(1 − r2)3/4(
ω + β

(
∂ur

∂φ
−

1

2
uφ

)
+

5r

2(1 − r2)3/2
ur

)
(6)

This model is then implemented using a Fourier expansion
(mmaxmodes) in the azimuthal, periodic direction and a finite
difference scheme (NR grid points) in the radial direction.
See Table1 for typical values ofNR andmmax. Note that
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Fig. 2. Total kinetic energy vs. Rossby number for different flows
far from the instability threshold.RedSpotstands for the very sta-
tionary regime.

neither hyper- nor hypo-viscosities are used, only bulk vol-
ume viscosity and realistic Ekman friction are implemented.

It can be shown that this model is self-consistent as long as
|β| is not too large compared to 1. This is not true in the case
of the sphere studied here, leading to a strong amplification
of the vorticity near the equator (see Fig.4). To avoid that
problem,Yano et al.(2003) truncated the sphere before the
equator, but we checked that with or without such artifact,
the flow and the dynamics stayed nearly the same.

3 Overview over results

The sphere is split at cylindrical radiusr0=0.35, and while
the outer part (r>r0) is at rest in the rotating frame, the inner
part is rotating at an angular velocity1�. This differential
rotation produces an axisymmetric shear layer located near
r0. This shear layer has been studied byStewartson(1966)
and is independent ofz at leading order (Fig.1). At very
small Rossby numbers, the Stewartson shear layer of width
1∼E1/4 is stable.

For a small fixed Ekman numberEk , we increase the
Rossby numberRo . The parameter range studied here spans
fromEk =10−6 toEk =10−8, with |Ro | varying from the
onset of instabilityRo c up to values close to 0.1. This corre-
sponds toRo /Ro c up to about 30 and leads to rms values
of the Reynolds number up to 6 104. We will focus on five
turbulent runs, which are presented in Table1, but let us start
with a brief overview over the behavior of the flow for in-
creasingRo .

At Ro c ∼β(r0) Ek
1/2, the flow becomes unstable, and the

instability is a single Rossby wave, with a well defined az-
imuthal wave-numberm∼Ek −1/4. Table1 gives the values
of the critical Rossby numberRo c and azimuthal wavemc
number at the onset of instability for different values ofEk .
It has been noticed that the radial structure depends on the
sign ofRo : for Ro >0 the disturbances fill the wholer>r0

Fig. 3. Vorticity map (includingm=0) for Ek =10−6, Ro =0.04
(e6+ run, RedSpotregime). This run showed no evolution for one
million rotation periods. The radial profile of the mean azimuthal
velocity (uφ ,m=0) is given by the black line, and is normalized so
that a radial size corresponds to 2Ro .

area, whereas forRo <0 they stay more localized nearr=r0.
A detailed study of the flow at the threshold can be found in
Schaeffer and Cardin(2005).

Above the threshold, the dominant azimuthal wave num-
ber decreases when the Rossby number is increased. This
behavior has also been observed byHollerbach et al.(2004).
Increasing the Rossby number further leads to periodic
regimes, with a few excited modes. At even largerRo ,
the behavior becomes chaotic, with the dominant modemd
changing randomly, with large energy fluctuations, but still
a quite narrow energy spectrum. Finally, for the strongest
forcing compatible with the QG approach, one obtains a tur-
bulent regime, that will be detailed in Sect.4.

The evolution of the total kinetic energy of the flow (in-
tegrated in the whole 3D domain) with various forcing is
showed in Fig.2. One may notice that regardless of the Ek-
man number, the energy of the zonal mode (m=0) lies close
to a |Ro|1.8 line. The non-zonal energy, however, seems to
follow different power laws, depending on the sign of the
Rossby number. (|Ro|1.8 for Ro<0 and|Ro|2.8 for Ro>0).

4 Rossby wave turbulence

For very strong forcing, the energy spectrum becomes con-
tinuous, showing a significant inertial range. This is what we
call a turbulent regime. The most extreme Rossby number for
which we were able to compute the flow using our numerical
model are given in Table1, and all of these are turbulent, and
the spectra were checked for good convergence.

