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Abstract. Methods for reconstructing sources of inert at- works have emphasized the ill-conditioned nature of the in-
mospheric tracers from ground measurements are currentlyersion and identified how the physics of atmospheric disper-
studied, tested, and even implemented (in accident-typeion bears on the technical difficulties of that type of recon-
radionuclide release backtracking, for retrieval of carbonstruction. Many contributions on the topics can be found in
fluxes). Often the retrieved source exhibits a very strong andinverse Methods in Global Biogeochemical Cycles”, Geo-
unrealistic (therefore unwanted) influence by the observatiorphysical Monograph 114, American Geophysical Union, and
sites. This problem is shown not to be an intrinsic flaw of the more recently Enting 2002. Another class of problems
reconstruction methods but rather due to the specifics of theoncerns the retrieval of the source of pollutants following
atmospheric dispersion of a tracer, to the location of the re-an accidental release. Typical examples are the monitoring
ceptors and to the expected source location. Itis increasinglpf nuclear tests fostered by the test ban treRydiykiewicz
pronounced as the grid resolution for the source is improved1998 Hourdin and IssarteR000 and the re-analysis of civil

and we show how this translates mathematically. We relynuclear plant accidents such as Chernobyl. Although this
on the general framework of inversion methods based on th@aper mainly focuses on an accident type release, methods,
maximum entropy on the mean principle. Those methods aranalysis, and conclusions exposed here are still valid for ex-
well suited for accident-type tracer release problems. The detended sources and possibly diffusive sources. For an acci-
pendence of the reconstruction on grid resolution is investi-dental source, one expects from inverse techniques to yield
gated both analytically and numerically, in conjunction with one or several locations of the release, the released mass of
the issue of receptor influence. Two examples of synthetigollutant, and hopefully a temporal profile for the release.
experiments are given. The first one is a one-dimensional Inversion techniques aim at extracting information on the
toy model which quantitatively validates the approach. Thesource from a set of concentration measurements. To achieve
second one is based on the European Tracer Experiment anlis some knowledge from an adequate dispersion model
agrees well with the results obtained here. Finally, a gends required. We rely on an Eulerian dispersion model, al-
eralization of the formalism is proposed so as to study thethough some of the conclusions drawn here can possibly be
performance of reconstructions when observation and possiextended to Lagrangian backtracking (see for exargjél,

bly model errors are present. 1998. Assimilating the concentration measurements is usu-
ally done through Kalman filtering or variational techniques
(four-dimensional variational assimilation, see for example
Elbern et al. 200Q or some under-constrained variants of
three-dimensional variational assimilation/optimal interpola-

. . . oo tion). Under some circumstances, because of the linearity of
Reconstructing pollutants sources is of increasing impor-

tance. An apparently simple form of this problem is the re- the system, there are simpler ways to perform the inversion.

trieval of sources of a passive (as opposed to reactive) trace}hese rely on adjoint techniques. They have been adapted

: 0 atmospheric problems iklarchuk (1995; Pudykiewicz
dispersed throughout the atmosphere. Many efforts hav%lgga_ Isgartel apnd BaverdR003 AE/aria?n knov)\//n as the
been devoted to the retrieval of fluxes of diffuse trace gas ' y

such as methane, CO, and §Gand other types of semi- representer method'Bennett 2002 and references therein)

. ; . is used in oceanography and not only focuses on the source
persistent pollutants like mercury. A few methodological ; . .
retrieval but also on the reconstruction of the complete dis-

Correspondence tavl. Bocquet persion event (full data assimilation system).
(bocquet@cerea.enpc.fr)

1 Introduction
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The adjoint techniques are merely tools for inversion conditions to avoid it, rather than ignoring it.
methods. For a high resolution reconstruction, the inver- In Sect.2, a detailed introduction and a reminder on re-
sion is a severely ill-posed problem and a regularization iscent developments are provided and the problem is exposed.
needed. The choice of the regularization and its motivationin Sect.3, the singular nature of the inversion method is ex-
specify the inversion method. One type of regularization isamined. In Sect4, a numerical example based on the Euro-
by orthogonal projection onto some proper vector space opean Tracer Experiment (ETEX) is detailed. In Séctthe
source fields. The most natural space is the space generatedror committed in the inversion is estimated. Its dependence
by the retroplumes, a set of adjoint solutions, each one obn the mesh step and the observations is studied. In &ect.
them attached to an observation. we show how previous results should be generalized when

