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Abstract. High resolution numerical simulations, solar wind
data analysis, and measurements at the edges of laboratory
plasma devices have allowed for a huge progress in our un-
derstanding of MHD turbulence. The high resolution of solar
wind measurements has allowed to characterize the intermit-
tency observed at small scales. We are now able to set up
a consistent and convincing view of the main properties of
MHD turbulence, which in turn constitutes an extremely ef-
ficient tool in understanding the behaviour of turbulent plas-
mas, like those in solar corona, where in situ observations are
not available. Using this knowledge a model to describe in-
jection, due to foot-point motions, storage and dissipation of
MHD turbulence in coronal loops, is built where we assume
strong longitudinal magnetic field, low beta and high aspect
ratio, which allows us to use the set of reduced MHD equa-
tions (RMHD). The model is based on a shell technique in the
wave vector space orthogonal to the strong magnetic field,
while the dependence on the longitudinal coordinate is pre-
served. Numerical simulations show that injected energy is
efficiently stored in the loop where a significant level of mag-
netic and velocity fluctuations is obtained. Nonlinear inter-
actions give rise to an energy cascade towards smaller scales
where energy is dissipated in an intermittent fashion. Due
to the strong longitudinal magnetic field, dissipative struc-
tures propagate along the loop, with the typical speed of the
Alfv én waves. The statistical analysis on the intermittent dis-
sipative events compares well with all observed properties of
nanoflare emission statistics. Moreover the recent observa-
tions of non thermal velocity measurements during flare oc-
currence are well described by the numerical results of the
simulation model. All these results naturally emerge from
the model dynamical evolution without any need of an ad-
hoc hypothesis.
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(veltri@fis.unical.it)

1 Introduction

In the usual picture of turbulence, in an incompressible fluid,
described by Navier-Stokes equations, when Reynolds num-
ber R = (V L)/ν � 1 (V andL are typical values for
the fluid velocity and length scale, whileν is the kinematic
viscosity) nonlinear terms prevail with respect to dissipative
terms, giving rise to a nonlinear energy cascade from large to
small length scales. Three ranges of lengths` can be iden-
tified: an injection range (̀ ' L), an inertial range where
energy is transferred towards smaller and smaller lengths
(η � ` � L), and a dissipation range (` ' η) where viscos-
ity becomes the dominant physical effect.

Due to the lack of any characteristic length in the inertial
range, the turbulent energy cascade is usually considered a
self similar, fractal process consisting in a hierarchy of eddies
of different length scale. Actually, turbulence is intermittent,
in that it does not display a fractal, but rather a multifrac-
tal behavior, whose properties are determined by the topol-
ogy of the most intermittent structures which are found at the
smallest lengths. The identification of these most intermittent
structures represents then a crucial problem in the framework
of turbulence.

In the last years, solar wind has offered us a unique oppor-
tunity to study turbulence, and in particular MHD turbulence.
In fact solar wind represents a supersonic and superalfvénic
flow, from where space experiments have given a wealth of
data (velocity, magnetic field, plasma density, temperature
etc. or also particle distribution functions) at a resolution
which is not available in any earth laboratory.

In the following section we will recast the results obtained
when trying to identify the small scale coherent intermittent
structures by analyzing velocity and magnetic field fluctua-
tions in solar wind. In particular we will show that current
sheet are naturally produced by MHD turbulence as coherent
intermittent small scale structures. We will use these results
to set up an efficient model describing the physical mecha-
nism underlying coronal nanoflares.
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Solar flares represent impulsive energy releases in the
solar corona. The released energy is observed in various
forms: thermal, soft and hard x-ray emission, accelerated
particles, etc. (Priest, 1982). The energy associated with
each event is estimated to range from∼ 1032 erg down to
∼ 1023

− 1024 erg. Statistical analysis of various quantities
(energy, peak emission, duration time), characterizing the
impulsive events, have shown that the probability distribu-
tion for these quantities, approximately follows a power law.
When considering the energy distribution, the power law in-
dex isα ' 1.5-1.6 in active regions, whileα ' 2.04-2.5 in
the quiet corona (Lin et al., 1984; Crosby et al., 1993). More
recentlyBoffetta et al.(1999) have stressed the fact that the
probability distribution of time separation between two suc-
cessive flares also displays power law (see alsoLepreti et al.,
2001, with indexα ' 2.4).

Parker(1988) conjectured that the smallest flares (∼ 1024

erg) (“nanoflares”) should essentially be due to dissipation
of many small current sheets, eventually producing intense
magnetic dissipation in association with magnetic reconnec-
tion.

We will slightly modify Parker’s conjecture by suggesting
that nanoflares correspond to dissipation of many small cur-
rent sheets generated in the nonlinear cascade occuring inside
coronal magnetic structure in consequence of the power in-
put in the form of Alfv́en waves due to footpoint motion. In
this view, current sheets are the naturally produced coherent
intermittent small scale structures of MHD “turbulent energy
cascade”.

