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Abstract. Methods for reconstructing sources of inert at-
mospheric tracers from ground measurements are currently
studied, tested, and even implemented (in accident-type
radionuclide release backtracking, for retrieval of carbon
fluxes). Often the retrieved source exhibits a very strong and
unrealistic (therefore unwanted) influence by the observation
sites. This problem is shown not to be an intrinsic flaw of the
reconstruction methods but rather due to the specifics of the
atmospheric dispersion of a tracer, to the location of the re-
ceptors and to the expected source location. It is increasingly
pronounced as the grid resolution for the source is improved,
and we show how this translates mathematically. We rely
on the general framework of inversion methods based on the
maximum entropy on the mean principle. Those methods are
well suited for accident-type tracer release problems. The de-
pendence of the reconstruction on grid resolution is investi-
gated both analytically and numerically, in conjunction with
the issue of receptor influence. Two examples of synthetic
experiments are given. The first one is a one-dimensional
toy model which quantitatively validates the approach. The
second one is based on the European Tracer Experiment and
agrees well with the results obtained here. Finally, a gen-
eralization of the formalism is proposed so as to study the
performance of reconstructions when observation and possi-
bly model errors are present.

1 Introduction

Reconstructing pollutants sources is of increasing impor-
tance. An apparently simple form of this problem is the re-
trieval of sources of a passive (as opposed to reactive) tracer
dispersed throughout the atmosphere. Many efforts have
been devoted to the retrieval of fluxes of diffuse trace gas,
such as methane, CO, and CO2, and other types of semi-
persistent pollutants like mercury. A few methodological
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works have emphasized the ill-conditioned nature of the in-
version and identified how the physics of atmospheric disper-
sion bears on the technical difficulties of that type of recon-
struction. Many contributions on the topics can be found in
“Inverse Methods in Global Biogeochemical Cycles”, Geo-
physical Monograph 114, American Geophysical Union, and
more recently (Enting, 2002). Another class of problems
concerns the retrieval of the source of pollutants following
an accidental release. Typical examples are the monitoring
of nuclear tests fostered by the test ban treaty (Pudykiewicz,
1998; Hourdin and Issartel, 2000) and the re-analysis of civil
nuclear plant accidents such as Chernobyl. Although this
paper mainly focuses on an accident type release, methods,
analysis, and conclusions exposed here are still valid for ex-
tended sources and possibly diffusive sources. For an acci-
dental source, one expects from inverse techniques to yield
one or several locations of the release, the released mass of
pollutant, and hopefully a temporal profile for the release.

Inversion techniques aim at extracting information on the
source from a set of concentration measurements. To achieve
this some knowledge from an adequate dispersion model
is required. We rely on an Eulerian dispersion model, al-
though some of the conclusions drawn here can possibly be
extended to Lagrangian backtracking (see for exampleStohl,
1998). Assimilating the concentration measurements is usu-
ally done through Kalman filtering or variational techniques
(four-dimensional variational assimilation, see for example
Elbern et al., 2000, or some under-constrained variants of
three-dimensional variational assimilation/optimal interpola-
tion). Under some circumstances, because of the linearity of
the system, there are simpler ways to perform the inversion.
These rely on adjoint techniques. They have been adapted
to atmospheric problems inMarchuk (1995); Pudykiewicz
(1998); Issartel and Baverel(2003). A variant known as the
“representer method” (Bennett, 2002, and references therein)
is used in oceanography and not only focuses on the source
retrieval but also on the reconstruction of the complete dis-
persion event (full data assimilation system).
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The adjoint techniques are merely tools for inversion
methods. For a high resolution reconstruction, the inver-
sion is a severely ill-posed problem and a regularization is
needed. The choice of the regularization and its motivation
specify the inversion method. One type of regularization is
by orthogonal projection onto some proper vector space of
source fields. The most natural space is the space generated
by the retroplumes, a set of adjoint solutions, each one of
them attached to an observation.

In Bocquet(2005a) it was shown that this regularization
can be viewed as an element from a larger class of regular-
izations, all relying on the principle of “maximum entropy
on the mean”. Those are the regularizations that are guaran-
teed to introduce less spurious information into the inversion.
Each of them makes use of a probability density functionν

for the prior distribution describing the source. It contains
the statistical information garnered on the source before any
measurement is made. The orthogonal projection technique
is then seen as a regularization by entropy provided the prior
distribution one assumes is Gaussian. These methods are
expected to be efficient when the first moment ofν is lit-
tle known or close to a black object (meaning the source is
sparse), i.e. when the first guess for the source is not to be
trusted or irrelevant (Bocquet, 2005b). However higher mo-
ments are also used. It is very natural in this framework to in-
troduce priors such as positiveness, boundedness, extensity,
etc. This prior information may constrain the source signifi-
cantly. When there is a reliable first guess for the source, the
method works as well but is not believed to perform signifi-
cantly better than a least square variational inversion, where
first and second moments are already used.

The success of a reconstruction using real measurement
data depends on both the inversion technique used as well as
the numerical transport model used. The two problems are
decorrelated. For a perfect model (matching reality), the effi-
ciency is only subject to the inversion technique. Conversely
a poor model makes any sophisticated inversion technique
pointless on real data. In this paper, the inversion technique
aspect of the reconstruction problem is the main concern. In
other words, it is assumed a good numerical dispersion model
is used.

In recent works, it has been observed that the reconstruc-
tion is often strongly influenced by the detectors. The re-
trieved source may peak at the observation sites. Moreover
the total mass retrieved for the source tends to be concen-
trated near a few receptors. This has been reported in the
context of Lagrangian backtracking (Ashbaugh et al., 1985;
Stohl, 1998) but also within an Eulerian approach (Issartel,
2003; Bocquet, 2005b). Recently it has been claimed that
this is an artefact of the inversion which a proper inversion
technique should be able to smooth out or eradicate (Issartel,
2003, 2005). In this paper, we argue that this feature of the
reconstruction is not an artefact. It is due to the nature of
the dynamics of the atmospheric transport of tracers, to the
prior expectation of the source location and to the relative
positions of the observation sites. We show when this fail-
ure in the reconstruction is prone to happen and the optimal

conditions to avoid it, rather than ignoring it.
In Sect.2, a detailed introduction and a reminder on re-

cent developments are provided and the problem is exposed.
In Sect.3, the singular nature of the inversion method is ex-
amined. In Sect.4, a numerical example based on the Euro-
pean Tracer Experiment (ETEX) is detailed. In Sect.5, the
error committed in the inversion is estimated. Its dependence
on the mesh step and the observations is studied. In Sect.6,
we show how previous results should be generalized when
the measurements are noisy and the model is imperfect, as it
would be the case in an operational context. Conclusions are
then given.

2 Principles of inversion

2.1 The forward transport

We are interested in the dispersion of a pollutant of con-
centrationc, at regional/continental scale, over a domain
� = D × [0, τ ], whereD is the spatial domain and[0, τ ]

the time interval. The atmospheric dispersion equation is

∂c

∂t
+ div (uc) − div (K∇c) = σ , (1)

whereK parameterizes eddy diffusion, andu(x, t) is the
wind field. At continental scale,K is a diagonal tensor
with componentsKx, Ky , which are of limited influence,
and vertical diffusionKz, which needs a proper parameter-
ization (Louis, 1979).σ is the forcing field, the source we
are seeking to estimate. In the rest of the paper, it is assumed
σ(x, t) ≥ 0 (positiveness of the source). This is not how-
ever a sine qua non condition for most of the conclusions of
this work to stand. The air density is taken as approximately
constant and homogeneous. As a consequence the air con-
servation equation simplifies to

div(u) = 0 . (2)

A complete generalization to a nonuniform air density is nev-
ertheless possible (Issartel and Baverel, 2003; Hourdin et al.,
2005). For an accidental release, it is appropriate to choose
the following boundary conditions

∀ (x, t) ∈ ∂�+, c(x, t) = 0 , (3)

where∂�+ is the part of the domain boundary corresponding
to the incoming wind field. In this context the initial condi-
tions are

∀ x, c(x, 0) = 0 . (4)

Moreover we assume the diffusive fluxK∇c to be null (or
negligible) at the boundary. Though it prevents pollutant to
diffuse out of the domain, it does not impede (dominant) ad-
vection processes.