In Bocquet(20053 it was shown that this regularization the measurements are noisy and the model is imperfect, as it
can be viewed as an element from a larger class of regulamould be the case in an operational context. Conclusions are
izations, all relying on the principle of “maximum entropy then given.
on the mean”. Those are the regularizations that are guaran-
teed to introduce less spurious information into the inversion.
Each of them makes use of a probability density function
for the prior distribution describing the source. It contains

P . 2.1 The forward transport

the statistical information garnered on the source before any

measurement is made. The orthogonal projection techniqu@ye are interested in the dispersion of a pollutant of con-

is then seen as a regularization by entropy provided the priogeniratione, at regional/continental scale, over a domain
distribution one assumes is Gaussian. These methods a§ _ p , [0, ¢], whereD is the spatial domain an, 7]

2 Principles of inversion

expected to be efficient when the first momentois lit-  he time interval. The atmospheric dispersion equation is
tle known or close to a black object (meaning the source is
sparse), i.e. when the first guess for the source is not to b@_c +div (uc) — div (KVe) = o )

trusted or irrelevantBocquet 20050. However higher mo- 97
ments are also used. Itis very natural in this framework to in-where K parameterizes eddy diffusion, amdx, ¢) is the
troduce priors such as positiveness, boundedness, extensityind field. At continental scalek is a diagonal tensor
etc. This prior information may constrain the source signifi- with componentsk, Ky, which are of limited influence,
cantly. When there is a reliable first guess for the source, theind vertical diffusionk ., which needs a proper parameter-
method works as well but is not believed to perform signifi- ization (Louis, 1979).c is the forcing field, the source we
cantly better than a least square variational inversion, whergyre seeking to estimate. In the rest of the paper, it is assumed
first and second moments are already used. o(x,t) > 0 (positiveness of the source). This is not how-
The success of a reconstruction using real measuremenriver a sine qua non condition for most of the conclusions of
data depends on both the inversion technique used as well ahis work to stand. The air density is taken as approximately
the numerical transport model used. The two problems argonstant and homogeneous. As a consequence the air con-
decorrelated. For a perfect model (matching reality), the effi-servation equation simplifies to
ciency is only subject to the inversion technique. Conversely
a poor model makes any sophisticated inversion techniqué"v(”) =0. )

pointless on real data. In this paper, the inversion technique, complete generalization to a nonuniform air density is nev-
aspect of the_ rgconstructlon problem is t_he main concern. INsrtheless possibléssartel and Baverg2003 Hourdin et al,
other words, itis assumed a good numerical dispersion mode}nog  For an accidental release, it is appropriate to choose

is used. _ the following boundary conditions
In recent works, it has been observed that the reconstruc-

tion is often strongly influenced by the detectors. The re-Y (x,t) € 3Q,, c(x,1) =0, ()
:Llevte? Tource me:y_ pee(ljkfat ttr;]e observatlondsntes.b Moreove\;vherea&h is the part of the domain boundary corresponding
traeteg ieg]rags}er\?v rrlg\clgptoc;; _?h?:f;: bzgnsreopoﬁe(c:ioir:\(:(tar:‘%;o the incoming wind field. In this context the initial condi-
context of Lagrangian backtrackingghbaugh et al.1985 lons are

Stohl 1998 but also within an Eulerian approaclsgarte) Vx, c¢(x,0)=0. (4)
2003 Bocquet 2005h. Recently it has been claimed that o

this is an artefact of the inversion which a proper inversionMoreover we assume the diffusive fluvc to be null (or
technique should be able to smooth out or eradidasate) ~ "€dligible) at the boundary. Though it prevents pollutant to
2003 20059. In this paper, we argue that this feature of the dlﬁuse out of the domain, it does not impede (dominant) ad-
reconstruction is not an artefact. It is due to the nature of/EClion processes. o _

the dynamics of the atmospheric transport of tracers, to the The me_asurement of concentrations is formalized through
prior expectation of the source location and to the relativeln® €quation:

positions of the observation sites. We show when this fail-

ure in the reconstruction is prone to happen and the optimati = fgdtdx mi (x, e(x, 1) ®)
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whereu; (i = 1,---, p) is a concentration value, indexed 2.3 Principle of the inversion

by i. =; is the sampling function. It is measured per unit

of volume and per unit of time. It describes how the aver- Adopting a continuous form for the subsequent derivations
aging process of the concentration measurement is done antgould not always be mathematically safe. The discrete nu-
encodes the spatial and temporal extent of the observatiormerical point of view is therefore preferred (integrals on the
In order foru; to stand for a representative of the local con- domain<2 are replaced with sums on the grid).