2 Intermittent structures in MHD turbulence

2.1 Self similarity of turbulent fluctuations

Kolmogorov (1941), using dimensional arguments, conjec-
tured that, in the inertial range, the rms of velocity difference
fluctuationsδv` = v(r + `)− v(r) scales as

< (δv`)
2 >1/2

∝ `
1
3 . (1)

The lack of any characteristic length in the inertial domain
implies that the nonlinear turbulent energy cascade is a self
similar (fractal) process. Then, the probability distribution
function for fluctuationsP(δv`) should be invariant under
the scale change

P(δv`) = `−
1
3F

(
δv`

`
1
3

)
, (2)

which in turn only means that probability distribution func-
tions of normalized velocity increments at different scales
collapse on the same shape.

If Eq. (2) were valid, structure functions defined as

Sn(`) =< |δv`|
n >,

i.e. higher order moments of velocity fluctuations, should
scale as
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∫
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Structure functions are then useful probes to check self sim-
ilarity. Wind tunnel data show indeed that

Sn(`) ∝ ` ξ
f (n), (4)

where the set of valuesξf (n), usually called scaling expo-
nents, is a nonlinear function ofn. This result shows that
the probability distribution functions of normalized velocity
fluctuations do not collapse on the same shape at different
scale, the shape varying from a gaussian at large scale to
functions which display more and more important tails as the
scale decreases (Frisch, 1995).

This behavior has been interpreted as the signature of the
fact that the turbulent nonlinear energy cascade is not a self
similar (fractal) but rather a multifractal process, character-
ized by the presence of energy transfer rates which are dif-
ferent in different spatial positions. In particular it means
that at small scales fluctuations much larger than their rms
value can be found in some particular spatial position. This
phenomenon, known as spatial intermittency, was taken into
account in his phenomenology two decades later byKol-
mogorov(1962), who supposed thatξf (n) = n/3+τf (n/3).
In ordinary fluids the correction due to intermittency is rather
small on low order moments (τ (2/3) ' 0.02); one has to go
up to the sixth order to obtain the “intermittency parameter”
τf (3) ' 0.3 − 0.4.

The MHD case is better analyzed in terms of the of
the Elsässer(1950) variableszσ defined byzσ = v +

σB/(
√

4πρ) with σ = ±1. The equations governing in-
compressible MHD are then written

∂zσ

∂t
+ (z−σ

· ∇)zσ = −
1

ρ
∇

(
p +

B2

8π

)
+ diss. terms.(5)

The nonlinear structure of these equations is much the
same as that of Navier Stokes equations so that we can ex-
pect a Kolmogorov-like scaling for the rms of field difference
δzσ` = zσ (r + `)− zσ (r)

<
(
δzσ`

)2
>1/2

∝ `
1
3 . (6)

Actually in MHD a different physical effect could be at
work (Kraichnan, 1965; Dobrowolny et al., 1980): nonlinear
interactions take place between eddies of differentσ . Such
eddies propagate in opposite directions at the Alfvén veloc-
ity corresponding to large scale magnetic field. This effect
reduces the efficiency of the nonlinear cascade, as a conse-
quence the Kraichnan’s scaling is recovered

<
(
δzσ`

)2
>1/2

∝ `
1
4 . (7)

When calculating structure functions for solar wind MHD
fluctuations followingKolmogorov (1962) we can expect
that

Sn(`) ∝ `ξ
mhd(n) (8)
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Fig. 1. Scaling exponents of the unconditioned (full lines) and
conditioned (dashed lines) structure functions are shown as function
of the order for different fluid velocities (Vx open circles,Vy full
squares) and magnetic field (Bx full triangles,By full circles, Bz
crosses) components. Kolmogorov (dotted line) and Iroshnikov-
Kraichnan (long-dashed) scaling are also reported for comparison.

with either

ξmhd(n) =
q

3
+ τmhd

(n
3

)
(9)

for Kolmogorov’s scaling or

ξmhd(n) =
q

4
+ τmhd

(n
4

)
(10)

for Kraichnan’s scaling.
A number of structure function analysis performed both

on solar wind and on laboratory plasma data have shown that
both velocity and magnetic field fluctuations are indeed inter-
mittent, i.e.ξmhd(n) is a nonlinear as function ofn (Marsch
and Tu, 1997) and that probability distribution functions of
fluctuations are non gaussian (Sorriso-Valvo et al., 1999).
Moreover the use of wavelet analysis described extensively
in Veltri et al. (1999), has allowed to identify the nature of
the coherent intermittent structures, which are responsible
for the deviation with respect to self similarity.

2.2 Haar wavelet structure functions analysis

An alternative way to calculate structure functions, is based
on the differencing characteristics of Haar wavelet (Mahrt,
1991; Katul et al., 1994; Veltri et al., 1999).

The wavelet trasform of a real square integrable signal
f (x) is defined as

Wf (b, a) = C
−1/2
g

1
√
a

∫
∞

−∞

ψ(
x − b

a
)f (x)dx, (11)
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Fig. 2. A current sheet intermittent event: the three components
of the magnetic field obtained through a minimum variance analysis
(upper panel); the angle of rotation of the magnetic field in the plane
perpendicular to the minimum variance direction (medium panel);
the coefficient of correlation between velocity and magnetic field
fluctuations (lower panel).

wherea is a scale dilation andb a position traslation. The
Haar basis is given by

ψ(x) =

1 for 0< x < 1/2
−1 for 1/2 ≤ x < 1
0 otherwise.