The measurement of concentrations is formalized through
the equation:

µi =

∫
�

dtdx πi(x, t)c(x, t) (5)
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whereµi (i = 1, · · · , p) is a concentration value, indexed
by i. πi is the sampling function. It is measured per unit
of volume and per unit of time. It describes how the aver-
aging process of the concentration measurement is done and
encodes the spatial and temporal extent of the observation.
In order forµi to stand for a representative of the local con-
centration,∫

�

dtdx πi(x, t) = 1 (6)

should be enforced. The observation equation (Eq.5) intro-
duces theL2-scalar product over the functional spaceL2(�):

(9, 8) =

∫
�

dtdx 9(x, t)8(x, t) , (7)

which will be useful later.

2.2 The adjoint transport

Let us introduce a test fieldφ, to be multiplied against the
transport equation (Eq.1) over the whole domain�:∫

�

dtdx φ

(
∂c

∂t
+ div (uc) − div (K∇c) − σ

)
= 0 . (8)

Integrations by part as well as boundary and initial conditions
on c lead to the budget equation:

0 =

∫
�

dtdx c

(
−

∂φ

∂t
− div (uφ) − div (K∇φ)

)
−

∫
�

dtdx φ σ +

∫
D

dx c(τ )φ(τ ) (9)

−

∫
∂D×[0,τ ]

dtdS · (cK∇φ) +

∫
∂�−

dtdS · (φcu) .

To benefit from the dual formalism, it is then possible to de-
fine the following adjoint solution. Consider a measurement
µi wherei ∈ [1, p]. Its sampling function isπi . Inspired by
Eq. (9), one can introduce the adjoint equation:

−
∂c∗

i

∂t
− div

(
u c∗

i

)
− div

(
K∇

(
c∗

i

))
= πi , (10)

wherec∗

i therefore stands as the adjoint solution. In order to
remove most of the terms of Eq. (9), we choose

∀ x, c∗

i (x, τ ) = 0 , ∀ (x, t) ∈ ∂�−, c∗

i (x, t) = 0 . (11)

∂�− denotes the part of the domain boundary correspond-
ing to the outgoing wind field. In addition, the diffusive flux
K∇c∗

i = 0 is imposed null at the boundaries. This com-
pletely defines the adjoint solution,c∗

i , called a “retroplume”
in this context. Eq. (9) now becomes

µi =

∫
�

dtdx σ(x, t)c∗

i (x, t) . (12)

Previous results can be transposed to a discrete numerical
model, where the domain� is composed of cells�k, with
k ∈ [1, N]. The concentration fieldc is discretized intock.
However the discrete adjoint solutionc∗

i,k is not necessarily
the discretization ofc∗

i but the adjoint solution of the dis-
crete numerical model. Generally, they do not coincide.c∗

i,k

remains in units of inverse spatial volume.

2.3 Principle of the inversion

Adopting a continuous form for the subsequent derivations
would not always be mathematically safe. The discrete nu-
merical point of view is therefore preferred (integrals on the
domain� are replaced with sums on the grid).

In a source reconstruction, the main goal is to find a proper
σ , a vector of cell valuesσk, which satisfies the measurement
equations

∀ i ∈ [1, p] , µi =

N∑
k=1

c∗

i,kσk , (13)

which are a discrete version of Eq. (5). For convenience the
observation matrix[H ]i,k = c∗

i,k is introduced. It encapsu-
lates the model. Ifµ is the vector of measurements, Eq. (13)
can be recast asµ = Hσ . To simplify formulas and inter-
pretations, the cell volume elements are incorporated into the
definition ofσk. Thereforeσk is in units of tracer mass and
represents the total mass emitted in cellk.

For N significantly larger thanp and in the absence of
strongly restraining hypotheses onσ , this problem is ill-
posed. The underdetermination could only be lifted with a
proper regularization. From a Bayesian point of view, this
regularization must be equivalent to taking into account prior
information on the source.

In addition to the experimental source of information, the
prior information may often be significant. In this context, a
reconstruction with finer resolution than what the mere data
would allow is achievable. This is what is used inIssartel
(2003), although the importance of the prior is not recog-
nized. A construct introduced inBocquet(2005a,b) devoted
to that type of inversion is summarized in the following sec-
tion.

Lastly, becauseH describes dispersion, it is known to be
ill-conditioned as a matrix, adding to the difficulty. Short
distance fluctuations of the source are cut-off byH with an
efficiency that depends on the dispersion conditions (Enting,
2002).

2.4 Maximum entropy on the mean

Just before the inversion, one knows the set of concentration
measurements. One possibly retains prior information on the
source, such as very general features like positiveness, ex-
tensity, and boundedness but also specific features such as
location and time-dependent information. All these pieces
of information can be incorporated into a prior probability
density function (pdf)ν : σ −→ ν(σ ). σ belongs to the
set of all potential source configurations. The entropy on the
mean regularization is the method that maximizes ignorance
(quantified as the entropy functional) on the source except
for the set ofµi and the priorν. Therefore it guarantees that
no spurious or unwanted information comes into the inver-
sion. Details of the construction and its applications to atmo-
spheric dispersion can be found inBocquet(2005a). Let us
summarize the main results needed for entropy techniques.
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One expects the inversion to yield a posterior pdfp(σ ).
The entropy to be maximized is

S = −

∑
σ

p(σ ) ln

(
p(σ )

ν(σ )

)
(14)

provided the measurement constraints are satisfied on the
mean, i.e.

µ = 〈Hσ 〉 ≡

∑
σ

p(σ )Hσ . (15)

The symbolic sum onσ stands for an integral with respect to
the measure

∏N
k=1 dσk. It ranges over a domain included in

RN . −S is usually called the “Kullback-Leibler divergence
or information”: K(p, ν) = −S, which is a measure of the
discrepancy between pdfs. Hence, introducingp Lagrange
multipliersβi , the following functional must be optimized

L = K(p, ν) + βT

(
µ −

∑
σ

p(σ )Hσ

)
. (16)

It is called the “level-2 primal problem”. The problem can
now be reduced by duality: it can be shown that it is equiva-
lent to “minimize” the “secondary entropy”

9 = ln Z(β) − βT µ with Z(β)=
∑
σ

ν(σ ) exp
(
βT Hσ

)
, (17)

with Z(β), the “partition function”. An average source can
then be deduced through the estimator

σ = 〈σ 〉 ≡

∑
σ

p(σ )σ . (18)

This estimator satisfies the measurement constraints. Min-
imizing 9 over theβi is called the “dual problem” of the
level-2 primal problem.

Furthermore, it can be shown that solving this problem
is equivalent to minimizing a cost function (the so-called
“level-1 primal problem”)J (σ , ν) 1, that depends on the
prior ν and which is a functional ofσ . Its maximum is
reached atσ . In the following sections the explicit form of
J , which depends onν, will be given each time it is needed.

2.4.1 Factorization

When the prior pdfν can be factorized according to the par-
tition of the domain� into the cells�k, then the partition
function can also be factorized. The secondary entropy can
be simplified accordingly. In this case

Z(β) =

N∏
k=1

Zk(β) , (19)

where

Zk(β) =

∑
σk

νk(σk) exp
([

βT H
]
k
σk

)
. (20)

As a result

9 =

N∑
k=1

ln Zk(β) − βT µ . (21)

This property will be used in the following sections.

1see (Gzyl, 1995), and Bocquet, M., unpublished work.

2.4.2 Poisson prior

The Bernoulli prior was shown to perform well on ETEX-
like sources, and better than the Poisson law (Bocquet,
2005b). However, here, we are looking for cases when the
retrieval performance is between success and failure. A rea-
sonably efficient and simple prior like Poisson is therefore
expected to suit our purpose.