centration, In a source reconstruction, the main goal is to find a proper
o, avector of cell values;, which satisfies the measurement
/dtdx mi(x, 1) =1 (6)  equations
Q
should be enforced. The observation equation &dntro-
duces thd.2-scalar product over the functional spdce®): Vi€ [L pl. wi=>» cox, (13)
W, ) = [ drdx W(x,1)P(x,1), 7 . . . .
( ) /Q (. (. 1) @ which are a discrete version of E&)( For convenience the
which will be useful later. observation matrixH]; x = ¢, is introduced. It encapsu-
lates the model. Ife is the vector of measurements, Efj3)
2.2 The adjoint transport can be recast gg¢ = Ho. To simplify formulas and inter-

pretations, the cell volume elements are incorporated into the

Let us introduce a test field, to be multiplied against the definition ofoy. Thereforeoy is in units of tracer mass and
transport equation (Ed) over the whole domaie: represents the total mass emitted in éell

_ For N significantly larger tharp and in the absence of
/dtdx¢< +div (ue) —div(KVe) — “) =0. (8  strongly restraining hypotheses en this problem is ill-
posed. The underdetermination could only be lifted with a
proper regularization. From a Bayesian point of view, this
regularization must be equivalent to taking into account prior

5 . . . .
_ / drde ¢ (__¢ _ div(ug) — d|v(KV¢)> information on the source. . .
Q ot In addition to the experimental source of information, the

Integrations by part as well as boundary and initial conditions
onc lead to the budget equation:

prior information may often be significant. In this context, a
o /thdx po+ /Ddx c(D)() (©) reconstruction with finer resolution than what the mere data
would allow is achievable. This is what is usedlgsartel
| d[lOdS] “(cKV¢) + fBgldS - (¢pcu) . (2003, although the importance of the prior is not recog-
XU, T —

nized. A construct introduced Bocquet(20053b) devoted

To benefit from the dual formalism, it is then pOSSible to de- to that type of inversion is summarized in the f0||owing sec-
fine the following adjoint solution. Consider a measurementijgn.

pi wherei € [1, p]. Its sampling function is:;. Inspired by Lastly, becausdd describes dispersion, it is known to be

Eq. (9), one can introduce the adjoint equation: ill-conditioned as a matrix, adding to the difficulty. Short
act ) . . . distance fluctuations of the source are cut-offywith an

TR div (u cf) - div (KV (c)) = i, (10)  efficiency that depends on the dispersion conditiding,

wherec; therefore stands as the adjoint solution. In order t02003.

remove most of the terms of EQ)( we choose
Vx, cf(x,7)=0, V(x,1)€dQ_, ¢/(x,1)=0. (11)

9Q2_ denotes the part of the domain boundary correspon
ing to the outgoing wind field. In addition, the diffusive flux
KVc! = 0 is imposed null at the boundaries. This com-
pletely defines the adjoint solutiotf;, called a “retroplume”

in this context. Eq.g) now becomes

2.4 Maximum entropy on the mean

gJust before the inversion, one knows the set of concentration
measurements. One possibly retains prior information on the
source, such as very general features like positiveness, ex-
tensity, and boundedness but also specific features such as
location and time-dependent information. All these pieces
of information can be incorporated into a prior probability
wi = /d,dxg(x’t)c;k(x,t)_ (12) density function (pdfy : ¢ — v(e). o belongs to the

Q set of all potential source configurations. The entropy on the
Previous results can be transposed to a discrete humericahean regularization is the method that maximizes ignorance
model, where the domaif® is composed of cell§;, with (quantified as the entropy functional) on the source except
k € [1, N]. The concentration field is discretized intay. for the set ofu; and the prion. Therefore it guarantees that
However the discrete adjoint solutiefi, is not necessarily no spurious or unwanted information comes into the inver-
the discretization ot} but the adjoint solution of the dis- sion. Details of the construction and its applications to atmo-
crete numerical model Generally, they do not coincigg. spheric dispersion can be foundBocquet(20053. Let us
remains in units of inverse spatial volume. summarize the main results needed for entropy techniques.
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One expects the inversion to yield a posterior pdé). 2.4.2 Poisson prior