(12)

A logarithmically uniform spacing for scale discretization
can be used, with increasingly coarser spatial resolution at
larger scale. A complete orthogonal wavelet basis requires
the same numberN of wavelet coefficients as the number of
measurements, while for the scale dilation and for the posi-
tion traslation the discretizationsa = 2m and andb = 2m i
are usually assumed, withm andi integer numbers such that
1 ≤ m ≤ M = log2(N) and 1≤ i ≤ 2M−m. The wavelet
trasform of a given flow variableφ(x) can then be repre-
sented as function ofi andm, sayW8(i,m).

Haar wavelets can be used to define for any flow variable a
set of functions, which are not strictly structure functions, as
they are usually defined, but have the same physical meaning:

< |8(r + `)−8(r)|q >∼
< |W8(i,m)|

q >

(2m/21)q
, (13)

where` = 2m1 is the separation distance,r = 2m i 1 is
the position and1 is the data sampling length. The functions
calculated according to Eq. (13) should have the same scal-
ing laws as the structure functions, so in the following we
will refer to them as structure functions without any further
specification. From the structure functions the scaling expo-
nentsξ(q) can be calculated through a best fit of Eq. (8) over
the interval of scale lengths 21 < ` < 2M 1.
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Fig. 3. A current sheet intermittent event: the three components
of the magnetic field obtained through a minimum variance analysis
(upper panel); the angle of rotation of the magnetic field in the plane
perpendicular to the minimum variance direction (medium panel);
the coefficient of correlation between velocity and magnetic field
fluctuations (lower panel).

This technique has been applied byVeltri et al. (1999) to
fluid velocity and magnetic field measurements performed
during about 1 year in the space experiment ISEE. In this ex-
periment only two components of the fluid velocity, namely,
Vx andVy , have been obtained, together with all three com-
ponents of the magnetic field. The reference frame used was
the standard GSE frame and the sample was formed by data
at a time resolution ofT = 1 min, so that the sampling rate
was1 = Vsw T ∼ 24 000 km (Vsw is the average solar wind
velocity). The results are given in Fig.1 (the expected Kol-
mogorov and Kraichnan self similar scaling are also reported
for comparison). Looking at this figure it is seen that inter-
mittency strongly affects the scaling exponents of all the flow
variables: their values deviate more and more from the ex-
pected linear relations with increasing the order of the struc-
ture function.

Following Katul et al. (1994), Veltri et al. (1999) have
then introduced “conditioned structure functions”. The def-
inition of such functions is based on the idea that large iso-
lated values ofW8(i,m) represent a signature of intermit-
tency. The wavelet coefficients are then classified as “pas-
sive” if |W8(i,m)|

2 < F 〈|W8(i,m)|
2
〉 or “intermittent”,

when |W8(i,m)|
2 > F 〈|W8(i,m)|

2
〉; structure functions

are finally calculated by eliminating from the average in
Eq. (13) the intermittent points. Note thatF was chosen in
such a way to eliminate intermittency effects from the scaling
exponents of the “conditioned structure functions”. The re-
sults obtained were largely independent from the exact value
of F . Actually, the “conditioned structure functions” were
calculated forF = 5. Less than 5% of wavelets coefficients
were eliminated from the average.
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Fig. 4. A parallel shock intermittent event:Vx (full line) and
Vy (dashed line) fluctuations normalised to the local average sound
velocity (upper panel); proton density (full line) and sound velocity
(dashed line) fluctuations normalised to their local average values
(lower panel).

In Fig. 1 are represented also the scaling exponents de-
rived from “conditioned structure functions”. It can be seen
that the relationξ(q) is almost linear for all flow variables,
confirming that deviations from self similarity are effectively
due to intermittent points identified through the correspond-
ing large values ofW8(i,m).

2.3 Nature of intermittency in solar wind

The classification of wavelet coefficiens performed above, al-
lows for an identification and a study of the most intermittent
events in solar wind turbulence, which occur in those posi-
tions where the amplitude of the wavelet trasform displays
the largest values compared to the average. These events,
which occur on time scale of the order of few minutes, ex-
hibit a small number of typical profiles, summarized as fol-
lows:

a) “tangential discontinuities”: these structures are almost
incompressible, (δρ ∼ δTp ∼ 0) pressure balanced one
dimensional current sheets. A minimum variance anal-
ysis performed on the magnetic field around the sin-
gularity shows (Figs.2 and 3) that the component of
the magnetic field which varies most changes sign, and
this component is perpendicular to the average magnetic
field (the magnetic field component along the third axis
being almost zero). The magnetic field rotates then in
a plane by an angle which is about 120◦–130◦. There
is one more interesting property: when these structures
occur during an Alv́enic period (velocity and magnetic
field fluctuations highly correlated), the Alfvénic cor-
relations goes from 1 to zero during the traversal of the
current sheet (Fig.2), when, on the contrary, these struc-
tures occur during a period of almost no Alfvénic corre-
lation, the correlation increases to about 1 at the current
sheet location (Fig.3).
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Fig. 5. A slow shock intermittent event: velocity fluctuations par-
allel (full line) and perpendicular (dashed line) to the local average
magnetic field normalised to the local average sound velocity (up-
per panel); proton density (full line), sound velocity (dashed line)
and total pressure (dotted line) fluctuations normalised to their local
average values (lower panel).