When one only knows that the forcingσ is positive, a sim-
ple though non-trivial prior law like Poisson is appropriate.
It is parameterized by a local average valueθk. The prior pdf
in cell k is given by

νk(xk) = e−θk
θ

xk

k

xk!
. (22)

xk is an integer andνk(xk) is interpreted as the probability
density that a massmxk is emitted at grid cellk, wherem

denotes a reference mass or level-spacing. Hencemθk ap-
pears as a first guess for the released mass in cellk. Since
those laws are independent from one cell to another, factor-
ization of the partition function is in order. The local partition
function reads for any cellk

Zk(β) = exp
{
−θk + θk exp

(
m
[
βT H

]
k

)}
, (23)

so that the secondary entropy is

9 =

N∑
k=1

θk

{
exp

(
m
[
βT H

]
k

)
− 1

}
− βT µ . (24)

The reconstructed source is then

σ k = m θk exp
(
m
[
βT H

]
k

)
. (25)

The level-1 primal cost function, which is useful when nu-
merically computing the entropy of a source field, is easily
derived:

J =

N∑
k=1

σk

m
ln

σk

mθk

+ θk −
σk

m
, (26)

providedµ = Hσ . The Poisson law will serve as a basis for
the numerical examples of Sect.4.

2.4.3 Gaussian prior

Gaussian laws are analytically tractable and that is why they
will be used here, in addition to Poisson laws. They also
allow for a clear connection to traditional variational data as-
similation. Nevertheless it may not be a good choice for a
positive source without a trusted first guess.

The source elementsσk are supposed to be correlated ac-
cording to Eσ [σkσl ] = [B]kl and they follow a multivariate
normal law. It is assumed there is no obvious first guess for
the accidental release. The prior pdf is then

ν(σ ) =
1√

(2π)N detB
exp

(
−

1

2
σ T B−1σ

)
. (27)
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From it, a secondary entropy (level-2 dual problem) for the
Gaussian prior is derived:

9 =
1

2
βT HBH T β − (β,µ) . (28)

Note that it is also possible to include observation errors in
the entropy framework. If those errors are assumed Gaussian
a priori, then9 corresponds to the 4D-Var PSAS cost func-
tion (Courtier, 1997), which will be mentioned in Sect.6.

The solution to the minimization of the level-2 dual func-
tional can be derived analytically:

β =

(
HBH T

)−1
µ . (29)

It gives the average source throughσ = BH T β, the problem
solution.

This reconstruction is equivalent to the following projec-
tion method: a natural idea would be to suppose a tentative
source of the form

σ� =

p∑
i=1

λic
∗

i . (30)

However this assumption hides the correlated nature of the
prior description of the source encapsulated inB. To over-
come this, a transformation is applied on the vector space of
the sources. By Choleskii decomposition there is a matrixP

such thatB = PP T . All potential sourcesσ are then trans-
formed intoP −1σ . From the forward and backward trans-
port equations, it can be verified that the adjoint discrete so-
lutions should transform according toc∗

i −→ P T c∗

i . Once
this transformation is performed, the components of a source
are decorrelated. The solutionσ� is therefore a combination
of the form

P −1σ� =

p∑
i=1

λiP
T c∗

i . (31)

The scalar product of the members of this equation with
P T c∗

j gives

µj =

p∑
i=1

λi(c
∗

j , Bc∗

i ) or µ = (HBH T )λ . (32)

Thereforeλ� =
(
HBH T

)−1
µ and the previous solution

σ� = σ is recovered.
Another way to characterize the projection state is to de-

scribe it as the minimal norm||P −1σ�|| state. That is why
we define the canonical scalar product(x, y) =

∑N
k=1 xkyk

using the same notation as for theL2 structure. Now the ad-
ditional scalar product is defined byx, y −→ (x, y)B−1 =

(x, B−1y) and its related normx −→ ||x||B−1 = (x, x)B−1.
So thatσ� is the minimal norm||σ�||B−1 state.

As a consequence the projection method onto the space of
retroplumes with cell to cell correlations properly assessed
can be viewed as a particular case of the entropy method
when all priors are Gaussian.

To go full circle, let us mention that the level-1 primal cost
function for Gaussian prior is easily obtained:

J = −
1

2
||σ ||

2
B−1 (33)

providedµ = Hσ . Incidentally, this is a proof of the char-
acterization of the projection by minimal norm.

A generalization to a non-zero first moment prior would
be straightforward.

3 Singularity in the continuum limit

In the Gaussian case (equivalent to the projection method)
the reconstruction is obtained though the inversion of a Gram
matrix G = HBH T (the Hessian of the dual problem). For
simplicity B = I is assumed, so thatG = HH T . G is well-
defined on a grid, as its entries are discrete sums, although it
may not be well-conditioned. However, as it was mentionned
in Issartel(2003), this is not the case in the continuum limit.
In the continuum limit[G]ij =

∫
ω

dtdx c∗

i (x, t)c∗

j (x, t),
whereω is the ground trace of the total domain�, outside
of which the source is known to be null a priori. Wheni = j

this integral is singular in several cases of interest. Suppose
πi(x, t) = δ(x − xi)δ(t − ti) is a Dirac sampling func-
tion corresponding to a short period measurement at a site
included in the domainω (typically a surface observation).
Then

∫
ω

dtdx
(
c∗

i (x, t)
)2 diverges because the integrand is

singular close to the observation site and non-integrable. As
a consequence the Gram matrix is not properly defined and
needs regularization, as was argued inIssartel(2003).

Operational problems are solved through numerics how-
ever, so that the Gram matrix is well-defined in practice
(whether it is ill-conditioned is another issue). This objec-
tion does not discard the physical issue. Indeed as one makes
the grid-cell smaller and smaller, the norm ofG continues to
diverge. An explanation for this phenomenon is exposed in
the following sections.

To demonstrate the existence of the singularity as well as
exhibit its dimensional dependence, a typical diagonal ele-
ment of the Gram matrix must be estimated as the mesh step
goes to zero.

3.1 Meteorological conditions influence

When it is present, the divergence is caused by the turbu-
lent diffusion operator. This diffusion represents a sub-grid
parameterization of advective stirring and mixing. There-
fore diffusion, as an effective representation of dispersion
at smaller scale, should always be present. A strong wind
would lessen the importance of diffusion, and the Gram ma-
trix divergence would be less dramatic.

A quantitative evaluation of the Gram matrix divergence is
therefore bound to the meteorological conditions (seeEnting,
2002, and references therein).

However, in the asymptotic limit wheng diverges, the
Gram matrix depends only on diffusion in a simpler way,
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because advection is smooth in the vicinity of an observation
site and does not contribute to the singular behaviour. This
ultimately explains the behaviour of the Gram matrix (and
ultimately the inversion) when the resolution increases.

In the reconstruction ahead, three typical scales character-
izing the grid resolution are considered. They are the time-
step1t , the time scale related to horizontal diffusion12

x/Kh,
and the time scale related to vertical diffusion12

z/Kz, where
1x is the horizontal resolution (mesh step) and1z is the
vertical resolution. Very rough estimations for continental
transport studied in Sect.4 indicate values of 1 h, 10 h (for
the shortest) and 1/2 h, respectively. As a consequence, time
and the vertical diffusion have the best resolution. Hence tak-
ing 1t and1z to the continuum limit before1x is sound, in
this context.

3.2 Asymptotic divergence

Several types of inversion will be considered here. The inver-
sion depends on three important factors: the spatial dimen-
sionality of diffusion (usually three-dimensional and taking
place in the domain�), the spatial dimensionality of the ex-
pected support of the source (denotedω above), and the cov-
erage of the observation network with respect to the source
support. An additional factor is the way time is taken into ac-
count. For an accidental release, time is an extra dimension
to cope with. For steady or time-averaged emissions, time is
irrelevant, and diffusion has a different behaviour to take into
account.