The entropy to be maximized is
(@) The Bernoulli prior was shown to perform well on ETEX-

S = —Zp(a)ln (—) (14) like sources, and better than the Poisson |&ocquet
o v(o) 2005h. However, here, we are looking for cases when the
provided the measurement constraints are satisfied on theetrieval performance is between success and failure. A rea-

mean, i.e. sonably efficient and simple prior like Poisson is therefore
i = (Ho)= Z p(o)Ho . (15) expected to suit our purpose.
p When one only knows that the forcingis positive, a sim-

The symbolic sum om stands for an integral with respect to PI€ though non-trivial prior law like Poisson is appropriate.
the measurg[Y_, doy. It ranges over a domain included in 'tiS parameterized by a local average veueThe prior pdf
RN. —§ is usually called the “Kullback-Leibler divergence N cellk is given by
or information”; C(p, v) = —S, which is a measure of the ok
discrepancy between pdfs. Hence, introducingagrange  vi(xx) = e % - | (22)
multipliers g;, the following functional must be optimized X!
Xy IS an integer anay (x) is interpreted as the probability

L=K(p,v)+ BT ([L — Z p(or)Hor) . (16)  density that a masa x; is emitted at grid celk, wherem

4 denotes a reference mass or level-spacing. Hertzeap-
It is called the “level-2 primal problem”. The problem can pears as a first guess for the released mass irkcediince
now be reduced by duality: it can be shown that it is equiva-those laws are independent from one cell to another, factor-
lent to “minimize” the “secondary entropy” ization of the partition function is in order. The local partition

W=InZ@) - f"u with Z(B)= Z v(o) exp(ﬂTHa> an function reads for any cekl

Zi(B) = exp] —6 + O ex TH , 23
with Z(B), the “partition function”. An average source can £B) p{ g k p(m ['B ]k>} (23)
then be deduced through the estimator so that the secondary entropy is
o= (o) = Zp(a)a . (18) N
o T T
v = 6 H -1t — . 24
This estimator satisfies the measurement constraints. Min- ; k {exp(m ['B ]k) } B (24)

imizing ¥ over thep; is called the “dual problem” of the

level-2 primal problem. The reconstructed source is then
Furthermore, it can be shown that solving this problem _ T
is equivalent to minimizing a cost function (the so-called Ok =m b exp(m [ﬂ H] ) : (25)

“level-1 primal problem”)7 (¢, v) 1, that depends on the
prior v and which is a functional of. Its maximum is

reached a&. In the following sections the explicit form of
J, which depends on, will be given each time it is needed.

The level-1 primal cost function, which is useful when nu-
merically computing the entropy of a source field, is easily
derived:

N
2.4.1 Factorization J = Z TEn T g - %k, (26)
= m mOg m
When the prior pdi can be factorized according to the par-
tition of the domainQ into the cellsQ, then the partition
function can also be factorized. The secondary entropy ca

be simplified accordingly. In this case

providedu = Ho . The Poisson law will serve as a basis for
fhe numerical examples of Sedt.

2.4.3 Gaussian prior

N
Zp) = 1_[ Zk(B) (19) Gaussian laws are analytically tractable and that is why they
k=1 will be used here, in addition to Poisson laws. They also
where allow for a clear connection to traditional variational data as-
Zr(B) = Z v (0%) exp([ﬂTH] gk> , (20)  similation. Nevertheless it may not be a good choice for a
or k positive source without a trusted first guess.
As a result The source elements, are supposed to be correlated ac-
N cording to & [oxo7] = [B]y; and they follow a multivariate
U = Z InZi(B)— B 1. (21) normal law. It is assumed there is no obvious first guess for
k=1 the accidental release. The prior pdf is then

This property will be used in the following sections.

v(o) =

-
——=0' B . 27
Isee Gzyl, 1995, and Bocquet, M., unpublished work. P g a> (27)

1
—eX
Vv 27)N detB ( 2
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From it, a secondary entropy (level-2 dual problem) for the To go full circle, let us mention that the level-1 primal cost

Gaussian prior is derived: function for Gaussian prior is easily obtained:
1 1
V= B"HBH'f— (B, 1. @8) T =—3llollf (33)

Note that it is also possible to include observation errors inprovideduy = Heo. Incidentally, this is a proof of the char-

the entropy framework. If those errors are assumed Gaussiaicterization of the projection by minimal norm.

a priori, then¥ corresponds to the 4D-Var PSAS cost func- A generalization to a non-zero first moment prior would

tion (Courtier, 1997, which will be mentioned in Secé. be straightforward.