b) “compressive discontinuities”: these structures can be
either parallel shocks, mainly observed on the radial
component of the velocity field, but clearly seen also
on the magnetic field intensity, proton temperature and
density (Fig.4); or slow mode wavetrains, character-
ized by a value ofβ ∼ 0, a constant pressure, anticor-
related density and proton temperature fluctuations and
with velocity fluctuations along the average magnetic
field (Fig.5).

All these structures are 1D, at variance with those observed
in fluid turbulence (She et al., 1990). This result represent a
direct confirmation of the conjecture byCarbone et al.(1995)
about the topology of the most intermittent structures in solar
wind. By comparing scaling exponents in fluid experiments
with those in solar wind data, these authors have found that
the former were consistent with model of intermittency (She
and Leveque, 11994; Grauer et al., 1994; Politano and Pou-
quet, 1995) where the most intermittent structures had codi-
mension 1, while the latter require intermittent structures of
codimension 2.

3 Coronal nanoflares modelling

The results obtained when analyzing intermittent structures
in solar wind MHD turbulence, described in the previous
section, can furnish a key in modifying Parker’s conjec-
ture about smallest (∼1024 erg) flares occurrence. Actu-
ally Parker(1988) conjectured that these flares, which he
called “nanoflares”, should “correspond to dissipation of
many small current sheets, forming in the bipolar regions as
a consequence of the continous shuffling and intermixing of
the footpoints of the field in the photospheric convection”.
These current sheets are nothing but “tangential discontinuity
which become increasingly severe with the continuing wind-

Fig. 6. A rough sketch of the loop model.

ing and interweaving eventually producing intense magnetic
dissipation in association with magnetic reconnection”.

It is now worth tempting to suppose that “nanoflares” cor-
respond to dissipation of many small current sheets, “form-
ing in the nonlinear cascade” occuring inside coronal mag-
netic structures as consequence of the power input due to
footpoint motion. Current sheets are nothing but “coherent
intermittent small scale structures” of MHD turbulence. En-
ergy injection at large scales would be essentially due to pho-
tospheric motions; nonlinear effects would be responsible for
energy transfer to small scales, while the intermittent nature
of energy releases would be the result of a “turbulent energy
cascade”, from large spatial/temporal scales down to small
dissipative scales. Finally, some form of dissipation would
turn the turbulence energy into thermal or other forms of en-
ergy.

To investigate the consequences of this conjecture, we
need to build up a model to describe MHD turbulence evolu-
tion inside a coronal loop.

3.1 The RMHD shell model for turbulence in coronal loop

In a simplified form a loop can be represented as box, with a
large aspect ratioR = L/L⊥ � 1 (L being the height and
L⊥ the side of its square basis), inside which there is a region
of uniform densityρ and uniform magnetic fieldB0, whose
direction is vertical (Fig.6).

A coronal magnetic loop haveβ ∼ 10−2 (β being the ki-
netic to magnetic pressure ratio) and a small perpendicular
to longitudinal magnetic field ratioB⊥/B0 < 1/R. Starting
from MHD Eqs. (5) and using the above assumptions, a set of
RMHD equations (Strauss, 1976; Zank and Matthaeus, 1992)
can be obtained, which ensures that the plasma behaves as an
incompressible fluid in the directions perpendicular toB0,
while only propagation at the Alfv́en speed takes place in the
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direction parallel toB0:

∂Zσ

∂t
+ (Z−σ

· ∇⊥)Z
σ

+ ∇⊥p − σ
∂Zσ

∂x
= χ∇

2
⊥
Zσ (14)

∇⊥ · Zσ = 0, (15)

whereZσ = v⊥ + σb⊥ (with σ = ±1) are the Els̈asser vari-
ables;v⊥, b⊥ and∇⊥ are the component perpendicular toB0
of the velocity, magnetic field and gradient, respectively;p

is the total (kinetic + magnetic) pressure;x is the coordinate
along the loop. Lenghts are normalized to the loop length
L, velocities to the Alfv́en velocitycA = B0/

√
4πρ (ρ is

the mass density); time is normalized to the Alfvén transit
time TA = L/cA (the time an Alfv́en wave takes to propa-
gate along the loop); the magnetic field is normalized toB0
and the pressure is normalized toρc2

A. The dissipation coef-
ficient isχ = µ/(cAL), where the the magnetic diffusivityµ
has been assumed equal to the kinematic viscosityν. Condi-
tion (15) ensures that the plasma behaves as an incompress-
ible fluid in the directions perpendicular toB0, while only
propagation at the Alfv́en speed takes place parallel toB0.