3.2.1 Accident-type reconstruction – first case

Consider a network of receptors dedicated to the detection
and measurement of an accidental release of pollutant. The
diffusion of this pollutant is a three-dimensional processD =

3. The support of the source (the space where the source is
believed to be located a priori) is expected to lie within the
space where the diffusion takes place. The source support
is assumed to be a space of dimensiond. In this space, the
diffusion parameter isKh. The diffusion parameter in the
D − d extra dimensions is denotedKz. Typically, a ground
network of receptors is used to reconstruct ad = 2 ground
source from theD = 3-dimensional atmospheric dispersion.

Here it is assumedc∗ is one of the adjoint solutions of
Eq. (10), with π(x, t) = δ(x −x0)δ(t − t0). The reconstruc-
tion only requires the trace ofc∗ on the source support to be
known. A diagonal entry of the Gram matrix is of the form

g =

∫
ω◦

dtdx
(
c∗(x, t)

)2
. (34)

ω◦ is the expected support of the source (a surface represent-
ing the ground multiplied by the time interval) punctured by
a cylinder around(x0, t0) of radius1x and height 21t . g

needs to be studied as1t and1x vanish.
A position vectorx in the D = 3-dimensional space of

diffusion is decomposed asx = z ⊕ r, wherer belongs to
thed = 2-dimensional space where the source is suspected

to be. z is in the complementary(D − d)-dimensional vec-
tor. Assuming a close vicinity to the receptor site, advec-
tion is neglected and the diffusion parameters are supposed
uniform and constant. Therefore the adjoint solution in the
neighbourhood of the receptor is:

c∗(r, z, t) =

exp
{
−

1
t

(
|r|2

4Kh
+

|z|2

4Kz

)}
√

(4πt)D Kd
hKD−d

z

. (35)

As justified before, the limits1t and1z going zero are taken
first. The asymptotic behaviour of the matrix entryg can
then be obtained as1x goes to zero. After some algebra, one
obtains that, ifd − 2D + 2 < 0, g is divergent as

g ∼ (D − 2)!
Sd

2πD

1

Kh

(
Kh

Kz

)D−d
1d−2D+2

x

2D − d − 2
, (36)

whereSd = 2πd/2/0(d/2) is the area of the unit sphere in
dimensiond. Whend − 2D + 2 > 0, there is no divergence.
The critical cased − 2D + 2 = 0 implies

g ∼ (D − 2)!
Sd

2πD

1

Kh

(
Kh

Kz

)D−d

ln
1

1x

. (37)

Consider the most obvious case:D = 3. Then the critical di-
mension for the source isd = 4, below whichg is divergent.
Therefore, in the case of interestd = 2, there is a divergence
characterized by

g ∼
1

2π2Kz

1−2
x . (38)

This behaviour is controlled by a fully developed vertical dif-
fusion. In the absence of vertical diffusionD = 2, the actual
behaviour would be critical

g ∼
1

πKh

ln
1

1x

. (39)

It is reasonable to assert that for realistic meteorological con-
ditions, the behaviour lies in between those two limiting be-
haviours. This issue is indirectly related to the question of
how the source fluctuations are propagated to the receptor:
it behaves like 1/|k| (Newsam and Enting, 1988) whereas a
purely two-dimensional dispersion would yield a 1/|k|

2 be-
haviour.

Equation (36) can be applied to other cases of interest. For
example in situation where fields are averaged over one or
more dimensions (zonal or vertical average).

3.2.2 Accident-type reconstruction – second case

Another interesting case is when the receptors are located
outside the source support. A reconstruction of a temporal
release profile while knowing the location of the release is a
typical example. It can be shown that there is no divergence
of g, when the resolution is increased.
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Figures

Fig. 1. Reconstructions with a Gaussian prior for four different spatial angular resolutions. Resolutions for

panels (a), (b), (c), and (d) are0.5◦×0.5◦, 1◦×1◦, 2◦×2◦, and4◦×4◦ respectively. All retrieved sources are

normalized so that the maximum of the integrated field be 1. The ETEX release site is indicated by the center

of the drawn circle.
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Fig. 1. Reconstructions with a Gaussian prior for four different spatial angular resolutions. Resolutions for panels(a), (b), (c), and(d) are
0.5◦

× 0.5◦, 1◦
× 1◦, 2◦

× 2◦, and 4◦ × 4◦, respectively. All retrieved sources are normalized so that the maximum of the integrated field be
1. The ETEX release site is indicated by the center of the drawn circle.

3.2.3 Steady state release

The reconstruction method can also be applied to steady-state
emission, with potential applications to CO2 flux inversion,
atmospheric mercury inversion, etc. In that case, an approx-
imation is to consider the retroplumes as steady-state solu-
tions with a typical sampling function ofπ = δ(x − x0).
The typical diagonal Gram entry is

g =

∫
ω◦

dx
(
c∗(x)

)2
. (40)

The steady state three-dimensional purely diffusive retro-
plume is characterized by a decrease from the ground recep-
tor site of 1/|x| (Seinfeld and Pandis, 1998). Then ford < 2
there is a divergence.g behaves like1d−2

x . The critical di-
mension is therefored = 2. Aboved = 2, no divergence is
expected.

Those results have a significant impact on the reconstruc-
tion. This will be detailed in the next sections, with an em-
phasis on the grid resolution used for the retrievals.

4 Numerical reconstructions for an accident-type re-
lease

Before any analytical account is given, examples of nu-
merical reconstructions will be presented. They are based
on the European Tracer EXperiment (ETEX). This exper-
iment (here the first campaign will be emphasized) was

conducted in 1994 by the European Joint Research Centre
(Joint Research Centre, 1998). 340 kilograms (M) of Per-
fluoromethylcyclohexane (PMCH) were released uniformly
from 23 October 1994 16:00 UTC to 24 October 1994
03:50 UTC, at Monterfil (Britanny, France, located 48◦03′ N,
2◦00′ W). Many research teams were involved in taking mea-
surements to characterize the dispersion of the PMCH cloud
over Europe. The results of the experiment were used to cali-
brate various atmospheric dispersion models (see the special
issue of “Atmospheric Environment”, 32, 24, 4089–4375 or
the proceedings of the “ETEX symposium on long-range at-
mospheric transport, model verification and emergency re-
sponse”, 13–16 May 1997, Vienna (Austria), K. Nodop Ed.).
Alternatively these measurements can be used to test source
inversion methods.

In the following sections, twin experiments are performed
for three sets of observations denoted A, B, and C of increas-
ing size (48, 137 and 237 measurements, respectively) (see
Bocquet, 2005b, for a complete description of those sets).

The resolution will be varied. The time-step is set to
1t = 1 h, whereas the zonal and meridional angular steps
take four different values (0.5◦

× 0.5◦, 1◦
× 1◦, 2◦

× 2◦, and
4◦

×4◦). The source which is numerically implemented mim-
ics the ETEX-I source. It is contained in the cell to which
the ETEX-I release site is attached, and uniformly distributed
over 12 h.

The transport model used is POLAIR3D (Boutahar et al.,
2004; Sartelet et al., 2002; Sportisse et al., 2002). ECMWF
wind fields serve as inputs to the model.
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Fig. 2. Reconstructions with a Poisson prior. Features are the same as for the graphs related to the Gaussian

case Fig.1.
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Fig. 3. These curves represent the scoreρ for various reconstructions of the toy-model described in the text.
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11.

30

Fig. 2. Reconstructions with a Poisson prior. Features are the same as for the graphs related to the Gaussian case Fig.1.

As suggested before, two types of prior will be used:
Gaussian prior and Poisson prior. They are expected to per-
form poorly and fairly, respectively, with the observation sets
and resolution at hand. They are interesting choices since
they correspond to quite different outcomes of reconstruc-
tions and performances in the inversion (for optimal results
of the inversion methods, seeBocquet, 2005b).