The total energy of the flow may be highly time depen-
dent. However, in the parameter space (Ek, Ro) there are
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Fig. 4. Non-zonal vorticity maps (form6=0) for E=10−8 andRo=0.02 (left, e8+ run) andRo=−0.02 (right,e8− run). The radial profile
of the mean azimuthal velocity (uφ ,m=0) is given by the black line, and is normalized so that a radial size corresponds to 2Ro .

islands of very stationary flows, whose only time evolution
is an azimuthal drift. This kind of equilibrium reminds us of
the Great Red Spot of Jupiter, that has been observed since
the seventeenth century, that’s why we call themRedSpot
regimes (Fig.2). Figure3 shows one of these flows with
a single big vortex, located near the shear. The correspond-
ing run did not show any deviation after one million rotation
periods. This kind of behavior has been obtained by a sta-
tistical approach in the case of 2D turbulence with neither
β-effect nor dissipation (Sommeria et al., 1988; Robert and
Sommeria, 1991).

4.1 Vorticity maps

Vorticity maps are represented in Figs.3 and4, they show the
vorticity parallel to the rotation axis, in the equatorial plane.
Let us recall that in our model this vorticity is invariant along
the rotation axis, so that these maps contain all the informa-
tion on a snapshot of the QG-flow.

These flows are dominated by large scale structures
(md=1 tomd=5) but we observe the same strong asymme-
try when changing the sign ofRo, as the one at the onset of
instability. Furthermore, the spiralization is also still present,
and both asymmetry and spiralization were features of the
Rossby wave nature of the instability (Schaeffer and Cardin,
2005).

The spiralization may be compared to the zonation in thin-
shell turbulence (Galperin et al., 2004) or deep convection
(Read et al., 2004). Large scale flow features may not get
larger than the Rhines scale in the direction of theβ-effect,
but are free to grow in the perpendicular direction. Indeed,

the radial scale of the spiral arms is comparable to the Rhines
scalekβ given in Table2.

Very thin vortex filaments can be seen near the split ra-
diusr0 (Fig. 4), sheared away from the large scale vortex by
the strong zonal flow, and perhaps exciting Rossby waves
at these small scales. The large eddies seem to be more
stable and long-lasting forRo<0 than forRo>0, which is
the usual observation: anticyclones are more stable than cy-
clones. Furthermore, regardless of the sign ofRo, positive
vorticity seems to gather at the center (nearr=0), deform-
ing the original differential rotation profile (see black lines in
Figs.3 and4).

From these vorticity maps, one may question the homo-
geneity of this turbulence, as some structures seem to be
linked with the shear layer. Figure5 showing the evolu-
tion of the time-averaged velocity fluctuations with the ra-
dius, proves that the turbulent flow generated by this shear
layer is far from homogeneous. In addition, the difference
between azimuthal and radial velocity fluctuations shows an
anisotropy of the turbulence. It is quite surprising that such
time-averaged values still show strong radial dependence far
from r0, as in theuφ fluctuations ofe8+. This feature does
not look like spiralization (which can be seen on a snapshot)
but rather like zonation. However, why would some points
exhibit more fluctuations than others?

4.2 Spatial spectrum

Some energy spectra from our QG-flow runs are represented
in Fig. 6. These are instant spectra (not time-averaged),
averaged over all radii, and showing a wide range where
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Table 2. Angular phase speedc of the dominant modemd in the
turbulent runs (see Table1), at a fixedr.

id Ro Ro /Ro c r c(r) �(r) md kβ

e6+ 0.04 4.2 0.44 0.032 5.8 10−4 1 6
e6−

−0.08 7.3 0.44 −0.013 −0.0026 3 4
e7+ 0.015 6.5 0.40 0.012 3.6 10−5 2 9
e8+ 0.02 31.7 0.38 0.02 0.0014 2 8
e8−

−0.02 28.5 0.38 −0.003 −0.0037 5 7

E∼C m−5. Moreover, it seems that all curves converge to-
wardC∼1.5 10−4 (within a factor 3).

It is also remarkable that thee6+ spectrum, which lies in
the RedSpotregime is very smooth compared to the other.
When time averaged, all these spectrum become smooth (see
Fig. 7).

Because our forcing is due to differential rotation, which is
axisymmetric (m=0), there is no small scale forcing. Hence,
we can infer that the bump at large scales in the spectrum
(Fig. 6) corresponds to the injection scale. To ensure this
hypothesis, we computed the spectral energy transfer for our
runs and it appeared that the small scales (m>md ) do drain
energy from the large scale flow.