Direct simulations (Einaudi et al., 1996; Hendrix and Van
Hoven, 1996; Dmitruk and Gomez, 1997, 1999; Dmitruk
et al., 1998) of 2D and 3D MHD equations, and within
the framework of RMHD have been performed, where
the connection between dissipation bursts in turbulence
and nanoflares has been introduced. However, simula-
tion are subject to a severe limitation: the very high
Reynolds/Lundquist numbers typical of the coronal plasma
are not accessible. This does not allow to describe the tran-
sition from the fractal to the multifractal behaviour which is
associated with intermittency in turbulent flows. In this re-
spect, MHD shell models represent a useful tool, since they
allow to model high Reynolds/Lundquist number turbulence
with a small computational effort.Boffetta et al.(1999) have
applied a MHD shell model to study the statistical properties
of dissipated energy in the coronal turbulence. However, the
application of shell models to the turbulence in coronal plas-
mas suffers for two main limitations:

a) MHD shell models are derived within the incompress-
ible MHD (Boffetta et al., 1999), corresponding to the
limit β � 1 (β being the kinetic to magnetic pres-
sure ratio). On the contrary, the magnetically dominated
coronal plasma (β ∼ 10−2) is better represented by re-
duced MHD: in such an approach only noncompressive
fluctuations polarized perpendicular to the main mag-
netic field B0 are retained, while nonlinear coupling
take place only in the directions orthogonal toB0.

b) shell models do not give any information neither on the
spatial structure of the turbulence nor on the geometry
of the considered physical system. For instance, the en-
ergy input from photospheric motions is represented by
a forcing term acting on the large-scale shells, but delo-
calized in space.

To overcome the above drawbacks we have built up (Nigro
et al., 2004) a new kind of shell model. This model is derived

in the framework of the above written RMHD (Eq.14), in-
stead of incompressible MHD. Dynamical variables depend
on the coordinatex parallel to the main magnetic fieldB0 in
order to preserve the spatial information along this direction.
We will refer to this model as “hybrid shell model”.

From Eq. (14) the equations for the “hybrid shell model”
can be obtained, where a Fourier transform of the two coor-
dinates perpendicular toB0 is performed, while the depen-
dence on space variablex alongB0 is kept:(

∂

∂t
− σ

∂

∂x

)
Zσn (x, t) = −χ k2

nZ
σ
n (x, t)+ (16)

ikn

(
11

24
Zσn+1Z

−σ
n+2 +

13

24
Z−σ
n+1Z

σ
n+2 −

19

48
Zσn+1Z

−σ
n−1 −

11

48
Z−σ
n+1Z

σ
n−1 +

19

96
Zσn−1Z

−σ
n−2 −

13

96
Z−σ
n−1Z

σ
n−2

)∗

with n = 0,1, ..., nmax andσ = ±1. The model is built up
by following a standard procedure: thek-space perpendic-
ular toB0 is divided into concentric shells of exponentially
growing radius; for each shell a scalar valuekn = k02n of the
wavevector and a scalar valueZσn (x, t) of the Els̈asser vari-
ables is defined (the fundamental dimensionless wavevector
is k0 = 2π(L/L⊥) = 2πR). The evolution equations for the
dynamical variablesZσn (x, t) are built up by retaining only
the interactions between nearest and next nearest neighbor
shells in the form of quadratic nonlinearities. The nonlinear
terms coefficients are then determined by imposing that they
conserve the 2D quadratic invariants: total energy, cross he-
licity and squared magnetic potential (Giuliani and Carbone,
1998).

3.2 Boundary conditions

According to Eq. (16), the quantitiesZ+
n propagate in the

negativex direction at the Alfv́en speed, whileZ−
n propa-

gate in the positivex direction. At the lower boundaryx = 0
we will then only impose the value ofZ−

n , while at the up-
per boundaryx = 1 we will impose the value ofZ+

n . Us-
ing the relation betweenZσn and velocity field harmonics
v⊥n(x, t) = (Z+

n (x, t)+ Z−
n (x, t))/2 the expression for

the boundary values of the “entering” dynamical variables
can be obtained

Z−
n (x = 0, t) = 2v⊥n(x = 0, t)− Z+

n (x = 0, t), (17)

Z+
n (x = 1, t) = 2v⊥n(x = 1, t)− Z−

n (x = 1, t). (18)

On the RHS of these equations the velocityv⊥n must
be specified, while the Elsässer variables, corresponding
to perturbations leaving the domain (Z+

n (x = 0, t) and
Z−
n (x = L , t )), are determined by the evolution Eqs. (16)

inside the domain. We have chosen to inject energy only
through the lower boundary, keeping a vanishing velocity at
the upper boundary:v⊥n(x = 1, t) = 0. Condition (18) then
impliesZ+

n = −Z−
n at x = 1; i.e. exiting perturbations are

totally reflected at the upper boundary. This boundary condi-
tion has been chosen for the sake of simplifying the model;
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however, we expect that the results would remain essentially
unchanged if energy exchanges were be allowed also through
the upper boundary. Moreover, we have assumed that most
of energy in photospheric motions is concentrated at larger
spatial scales∼ L⊥. Then, at the lower boundaryx = 0 only
the first three shell, which represent the minimum number of
shells which must be populated in order to initiate nonlinear
interactions, are excited:

v⊥n(x = 0, t) = u⊥ fn(t) , n = 0, 1, 2,

v⊥n(x = 0, t) = 0 , n = 3, ..., nmax.