4.1 Gaussian prior

More precisely, the Gaussian prior is specified by the prior
covariance matrix

B = m2I . (41)

m2 sets the scale of the local variance. In absence of noise,
its actual value is of no consequence because it is easy to
see in Eq. (29) that the retrieved source is independent of a
rescaling ofB. In Fig.1 four reconstructions are considered.
In order for the various reconstructions to be comparable,
the simplifications used inBocquet(2005b) were dropped
(rejection of water bodies cells, specific treatment of quasi-
null measurements), so that the number of variables to invert
is the same at constant resolution.

The reconstruction is performed within the following vol-
ume: from 12◦ W to 16◦ E, and 40◦ N to 66◦ N over a time-
period of 75 h centered around the real release period.

The assimilated observations belong to set B. The angular
resolution is set for both1x and1y to 0.5◦, 1◦, 2◦, and 4◦ on
graphs (a), (b), (c) and (d), respectively. Because it is not pos-
sible to give on paper a temporal account of the sources, they

have been integrated in time. Since there is no prior positive-
ness with a Gaussian prior, negative values may be obtained.
Cells with negative values appear white on those graphs. The
reconstructed mass is 309 kg, 314 kg, 333 kg and 412 kg, re-
spectively (to compare with 340 kg). Incidentally, this shows
why the reconstructed mass cannot be retained as a score for
the reconstruction (as opposed toρ defined later on): those
masses are actually differences between sources and sinks.
To a limited extent, these graphs allow to check visually how
the reconstruction degrades as the resolution increases. It is
observed that the receptor prints on the retrieved sources get
stronger as the resolution increases. For the higher resolu-
tion (graph a), higher values of the field are hidden by the
triangles marking the receptors.

4.2 Poisson prior

The Poisson prior is defined by a reference massm which
will be taken to bem0 ≡ M/12. SinceM is not supposed to
be known prior to the inversion, this choice should be con-
sidered optimal. It is unlikely but just as good as any other
choice. Parameterθk is chosen to be uniform asθ . It depends
on the resolution sincemθ is the prior average released mass
in a cell. The choice ofθ = θ0 for 0.5◦, whereθ0 = 10−6,
leads consistently toθ = 4θ0 for 1◦, θ = 16θ0 for 2◦, and
θ = 64θ0 for 4◦. The explicit form of the Poisson prior
should depend on the scale so that the physical prior assump-
tions remain scale invariant. However because we are look-
ing for a near black source, the parameterθ remains small
whatever the resolution tested here, and the effect of its vari-
ation on the reconstruction is expected to be weak.
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Fig. 2. Reconstructions with a Poisson prior. Features are the same as for the graphs related to the Gaussian

case Fig.1.
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Fig. 3. These curves represent the scoreρ for various reconstructions of the toy-model described in the text.
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Fig. 3. These curves represent the scoreρ for various reconstructions of the toy-model described in the text. Graph(a) corresponds to basis
functions of Gaussian type. Graphs(b), (c) and(d) correspond to power law functions of exponent−1/2, −1 and−3/2, respectively. The
curves corresponding tom = 1, 2, 3, 4 and 5 (symbols©, M, ♦, O, and�, respectively) are plotted with respect to the resolution index
n = 1, 3, 5, 7, 9 and 11.

Four reconstructions with a spatial resolution of 0.5◦
×

0.5◦, 1◦
× 1◦, 2◦

× 2◦, and 4◦ × 4◦ are considered, with the
time-integrated retrieved source shown on Figs.2a, b, c and
d, respectively. The conditions for the retrieval are the same
as for the Gaussian case and therefore comparable. The re-
constructed mass is 166 kg, 223 kg, 338 kg and 340 kg, re-
spectively. The receptors imprints on the retrieved sources
are visible on the upper graphs corresponding to higher res-
olution and degraded reconstruction.

The reconstructions are better in the Poisson case than in
the Gaussian case. However it is difficult to judge by the
mass or by the graphs for the finest resolutions (a and b). A
quantitative indicator of the performance is therefore needed.

5 Estimating the analysis error and its dependence on
the mesh step

In order to study the impact of resolution on the retrieval, the
error made in the reconstruction of a discrete sourceσ must
be estimated. To quantify this error, a visual account is often
insufficient, all the more sinceσ may represent a complex
multidimensional field.

5.1 Error estimation for the Gaussian case

At first the prior is assumed Gaussian, although the first guess
is not known and hence taken to be null. The reconstruc-
tion is equivalent to a projection. The first guess (actually
the null source0) is projected orthogonally with respect to
the scalar product(, )B−1 onto the vector space generated by

P Tc∗

i . The projected state isσ . The true solutionσ also be-
longs to this vector space (see Fig.4). We need to estimate
the distance between the two states using the metric defined
by the scalar product. Building on an r.m.s. indicator sug-
gests taking||σ − σ ||B−1. Unfortunately its computation re-
quires a knownσ . Additionally, for a complex correlation
matrix, this computation is too numerically demanding for a
fine grid. Those two obstacles can be overcome in the follow-
ing way. Because of the projection, the Pythagoras theorem
can be invoked:

||σ − σ ||
2
B−1 = ||σ ||

2
B−1 − ||σ ||

2
B−1 . (42)

Obviously the norm||σ ||B−1 is not known. But it is clear that
||σ ||B−1 is enough to indicate if a reconstruction gets better
with changing conditions. Note that as||σ ||B−1 grows, the
reconstruction improves. This could be confusing becauseσ

can be seen alternatively as the state of the vector space gen-
erated by theP T c∗

i which has the minimal norm. The two
statements are independent however and there is no contra-
diction.

Therefore||σ ||B−1 needs to be evaluated. Its numerical
computation makes use of the dual approach. It was stated
that the level-1 primal cost function isJ = −

1
2||σ ||B−1. In

addition, at the optimum, the level-1 cost function equals the
level-2 cost function:J (σ , ν) = K(pσ , ν). K(pσ , ν) is
a natural outcome of the minimization onβ however, and
||σ ||B−1 can be computed efficiently through this procedure.

From the analytical perspective calculating||σ ||B−1 is a
difficult problem-dependent task. However there are a few
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Fig. 4. The left figure depicts the optimization procedure in the Gaussian framework. The first guess (actually

the null vector0) is projected orthogonally onto the space of sources which satisfy the measurement constraints.

The true source� belongs to this space. The right figure depicts the optimization for a general prior within the

maximum entropy on the mean approach. The priorν is projectedonto the manifold of the exponential laws,

the average of which satisfies the measurement constraints. The exponential law whose first moment is the true

source belongs to this manifold.

Fig. 5. These graphs show the reconstructed sources with a Poisson prior and a Gaussian prior for the observa-

tion errors for four different resolutions. Resolutions for panels (a), (b), (c), and (d) are0.5◦ × 0.5◦, 1◦ × 1◦,

2◦ × 2◦, and4◦ × 4◦ respectively. Features are the same as for the panels related to the Poisson case Fig.2 and

Gaussian case Fig.1.
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Fig. 4. The left figure depicts the optimization procedure in the
Gaussian framework. The first guess (actually the null vector0) is
projected orthogonally onto the space of sources which satisfy the
measurement constraints. The true sourceσ belongs to this space.
The right figure depicts the optimization for a general prior within
the maximum entropy on the mean approach. The priorν is “pro-
jected” onto the manifold of the exponential laws, the average of
which satisfies the measurement constraints. The exponential law
whose first moment is the true source belongs to this manifold.

simplifications in the asymptotic limit where the divergence
takes place, i.e. when the spatial mesh step becomes smaller.