The solution to the minimization of the level-2 dual func-
tional can be derived analytically:
1 3 Singularity in the continuum limit

B= (HBHT) " (29) _ _ o
In the Gaussian case (equivalent to the projection method)

the reconstruction is obtained though the inversion of a Gram

matrix G = HBHT (the Hessian of the dual problem). For

simplicity B = I is assumed, soth&@ = HH'. G is well-

defined on a grid, as its entries are discrete sums, although it

may not be well-conditioned. However, as it was mentionned

in Issartel(2003, this is not the case in the continuum limit.

R . In the continuum limit[G];; = [ drdx c}(x, N (x, 1),
0o = Z)‘f"i ) (30) wherew is the ground trace of the total domaih outside
i=1 of which the source is known to be null a priori. Whes: j

However this assumption hides the correlated nature of thehis integral is singular in several cases of interest. Suppose

prior description of the source encapsulated®inTo over-  m;(x,t) = 8(x — x;)8(t — 1;) is a Dirac sampling func-

come this, a transformation is applied on the vector space ofion corresponding to a short period measurement at a site

the sources. By Choleskii decomposition there is a matrix included in the domaim (typically a surface observation).

such thatB = PPT. All potential sources are then trans- Then fwdtdx (c;‘(x, t))Z diverges because the integrand is

formed intoP 1. From the forward and backward trans- singuiar close to the observation site and non-integrable. As

port equations, it can be verified that the adjoint discrete SOg consequence the Gram matrix is not proper|y defined and

lutions should transform according & — P’c}. Once  needs regularization, as was arguetssartel(2003.

this transformation is performed, the ComponentS of a source Operationa' prob'ems are solved through numerics how-

are decorrelated. The solutien, is therefore a combination ever, so that the Gram matrix is well-defined in practice

It gives the average source through= BH g, the problem
solution.

This reconstruction is equivalent to the following projec-
tion method: a natural idea would be to suppose a tentativ
source of the form

of the form (Whether it is ill-conditioned is another issue). This objec-
p tion does not discard the physical issue. Indeed as one makes
Plog = Z rPTer. (31) the grid-cell smaller and smaller, the norm@fcontinues to
i=1 diverge. An explanation for this phenomenon is exposed in

The scalar product of the members of this equation withthe following sections.

PT¢* gives To demonstrate the existence of the singularity as well as
4 exhibit its dimensional dependence, a typical diagonal ele-
p ment of the Gram matrix must be estimated as the mesh step
wj = Xc. Be)) or p=(HBH")\. (32)  goes to zero.
i=1

1 3.1 Meteorological conditions influence
ThereforeAo = (HBH”) " and the previous solution

oo = o IS recovered. When it is present, the divergence is caused by the turbu-
Another way to characterize the projection state is to dedent diffusion operator. This diffusion represents a sub-grid
scribe it as the minimal norr‘nP‘la@H state. That is why parameterization of advective stirring and mixing. There-
we define the canonical scalar prodget y) = Z,ivzl Xk Vi fore diffusion, as an effective representation of dispersion
using the same notation as for thé structure. Now the ad-  at smaller scale, should always be present. A strong wind

ditional scalar product is defined by y — (x, y)p-1 = would lessen the importance of diffusion, and the Gram ma-
(x, B~1y) and its related norm —> llx|lg-1 = (x,x)p-1. trix divergence would be less dramatic.
So thato  is the minimal norm|o || 51 State. A quantitative evaluation of the Gram matrix divergence is

As a consequence the projection method onto the space dherefore bound to the meteorological conditions Setng,
retroplumes with cell to cell correlations properly assessed2002 and references therein).
can be viewed as a particular case of the entropy method However, in the asymptotic limit whep diverges, the
when all priors are Gaussian. Gram matrix depends only on diffusion in a simpler way,
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because advection is smooth in the vicinity of an observatiorto be. z is in the complementaryD — d)-dimensional vec-

site and does not contribute to the singular behaviour. Thidor. Assuming a close vicinity to the receptor site, advec-

ultimately explains the behaviour of the Gram matrix (and tion is neglected and the diffusion parameters are supposed