The constantu⊥ gives the order of magnitude of velocity
perturbations at the boundary, whilefn(t) are random sig-
nals gaussian distributed, with unit standard deviation, self-
correlated with a correlation timetc, which represents the
characteristic time associated with photospheric motions. We
usedtc = 300 s. From Eq. (16) an energy balance equation
can be derived
dE

dt
= F(t)−W(t), (19)

whereE(t), F(t) andW(t) represent, respectively, the total
energy, the net incoming energy flux and the total dissipated
power

E =

∑
σ

∫ 1

0
εσ (x, t)dx, W =

χ

2

∑
σ,n

∫ 1

0
k2
n|Z

σ
n (x, t)|

2dx,

F =

∑
σ

[F σ (x = 0, t)− F σ (x = 1, t)],

whereεσ (x, t) andF σ (x, t) are the pseudoenergy per height
unit and the pseudoenergy flux

εσ (x, t) =
1

4

nmax∑
n=0

|Zσn (x, t)|
2, F σ (x, t) = −σεσ (x, t).

Equation (19) has also been used to check the accuracy of the
numerical solution.

4 Numerical results

Equations (16) have been numerically solved, using a second
order finite difference scheme in space and a second order
Runge-Kutta method in time.

As a typical case we chosen to study a magnetic structure
with a parallel lengthL = 3 × 104 km, and an aspect ra-
tio R = (L/L⊥) = 30/2π , a characteristic Alfv́en velocity
cA = 2 × 103 km s−1 (corresponding to Alfv́en transit time
TA = 15 s). The velocity at the forcing boundary has been
assumed to be of the order of 1 km s−1corresponding to that
observed in photospheric motions, so thatu⊥ = 5 × 10−4;
finally a very small dissipation coefficientχ = 10−7 has
been used, which requiresnmax = 11 in order to ensure that
the generated spectrum will be fully contained into the fi-
nite numbernmax of shells. Using the above values and a
typical mass densityρ = 1.67 × 10−16 g cm−3, the fol-
lowing normalization factors for energy and power are ob-
tainedEN = (ρ c2

AL
3)/R2

= 7.93 × 1027 erg, WN =
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Fig. 7. Kinetic (white boxes) and magnetic (black boxes) spectral
energy as function of the shell order. The spectra are averaged both
in direction along the loop and in time.

(ρc3
AL

2)/R2
= 5.28× 1026 erg s−1. Note thatEN is also an

estimation of the d.c. magnetic energy stored in the loop.

4.1 Energetics

As described above, energy is injected in the first three shells
at the lower boundary. In consequence of propagation par-
allel to B0, this energy is distributed along thex direction.
At the same time, nonlinear couplings transfer this energy
to smaller scales in the transverse direction. In this way a
spectrum is formed (Fig.7), ranging from the large injection
scales (n ≤ 2) down to the small dissipative scales (n ≥ 9).
In the inertial domain (3≤ n ≤ 8) the characteristic Kol-
mogorov power law spectrum is displayed mainly by kinetic
energy.

The time evolution for total energy, net incoming energy
flux and dissipated power is shown in Fig.8. At the initial
time the magnetic structure does not contain energy. Dur-
ing a transient, which lasts about 15 h, the energy increases:
the motions at the base of the loop inject Alfvénic perturba-
tions which gradually fill the whole structure. With increas-
ing time, the energy does not stabilize but displays strong
irregular variations. These variations are due both to energy
input/output at the lower boundary (the upper is a perfectly
reflecting boundary), and to dissipation. The energy input is
not simply determined by the external forcing, but it depends
also on how the forcing couples with perturbations which are
present inside the system. In particular, this coupling con-
tributes to determine the sign of the net energy flux. In Fig.8
it can be seen that the energy flux continuously changes sign
on a short time scale.

Dissipation gives a negative definite contribution to energy
variations. The time dependence of the dissipated power
shown in Fig.8 indicates that dissipation takes place in an
intermittent fashion: periods characterized by the presence
of “strong dissipation peaks” are observed, along with rela-
tively “quiet” periods, during which the level of dissipation is
much lower. The strongest event correspond to a peak dissi-
pated power of∼ 1024 erg s−1. We expect that further events
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Fig. 8. Time evolution of(a) Energy, (b) Energy flux and(c)
Dissipated power.

which such a strong dissipated power would be observed in
longer simulations. Even though the energy never reaches a
stationary state, when observed over very long times it os-
cillates around an average value. This indicates that a sta-
tistical equilibrium is reached between incoming flux, out-
coming flux and dissipation. The energy and the dissipated
power, averaged over a time which excludes the initial tran-
sient are〈E〉t ' 3.84 × 10−2 and 〈W 〉t ' 5.05 × 10−5.
In a similar way, we calculated the average incoming and
outcoming fluxes, by separately considering periods of pos-
itive 〈Fin〉t ' 8.38 × 10−5 and periods of negative flux
〈Fout〉t ' −2.99 × 10−5. Then about 60.3% of the energy
which enter the system during the whole simulation is dis-
sipated, while 35.7% propagate outside. Average fluxes and
dissipation tend to cancel out, a small unbalance remaining
〈dE/dt〉t/〈Fin〉t ' 4% which tends to vanish increasing the
simulation time.