5.2 Score of the reconstruction (Gaussian case)

To give an account of the performance of a reconstruction in
this context, and building on the previous remarks, we may
introduce the ratio

ρ = ||σ ||
2
B−1/||σ ||

2
B−1 . (43)

Let us write a form of||σ ||
2
B−1 that depends on the sourceσ

only. Usingσ = BH T G−1µ with G = HBH T , we have

||σ ||
2
B−1 = µT G−1HBB−1BH T G−1µ

= µT G−1µ (44)

= σ T H T G−1Hσ ,

becauseµ = Hσ . Consider the matrixH as an operator be-
tween Hilbert spaces(RN , B−1) and(Rp, I ) (I , the identity
matrix, stands for the canonical scalar product). Then there
exists a singular value decomposition ofH

H = UDV T . (45)

U is ap×p orthogonal matrix,D is ap×p diagonal matrix
andV is an × p matrix satisfyingV T BV = I (its column
vectors are orthogonal with respect to the scalar product de-
fined byB). It is then easy to show that

ρ =
(σ , V V T σ )

(σ , B−1σ )
=

(σ̃ , Ṽ Ṽ
T
σ̃ )

(σ̃ , σ̃ )
(46)

whereσ̃ = P −1σ andṼ = P T V . Ṽ Ṽ
T

is a semi-definite
operator. Moreover̃V

T
Ṽ = V T BV = I , so that the spec-

trum ofṼ Ṽ
T

is a set of eigenvalues, 0 or 1. We conclude that
0 ≤ ρ ≤ 1 (which is obvious from Eq.42), and thatρ is a
good indicator to evaluate the efficiency of the reconstruction
(the closer to 1, the better).

5.3 Behaviours of the score

Although the formρ = (σ̃ , Ṽ Ṽ
T
σ̃ )/ (σ̃ , σ̃ ) is elegant, it is

easier to use the formρ =
(
µ, G−1µ

)
/
(
σ , B−1σ

)
in the

limit where the reconstruction scoreρ decreases. Indeed as
the resolution increases, the norm||σ ||B−1 remains roughly
constant. As do the measurements in the context of a syn-
thetic experiment (for a real experiment, measurements are
obviously model resolution independent). Therefore the be-
haviour ofρ is given by some properties ofG−1 only. De-
pending on the choice of the projection space, essentially two
kinds of behaviour are expected. Assume, as this is the case
for retroplumes, that the projection basis is made of posi-
tive vectors. In the continuum limit, those vectors should
become positive integrable functions. However they may be
non square-integrable.

First suppose they are square-integrable, as the resolution
increases the Gram matrix converges to a well-defined oper-
ator limit. It is therefore expected thatρ tends to a finite limit
between 0 and 1. If they are not integrable, then all diagonal
elements of the Gram matrix diverge, while all off-diagonal
converge (we assume that the singularities responsible for
the non square-integrability of two disctinct functions do not
coincide, which is the case for retroplumes). Therefore the
Gram matrix tends towards a diagonal matrix of increasing
norm. This means that the functions forming the basis are
less and less correlated. The norm of its inverse decreases,
and the scoreρ tends to 0. The reconstruction will eventually
fails. The absence of correlation between basis functions im-
plies that the projected source cannot span onto many func-
tions but picks up a few of them localized on the true source
support. This provides a mathematical explanation of why
the solution is strongly influenced by the receptors in this
limit for an atmospheric source reconstruction.

This was valid for a single set of measurements. Of course,
insufficient observations will always make the reconstruction
fail.

We have tested these ideas on a one-dimensional toy
model, exhibiting several kinds of behaviour. The behaviour
is determined by the nature of the basis functions which
are not necessarily square integrable. The experiment takes
place between datet = 0 and datet = 1. The continu-
ous source is constant and equal to 1 betweent = 0.45
and t = 0.55, and null elsewhere.The grid resolution is
1t = 2n−13, with n = 1, 3, 5, 7, 9, 11. The projection
space is spanned by a set ofp = 27−m functions, with
m = 1, 2, 3, 4, 5. Four cases are considered. First Gaussians
with equal root mean square but various centers are used.
Next, singular functions of the formt → |t − ti |

−1/2, with ti
being their center (i ∈ [1, p]). Centers are chosen so that the
corresponding vectors at a finite resolution be well defined.
The square of these functions are not integrable. Eventually,
we considert → |t − ti |

−1 andt → |t − ti |
−3/2 functions,

with similar properties though being steeper nearti . The cor-
responding divergence ofρ in the time-step is expected to
to be− ln 1t , 1−1

t and1−2
t for the last three cases, respec-

tively. Measurements performed are perfect.



M. Bocquet: Grid resolution dependence in reconstruction of an atmospheric tracer source 229

The numerical implementation of this toy model confirms
the results obtained so far. The score curves are plotted in
Fig. 3. For the first case (graph a), the reconstruction stabi-
lizes as the resolution increases, given a single set of mea-
surements. In the second case (graph b), the reconstruc-
tion becomes poorer as the resolution increases. The recon-
structed mass becomes smaller, and the shape of the retrieved
object is increasingly sharper, strongly influenced by a re-
stricted number of basis functions. A similar behaviour is
observed in the last two cases (graphs c and d). However the
quality of the reconstruction decreases much more rapidly as
the resolution increases.

In the following sections, first applications will be consid-
ered. In particular the rate of decrease ofρ will be evaluated
in the asymptotic limit.

5.4 Application to atmospheric source reconstruction

5.4.1 Ground source and ground observations

For the sake of simplicity,B is set toI from now on. A
source of an atmospheric inert tracer, known to be surfacic,
is to be retrieved. Allp ground concentration measurements
are performed over a time and space much smaller than1t

and1x , so that they can be considered Dirac-like. Results
of Sect.3 can be used (D = 3, d = 2 case),1x serving as
cut-off. They correspond to the ETEX-type Gaussian recon-
struction of Sect.4. One then hasG ∝ 1−2

x I and

||σ ||
2

∝

(
µTµ

)
12

x . (47)

As the mesh-step goes to zero,||σ || will ultimately vanish.
In particular in an ideal situation, the score would asymptot-
ically behave likeρ ∝ 12

x . This is alike case (d) of the toy-
model. Therefore making the mesh-step too small degrades
the reconstruction. This hints at the fact that the amount of
tracer retrieved is smaller and smaller. However sinceL1 and
L2 norms are distinct, there is no guarantee this statement is
always true (especially for a Gaussian prior where positive
and negative emission in a cell is allowed).

A physical argument can be proposed to explain the in-
creasing unphysical importance of the receptor sites in the
reconstruction. In the limit where the grid cells are smaller
and smaller, it is not difficult to imagine a solution easily
satisfying the measurement constraints. A small source is
placed upwind of any receptor with the right amount of tracer
to explain the measurement. The other receptors will be little
affected. Such a solution is difficult to settle with a large1x .
In addition such a solution is preferred by the regularization
(orthogonal projection here) to any ETEX-like one because it
is likely to have a small norm. In this limit the reconstruction
is bound to fail.

In Table 1 the scores for the reconstructions detailed in
Sect.4 for a Gaussian-type reconstruction are given. We ob-
serve that

– Although the resolution does not change over a large
range, the score gets worse as the resolution improves,

Table 1. Values of the scoreρ for ETEX-like reconstructions, when
the priorν is Gaussian.

set/resolution 0.5◦
× 0.5◦ 1◦

× 1◦ 2◦
× 2◦ 4◦

× 4◦

A 0.007 0.033 0.295 0.661
B 0.007 0.034 0.303 0.862
C 0.008 0.035 0.330 0.913

as expected. In any case the score is a decreasing func-
tion of the resolution.

– Four magnifications are insufficient to make serious
comparisons with the analytical predictionρ ∝ 12

x ∝

4−n, but the trend is convincingly similar.

– As for the dependence of the quality of the reconstruc-
tion on the observation set, the monotony is clearly re-
spected. Indeed, it is easy to prove that if measurement
set B encompasses measurement set A, thenρB > ρA.
Nevertheless, in this particular example, the dependence
on the measurement set is not very relevant because sets
A, B, and C are very peculiar.

On one hand it has been shown that for that kind of at-
mospheric inverse problem increasing the resolution will ul-
timately degrade the reconstruction. On the other hand the
source description should be as precise as possible. There-
fore, there exists an optimal resolution for that type of inverse
problem.