Them−5 behavior of the spectra at scales smaller than the
injection scale seems to be a very robust feature. On the other
side of the injection scale, an inverse cascade transports en-
ergy towards the largest scales, where it is dissipated through
Ekman friction. Note that the injection scale is very close
to kβ , the blocking wave-number (Table2), supporting the
Rossby-wavem−5 spectrum at smaller scales and an upward
energy cascade at larger scales.

The viscous cutoff at small scales may be observed on the
e6+ spectrum (Fig.6), but for performance issues the other
runs were computed with a spectral resolution that makes the
dissipative range invisible. One may also notice that there is
no visible bump in thee6+ spectrum, probably because the
dominant scale ism=1.

4.3 Rossby waves

Many observed features suggest a Rossby wave turbulence.
To perform another test, we computed the phase speedc of
the dominant Fourier modemd . This angular phase speed is
computed in the rotating frame (�). Because of the strong
zonal flow (the Stewartson layer), all the structures are ad-
vected, so thatc 6=0 does not mean that there is propagation.
Actually, c=0 means that there is a wave propagating at a
speed such that the advection is compensated. Furthermore,
if c does not depend on the radius, it means that the true phase
speed depends on the radius in a way to compensate exactly
the effect of advection. This is what is observed at the onset
of instability, where the spiralization allows the phase speed
to adjust to the local mean velocity, so that the structures are
not torn apart.
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Fig. 6. Instant energy spectrum in the azimuthal direction averaged
over radiusr, for different parameters (see Table1).

Phase speeds measured in our most turbulent runs, are
given in Table2. They are always lower thanRo, but of
the same order of magnitude. ForRo>0, it is clear that phase
speedsc are greater than the local advection�(r). ForRo<0
it is not that clear, but it seems (at least for thee6− case) that
a prograde wave is propagating against the advection.

5 Conclusions

Thanks to our improved QG-model which includes the Ek-
man friction and the mass conservation, we are able to reach
very turbulent flows (Rerms>104) in our numerical runs at
low Ro and very lowEk, with neither hyper- nor hypo-
viscosities. For some parameters, very steady regimes are
observed, reminiscent of the Jovian Great Red Spot, and ex-
tending previous theoretical results on rotating turbulence
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Fig. 7. Typical spectrum (e8− run, space and time averaged) on
top of which we added some phenomenology, to summarize the
behavior of the observed turbulent flows.

(Robert and Sommeria, 1991), to Rossby-wave turbulence
with Ekman friction.

The observed turbulence is strongly anisotropic and in-
homogeneous, and the azimuthal energy spectrum seems to
obey anm−5 power law for wave numbers larger than the
one corresponding to the injection scale, regardless of the
sign of Ro. Once the axisymmetric flow is removed, we
observe a wave-like behavior of the large scale features of
the flow, with patterns drifting in the prograde azimuthal di-
rection. This also seems to remain true for smaller scales.
All the features observed seem to suggest a turbulence dom-
inated by Rossby waves, as predicted byRhines(1975), and
for which very little other evidence has been found before.

An averaged spatial spectrum with some added phe-
nomenology is presented in Fig.7 showing the inertial range,
and the injection scale. The strong rotation prevents any
downward cascade to small scales where the energy could
be dissipated. The energy then goes to large scale where it
is dissipated by Ekman friction. Only a few Rossby waves
(which may be excited in the way the primary instabilities
are) are able to reach the smallest scales. In fact, the only
movements allowed in such QG-model are geostrophic flows
(zonal flows in our case, like the shear layer) and Rossby
waves, so that it is no surprise to observe a turbulence domi-
nated by these waves.

One remarkable feature is the difference between positive
and negative differential rotation, which holds even far away
from the instability threshold, suggesting that this kind of
turbulence may keep memory of its generating mechanism.

In fluid turbulence,−5 spectrum seem to have at least
two different origins: Rossby-wave, quasi-geostrophic tur-
bulence (Rhines, 1975, and this paper) and quasi-one-
dimensional turbulence (Galperin et al., 2001; Huang et al.,
2001). Even though both are described by the same equation,
they are obviously of very different natures and hard to com-
pare: the first kind of flow exhibits spiralization and anm−5

spectrum in the direction perpendicular to theβ-effect and
at scales smaller than the injection scale, whereas the latter
shows zonation and ann−5 spectrum at scales between the

injection scale and the Rhines blocking scale, in the opposite
direction. Are these just two different regimes due to a differ-
ent forcing scheme? Is it a geometrical effect? Is there a link
between them? How does spiralization relates to zonation?
Future studies should try to answer these open questions.
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