The average energy can be splitted as the sum of the
kinetic 〈EK 〉t = 8.51 × 10−5 and magnetic〈EM 〉t =

3.84 × 10−2 average energies. From the average energy
an estimation of the perturbation amplitude can be obtained
δB⊥/B0 ∼ 〈EM 〉

1/2
t ' 0.2, andδv⊥/cA ∼ 〈EK 〉

1/2
t '

9.2×10−3. This means that magnetic field fluctuations inside
the loop dominate over velocity fluctuations at least at larger
scales. This result is a consequence of the fact that the forc-
ing at the loop base has a characteristic timetc much larger
than the Alfv́en transit timeTA (Einaudi and Velli, 1999). In
particular, this implies that the reduced cross-helicity of fluc-
tuationsH = 2δvδb/(δv2

+ δb2) ' 2δv/δb ∼ 10−1. This
condition is equivalent toδZ+

' δZ− and it corresponds to
the presence of Alfv́enic fluctuations propagating along the
loop in both directions. This holds during the whole simula-
tion, except for a short initial transient (∼ 2TA). The condi-
tion |H | � 1 implies that nonlinear interactions are effective
in transfering energy along the spectrum.
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Fig. 9. Probability distribution functions for(a) Peak of dissipated
power,(b) Duration,(c) Burst Energy,(d) Time separation. Power
law with indices 1.8 for the first three distributions and 2 for the last
one are represented for comparison.

The velocity fluctuations inside the loop are considerably
larger with respect to photospheric motions which drive the
energy input. This means that loop works as an extremely
efficient energy storage device.

4.2 Probability distribution functions

The time dependence of dissipated power shown in Fig.8
displays a sequence of spikes, which are supposed to repre-
sent the energy release events (micro or nanoflares) observed
in the solar corona. We have then calculated the statistical
properties of such events to compare them with the observed
properties of coronal flares. So we have defined a burst of
dissipation by the conditionW(t) ≥ Wthr. We have chosen
the threshold value asWthr = Wave+ 2σ , where the average
and the standard deviation of the dissipated power have been
calculated on the time intervals between bursts by an iterative
process to take into account only the background contribu-
tion. The calculated PDFs of peak maximum powerf (Wm),
peak duration timef (tD), energy dissipated in a burstf (Eb)
and waiting time between burstsf (tL) are represented in
Fig. 9. All these distribution functions display power law
behavior extended over a wide range of decades. The power
law indices are of the order of 1.8 for the first three distribu-
tion and about 2 for the waiting times, values which are in
agreement with those obtained in statistical analisys of im-
pulsive events in the corona. The range of dissipated energy
goes from 1020 erg to 1025 erg, which compare very well
with the energy involved in nanoflares. This wide dynam-
ical range is due to intermittency in high Reynolds number
turbulence, efficiently described by the shell technique. The
energy of dissipation events depend on the valueEN used
to normalize energy. A loop containing a larger amount of
magnetic energy in the equilibrium field would correspond
to larger energies released in dissipative events. However, in
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Fig. 10. Root mean square value of the velocity fluctuations as
function of the coordinate along the loop.

our model there is an upper limit to the energy which can
be released in a single event: this limit is represented by the
energy of the equibrium field∼ EN . This implies that our
model cannot account for large flares, which probably need
topologically complex magnetic field above active regions to
store and dissipate the required energy.

4.3 Velocity fluctuations

A extremely efficient challenge for the model is represented
by the comparison of velocity fluctuations obtained in the nu-
merical model with unresolved non-thermal velocity. From
the observational point of view the non-thermal velocity rep-
resents the excess amount of an observed line width over
thermal contribution. The physical reason for the excess
broadening is still not clear. In the framework of our model
we can interpret the observed non-thermal velocity as turbu-
lent velocity. In fact the isotropic and very small scale nature
of non-thermal motion appears to be suited to MHD turbu-
lence interpretation of non-thermal velocity.

The velocity distribution along the loop is represented in
Fig. 10, where it can be seen that, starting from about 1 km/s
at the boundary, values of the order of 30 km/s are obtained
3000 km higher. This distribution compares well with the
distribution of unresolved velocity, observed by Sumer ex-
periment (Chae et al., 1998), assuming that temperature is
directly related to height above photosphere. The numeri-
cal values are also in agreement with observed coronal non-
thermal velocity obtained byBrosius et al.(2000). In this
work they have presented a high-resolution EUV spectrum of
solar active region obtained with the SERTS sounding rocket.
Using the strong emission line observed for each ionization
stage of Fe from X though XVI and Ni XVIII, they find that
all of the measured non-thermal line widths yield velocities
consistent with 35 km/s, within the measurement uncertain-
ties.