So far we have assumed that the measurements were
Dirac-like and as such responsible for the singularities. Yet,
operational measurements are different. For example, ETEX
measurements of PMCH concentration are integrated over
3 h. This is a way to regularize the singularities in the Gram
matrix. However, it does not change basically the issue for a
retrieval at continental scale. Indeed, even regularized retro-
plumes, should still look very steep close to the receptor area.
Only truly non-local observation would change the analysis
(for example a column measurement). However, strong cor-
relations with a non-diagonalB may change conclusions, as
it may be a way to regularize the Gram matrix. However we
do not explore this topic here.

5.4.2 Other source types

In the case where the source is volumic (three spatial dimen-
sions plus time) instead of surfacic, and the observations are
surfacic and airborne, results of Sect.3 yield ρ ∝ 1x . This
is reminiscent of case (c) of the toy-model. The degradation
with increasing resolution is less pronounced. Note that it
does not imply the reconstruction is easier as the score de-
pends on many other factors.

For an accidental release reconstruction with a single site
release known a priori, i.e. when one is interested in retriev-
ing the temporal profile of the accidental release, there is no
divergence in the Gram matrix.ρ goes to a finite limit which
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Table 2. Values of the scoreρ for ETEX-like reconstructions, when
the priorν is Poisson.

set/resolution 0.5◦
× 0.5◦ 1◦

× 1◦ 2◦
× 2◦ 4◦

× 4◦

A 0.082 0.223 0.700 0.996
B 0.325 0.515 0.994 0.998
C 0.475 0.917 0.998 0.998

is not necessarily 0, as the resolution increases. This was ob-
served inBocquet(2005b). The reconstruction is then easier
since there is a resolution above which it cannot get worse.
This is not an optimal resolution anymore (except from the
point of view of sparing CPU time).

For surfacic sources and airborne observations, the con-
clusion should be similar. It suggests, at least theoretically,
that using aircraft or satellite data prevents there being a res-
olution limit.

For time-averaging studies of steady ground emissions and
sinks, observed by a ground network, one has

||σ ||
2

∝ −
µTµ

ln 1x

, (48)

provided the dispersion can be considered purely diffusive.
This is comparable to case (b) of the toy-model. This might
be of relevance for trace gas flux inversions. The degradation
of the reconstruction as the resolution increases is expected
to be very moderate here. Finding the optimal resolution is
more difficult in this case, because the degradation is slow as
the resolution increases (no sharp transition to help decide).

5.5 Score of the reconstruction (general case)

Let us consider the case of a general priorν. Even if an ex-
plicit formula for the secondary entropy exists, analytical in-
vestigations are much more difficult since there is usually no
explicit formula forβ. That would require an expansion anal-
ysis in the moments of pdfs, or alternatively an expansion of
order greater than two in theβi in the secondary entropy.
Yet, the dependence from the dimensionality put forward so
far is not to change qualitatively. A similar behaviour of the
reconstruction with respect to the resolution is still expected.

For numerical twin experiments, it is crucial to define a
score that generalizesρ. An r.m.s., similar to the scoreρ in
the Gaussian case, may look like a good indicator. Unfor-
tunately, the usual Pythagoras equality does not hold here.
Besides there is not a clear correspondence to the dual cost
function anymore, which was very useful for numerical ap-
plications in the Gaussian case. Because the dual functional
cannot be used to getρ, the computing cost of this indicator
could be prohibitive.

The solution stems from a similar identity to the
Pythagorean equality for the general case. Instead of the
scalar product metric, one should use the Kullback-Leibler
divergence (seeGzyl, 1995, and references therein: the ana-

log of the orthogonal projection is known as the Czizar the-
orem). Three probability density functions are to be consid-
ered. First is the priorν. To define the last two pdfs, the
following family of pdfs must be introduced

pv(s) =
ν(s) exp(αTs)∑
s′ ν(s′) exp(αTs′)

, (49)

where theN -vectorα parameterizes the family.v is related

to α throughv = ∇α

{
ln
∑

s ν(s)eαTs
}
. Equivalently,v is

the mean of the pdfpv. By reciprocity,α can be obtained
from v by α = ∇sJ (s, ν)|v, whereJ is the level-1 primal
cost function. The second pdf,pσ , is the solution of the in-
version (posterior pdf). It is a member of the exponential
family with α = H Tβ. The third pdf,pσ , is characterizing
the true sourceσ . It is a member of the exponential fam-
ily with α = ∇sJ (s, ν)|σ . σ designates this pdf because
pσ is the only member of the exponential family of densities
whose mean is the true sourceσ .

The Pythagoras identity can be proved along the lines:

K(pσ , ν) =

∑
s

pσ ln
(pσ

ν

)
=

∑
s

pσ ln

(
pσ

pσ

)
+

∑
s

pσ ln
(pσ

ν

)
(50)

+

∑
s

(pσ − pσ ) ln
(pσ

ν

)
.

Since∑
s

(pσ − pσ ) ln
(pσ

ν

)
=

∑
s

(pσ − pσ )β
T
Hs

= β
T
H (σ − σ ) = 0, (51)

one eventually obtains

K(pσ , pσ ) = K(pσ , ν) −K(pσ , ν) , (52)

which is adopted as a measure of the distance (though it is
not in the mathematical sense) between the estimate and the
true source. As for the Gaussian case,K(pσ , ν) cannot be
known. Nevertheless the behaviour ofK(pσ , ν) can be stud-
ied. It is not difficult to check that whenν is normal, we re-
trieve Eq. (42). The geometrical analogy between the Gaus-
sian prior and the general case is represented on Fig.4.

It is therefore natural to define the following reconstruc-
tion score

ρ =
K(pσ , ν)

K(pσ , ν)
(53)

which is an analog of Eq. (43). They correspond whenν
is Gaussian. Although there is no explicit analytical solu-
tion in the general case, formula Eq. (53) is of great help in
numerics. SinceK > 0 and because of Eq. (52), one has
0 ≤ ρ ≤ 1.

In Table 2 the scores for the reconstructions detailed in
Sect.4 are given for a Poisson-type reconstruction. General
remarks made on the Gaussian prior case also apply to this
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case. With the Poisson prior being better, it is not surprising
that the scores are bigger. The scores range from excellent to
poor and they ranged from good to bad in the normal case.
However the trends are similar to those of the Gaussian case.

6 Taking model and observation errors into account

As was shown inBocquet(2005a), errors (partly stemming
from observation but mostly from the model) can be incorpo-
rated into the framework of inversion methods regularized by
entropy, applied to the reconstruction of tracer sources. The
PSAS 4D-Var method used in atmospheric data assimilation
is recovered as one of those methods. When taking errors
into account, the observation equation is

µ = Hσ + ε , (54)

with ε a vector whosep componentsεi are the errors related
to measurementsµi (though it can also be related to model
error). The level-2 primal problem is extended to

L = K(p, ν) +K(q, ζ ) + βT (µ − Hσ − ε) (55)

whereK(q, ζ ) is the Kullback-Leibler divergence of the er-
ror vector:

K(q, ζ ) =

∑
ε

q(ε) ln

(
q(ε)

ζ(ε)

)
. (56)

ζ is the prior pdf for the errors, whereasq denotes the pos-
terior error pdf to be determined in the optimization ofL,
along with the source pdfp. All derivations presented so
far extend to this enlarged framework using this functional.
In particular when the source prior and the errors prior are
both Gaussian, the level-1 primal functional matches the cost
function of the PSAS method. It reads

J = −
1

2
||σ ||

2
B−1 −

1

2
||ε||

2
R−1 . (57)

Details can be found inBocquet(2005a).
The score for the reconstruction can be generalized to the

inversion problem with errors. A Pythagoras equality can be
obtained, following the lines of derivation Eq. (50), and using
the fact thatµ = Hσ + ε = Hσ + ε to obtain the analog of
Eq. (51). One obtains

K(pσ , pσ ) +K(qε, qε) = K(pσ , ν) +K(qε, ζ )

−K(pσ , ν) −K(qε, ζ ). (58)

Therefore it is quite natural to define the ratio

ρ =
K(pσ , ν) +K(qε, ζ )

K(pσ , ν) +K(qε, ζ )
, (59)

which satisfies 0≤ ρ ≤ 1 because of Eq. (58). ρ is now
an indicator for the reconstruction of both the source and the
errors.