Even more interesting comparisons may be derived from
the analysis of non-thermal velocity measured in correspon-
dence of flares. Let us see what happens to velocity fluctu-
ations in our numerical simulations. Looking at Fig.11 it
is seen that magnetic field fluctuations display variations on
time scale of the order of several hours, much the same as
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Fig. 11. Root mean square value of the velocity (middle panel) and
magnetic field (lower panel) fluctuations as function of time. The
dissipated power is represented in the upper panel for comparison.

the stored fluctuating energy (Fig.8) of which they repre-
sent the main contribution. On the contrary, velocity fluctu-
ations are characterized by spikes which can be as higher as
80− 140 km/s, much larger then their average value (' 30
km/s). Even if these spikes are not always correlated with a
burst of dissipation, the contrary is always true: every dis-
sipation burst is correlated with a spike in the velocity fluc-
tuation. This behavior is clearly seen both in Fig.11 and in
Fig. 12 where a direct comparison between time behavior of
dissipated power and velocity fluctuation amplitude is per-
formed by zooming on a particular time period. The strong
increase of velocity fluctuations in correspondence (just be-
fore) a dissipation burst compares extremely well with the
increase of nonthermal velocity observed during flares, not
only qualitatively but also quantitatively. In factLandi et al.
(2003) have observed maximum value of around 100 km/s at
flare onset and then decay to the values of around 30 km/s
non thermal mass motion of nonflaring plasma.

5 Conclusions

The results obtained strongly support the view that coronal
nanoflares could be related to intermittent dissipative events
in the MHD turbulence produced in a coronal magnetic struc-
ture by footpoint motions. The main physical ingredients in
the model are represented by an energy injection at a bound-
ary of the simulation domain, which is efficiently stored in
the loop up to significant levels mainly in the form of mag-
netic fluctuations. Fast increase of fluctuating kinetic energy,
allows to bring the accumulated magnetic energy from large
scales to small scales. This transport is realized by nonlinear
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interactions which process magnetic and kinetic fluctuations
and give rise to the intermittent behavior, whose signature is
found on statistical distribution of observational data, with-
out any need of “ad hoc” hypothesis.

The “hybrid shell model” we have used is extremely use-
ful in studying the energy balance of dynamical variables,
but it does not allow for a description of the spatial charac-
teristics of the turbulence. On the other hand, the data from
solar wind have allowed us to understand what are the prop-
erties of the most intermittent structures in MHD turbulence,
which as concerns incompressible MHD, turn out to be cur-
rent sheets. Integrating the informations furnished by both
methods represents then an extremely efficient way to look
at problems which are far from the possibility of actual com-
puters if Direct Numerical Simulations were used.

It is then worth summarizing some methodological results
which follow from this paper:

a) physical understanding of complex nonlinear phenom-
ena occurring in plasmas require the coordinated utiliza-
tion of different tools: space and laboratory data anal-
ysis, simplified dynamical models, numerical simula-
tions;

b) the signature of non linear interactions seems to be a
multifractal intermittent behavior. This behavior ob-
served in turbulent fluid flows seems to represent a key
to explain some burstly phenomena occurring in space,
laboratory and solar corona plasmas;

c) dynamical models represent a particularly efficient tool
to describe this intermittent behavior.
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Elsässer, W. M.: The Hydromagnetic Equations, Phys. Rev., 79,
183–183, 1950.

Fisch, U.: Turbulence, Cambridge University Press, Cambridge,
UK, 1995.

Giuliani, P. and Carbone, V.: A note on shell models for MHD tur-
bulence, Europhys. Lett., 43, 5, 527–532, 1998.

Grauer, R., Krug, J., and Marliani, C.: Scaling of high-order struc-
ture functions in magnetohydrodynamic turbulence, Phys. Lett.
A, 195, 5–6, 335–338, 1994.

Hendrix, D. L., and Van Hoven, G.: Magnetohydrodynamic Turbu-
lence and Implications for Solar Coronal Heating, 467, 887–893,
1996.

Katul, G. G., Albertson, J. D., Chu, C. R., and Parlange, M. B.:
Intermittency in Atmosheric Surface Layer Turbulence: The
Orthonormal Wavelet Representation, Wavelets in Geophysics,
edited by Foufoula-Georgiou, E. and Kumar, P., Academic Press,
81–105, 1994.

Kolmogorov, A. N.: The local structure of turbulence in incom-
pressible viscous fluid for very large Reynolds number, Dokl.
Akad. Nauk. SSSR, 30, 299–303, 1941.



P. Veltri et al.: Coronal nanoflares modelling 255

Kolmogorov, A. N.: A refinement of previous hypotheses concern-
ing the local structure of turbulence in a viscous incompressible
fluid at high Reynolds number, J. Fluid Mech., 13, 82–85, 1962.

Kraichnan, R. H.: Inertial range spectrum in hydromagnetic turbu-
lence, Phys. Fluids, 8, 1385–1387, 1965.

Landi, E., Feldman, U., Innes, D. E., and Curdt, W.: Mass Motions
and Plasma Properties in the 107 K Flare Solar Corona, Astro-
phys. J., 582, 1, 506–519, 2003.

Lepreti, F., Carbone, V., and Veltri, P.: Solar Flare Waiting Time
Distribution: Varying-Rate Poisson or Lévy Function?, Astro-
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