In the Gaussian case and when the error priorζ is a normal
pdf specified by the error covariance matrixR, the ratio reads

ρ =

||σ ||
2
B−1 + ||ε||

2
R−1

||σ ||
2
B−1 + ||ε||

2
R−1

(60)

with σ andε as the true source and error vector, andσ andε

the retrieved source and error vector.
A rather complex study of the efficiency of the inversion

in this more realistic framework should be undertaken. How-
ever this is far beyond the scope of this paper. An example is
nevertheless given on ETEX-I. The set up is the same as in
Sect.4.

To ease the reconstruction, a smaller domain was consid-
ered: from 12◦ W to 12◦ E, and 40◦ N to 60◦ N over a time-
period of 59 h centered around the real event. Simplifications
which were not retained in Sect.4 are now used (for instance
very low measurements are discarded, but water bodies are
not rejected). Set C was chosen, instead of B (but B is con-
tained in C). The model is still assumed perfect. Measure-
ments are generated with the model then perturbed normally
with a standard deviation of 10% of the measurements.

The prior source is assumed to follow a Poisson law. We
also assume a normal law for the errors. We choose for the
error prior variances the square of 10% of the noisy measure-
ments. Figure5 gives a visual account of the reconstructions
(integrated in time). The spatial resolution is 0.5◦

× 0.5◦,
1◦

× 1◦, 2◦
× 2◦, and 4◦ × 4◦ for graphs (a), (b), (c), and

(d), respectively. The reconstructed mass is 248 kg, 265 kg,
303 kg, and 321 kg, respectively. Table3 gives the related
scores, in addition to scores for sets A and B. There is a clear
degradation compared to the noiseless Poisson case. How-
ever not all scores are lower to their counterpart (for example
set B, 0.5◦

×0.5◦). This is explained by the fact that the score
not only marks the reconstruction of the source but also the
reconstruction of the errors. Therefore a score related to a
noisy reconstruction cannot be directly compared to a score
related to a noiseless reconstruction.

In the case where the resolution is set to 4◦
× 4◦, the score

decreases with the data size. This anomaly can be explained
in the following way. In this coarse resolution case, a few
observation sites are located in the same cell. If no noise is
generated (perfect twin experiment), the anomaly does not
appear. When noise is taken into account, randomly gener-
ated errors could be different for two different observations
at the same time, and different sites though in the same cell.
This yields distinct measurements. The reconstruction proce-
dure interprets this as a representativeness error, since it was
expecting the same measurements from the model. The re-
construction turns more difficult as more observations share
the same cell and same date. In that respect, this apparently
paradoxical behaviour of the score is consistent. When all
observations are separated, the effect disappears.

7 Conclusions

In this paper, we have investigated a few properties of the
reconstruction of an atmospheric tracer source. Taking into
account more observation data and significant prior informa-
tion in the reconstruction has recently enabled high resolu-
tion reconstructions. In this paper, it was shown that the lim-
iting behaviour of the reconstructed source with increasing
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Fig. 4. The left figure depicts the optimization procedure in the Gaussian framework. The first guess (actually

the null vector0) is projected orthogonally onto the space of sources which satisfy the measurement constraints.

The true source� belongs to this space. The right figure depicts the optimization for a general prior within the

maximum entropy on the mean approach. The priorν is projectedonto the manifold of the exponential laws,

the average of which satisfies the measurement constraints. The exponential law whose first moment is the true

source belongs to this manifold.

Fig. 5. These graphs show the reconstructed sources with a Poisson prior and a Gaussian prior for the observa-

tion errors for four different resolutions. Resolutions for panels (a), (b), (c), and (d) are0.5◦ × 0.5◦, 1◦ × 1◦,

2◦ × 2◦, and4◦ × 4◦ respectively. Features are the same as for the panels related to the Poisson case Fig.2 and

Gaussian case Fig.1.
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Fig. 5. These graphs show the reconstructed sources with a Poisson prior and a Gaussian prior for the observation errors for four different
resolutions. Resolutions for panels (a), (b), (c), and (d) are 0.5◦

× 0.5◦, 1◦
× 1◦, 2◦

× 2◦, and 4◦ × 4◦, respectively. Features are the same
as for the panels related to the Poisson case Fig.2 and Gaussian case Fig.1.

Table 3. Values of the scoreρ for ETEX-like reconstructions, when
the priorν is Poisson and when observation error is taken into ac-
count as a Gaussian prior.

set/resolution 0.5◦
× 0.5◦ 1◦

× 1◦ 2◦
× 2◦ 4◦

× 4◦

A 0.086 0.222 0.569 0.927
B 0.370 0.468 0.689 0.869
C 0.424 0.554 0.753 0.830

resolution is not simple. The origin of the singular behaviour
in the reconstruction of a multidimensional source of an at-
mospheric inert tracer has been explained. This singularity
translates visually into strong prints of the receptors sites
onto the sources resulting from reconstruction. For atmo-
spheric dispersion, the emergence of the problem depends on
the dimensions of the prior source support, the effective di-
mension of the atmospheric turbulent diffusion, and how the
observations network compares to the source support. The
time dimension is also crucial to the analysis.

The problem is not an intrinsic flaw of the inversion meth-
ods. It is due to the physics of the dispersion which allows
for this fragmented and peaked solutions when the informa-
tion available (prior and observation) is insufficient and the
when the grid resolution is too demanding. This effect dis-
appears when the resolution is coarse enough, or when the
background information is rich enough.

Generalized inversion methods were used. They are based
on the maximum entropy principle and they include the clas-
sical least-square inversion. We have introduced a score
to quantify the retrieval performance in the analytically
tractable case where the source prior is Gaussian. It is di-
rectly related to a classical r.m.s. It has been generalized to
more general priors. Strong arguments were given in favour
of this score rather than more traditional indicators.

For a given set of observations on tracer concentration per-
formed in the space where the source is expected to be, in-
creasing the resolution of the reconstruction decreases the
score in most cases of interest. The score was proved to
vanish ultimately. For three-dimensional atmospheric dis-
persion, the score of an accidental release reconstruction be-
haves like14−d

x whered is the space dimension of the source
support. When the resolution is too high (and therefore the
score too low), the receptors influence on the reconstructed
object is prominent. Low-dimensional reconstructions (for
example a temporal profile retrieval of an emitting plant) do
not exhibit this behaviour, since the score goes to a limiting
finite value. This is generally true when the observation net-
work is away from the place where the source is expected to
be a priori. Airborne measurements for surfacic emissions
may help in this respect.

These findings were supported by analytical derivations
when the prior on the source is Gaussian. A toy model was
used to corroborate these results. Finally these ideas were
tested on the case of the ETEX-I experiment for both Gaus-
sian and Poisson priors. The results agree qualitatively with
the theory.
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Eventually, an extended definition of the score was
proposed to incorporate reconstruction based on noisy
observations and an imperfect transport model. An example
based on ETEX-I has been given.

To conclude, we have identified three interesting questions
for future investigations.

This work shows that when inverting atmospheric sources
in many problems, there is a resolution limit below which the
reconstruction will be poor, and the retrieved source unphys-
ically influenced by the receptor sites. For a specific problem
(temporal profile) this issue was proven not to arise. The ex-
istence of the limit was proven to exist on semi-quantitative
grounds. However calculating a priori the actual value of
this threshold is a difficult quantitative issue worth studying.
It depends on the meteorological conditions, in particular the
relative influence of advection and diffusion.

The variation of the score was studied when considering
the grid resolution and the size of the data set. However we
have not considered changing the sites of observation and
quantified its influence on the score. A valuable study, related
to optimal design, would be to determine how to choose an
optimal subset of observation sites among the stations which
have participated in ETEX.

Finally, it was shown that the score depends on the eddy
diffusion tensor. As a sub-grid parameterization, it actually
depends on the resolution. This dependence was not taken
into account in this work. Further investigations should be
performed.
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