ultimately the inversion) when the resolution increases. uniform and constant. Therefore the adjoint solution in the
In the reconstruction ahead, three typical scales characterneighbourhood of the receptor is:

izing the grid resolution are considered. They are the time-

stepA,, the time scale related to horizontal diffusiad/ K, exp{ _71 (% + %)}

and the time scale related to vertical diffusiad/K;, where  ¢*(r,z,1) = ! -

A, is the horizontal resolution (mesh step) and is the J@rnP kdgP

vertical resolution. Very rough estimations for continental

transport studied in Sedct. indicate values of 1 h, 10h (for Asjustified before, the limita&\, andA; going zero are taken

the shortest) and/2 h, respectively. As a consequence, time first. The asymptotic behaviour of the matrix engycan

and the vertical diffusion have the best resolution. Hence takthen be obtained as, goes to zero. After some algebra, one

ing A, andA, to the continuum limit before\, is sound, in  obtains that, it — 2D + 2 < 0, g is divergent as

this context.

(35)

g~ (D-2)! (36)

Sd 1 Kh D—d Ad_2D+2
X
3.2 Asymptotic divergence <_>

270 K, \ K. 2D—d -2

Several types of inversion will be considered here. The inveryyheres, = 274/2/'(d/2) is the area of the unit sphere in
sion depends on three important factors: the spatial dimengimensiond. Whend — 2D + 2 > 0, there is no divergence.
sionality of diffusion (usually three-dimensional and taking The critical casel — 2D + 2 = 0 implies

place in the domaif), the spatial dimensionality of the ex-

pected support of the source (denotedbove), and the cov- S, 1 (Kx\P? 1
erage of the observation network with respect to the sourcg ~ (D — 2)!271_01(_ <?> In v (37)
support. An additional factor is the way time is taken into ac- " ¢ *

count. For an accidental release, time is an extra dimensioConsider the most obvious cag@:= 3. Then the critical di-

to cope with. For steady or time-averaged emissions, time isnension for the source is= 4, below whichg is divergent.
irrelevant, and diffusion has a different behaviour to take intoTherefore, in the case of interest= 2, there is a divergence

account. characterized by
2 . ] L 1
3.2.1 Accident-type reconstruction — first case ¢~ A2 (38)
22K, "

Consider a network of receptors dedicated to the detection
and measurement of an accidental release of pollutant. Th&his behaviour is controlled by a fully developed vertical dif-
diffusion of this pollutant is a three-dimensional procfss- fusion. In the absence of vertical diffusi@gn= 2, the actual
3. The support of the source (the space where the source tsehaviour would be critical
believed to be located a priori) is expected to lie within the
. . 1

space where the diffusion takes place. The source suppog ~ —— |n — | (39)
is assumed to be a space of dimensiorin this space, the nKp o Ax
diffusion parameter iX,. The diffusion parameter in the
D — d extra dimensions is denotdd,. Typically, a ground
network of receptors is used to reconstruet & 2 ground
source from theD = 3-dimensional atmospheric dispersion.

Here it is assumed* is one of the adjoint solutions of
Eq. 10), with(x, 1) = §(x — x0)é(t — t9). The reconstruc-
tion only requires the trace ef* on the source support to be
known. A diagonal entry of the Gram matrix is of the form

Itis reasonable to assert that for realistic meteorological con-
ditions, the behaviour lies in between those two limiting be-
haviours. This issue is indirectly related to the question of
how the source fluctuations are propagated to the receptor:
it behaves like 1|k| (Newsam and Entingl988 whereas a
purely two-dimensional dispersion would yield &/ be-
haviour.
Equation 86) can be applied to other cases of interest. For
2 example in situation where fields are averaged over one or
8§= wdfdx (c*(e.0)" (34) " more dimensions (zonal or vertical average).
w, is the expected support of the source (a surface represeng.2.2 Accident-type reconstruction — second case
ing the ground multiplied by the time interval) punctured by
a cylinder aroundxy, 7o) of radiusA, and height 2\,. g Another interesting case is when the receptors are located
needs to be studied @ andA, vanish. outside the source support. A reconstruction of a temporal
A position vectorx in the D = 3-dimensional space of release profile while knowing the location of the release is a
diffusion is decomposed as = z @ r, wherer belongs to  typical example. It can be shown that there is no divergence
thed = 2-dimensional space where the source is suspectedf g, when the resolution is increased.
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Fig. 1. Reconstructions with a Gaussian prior for four different spatial angular resolutions. Resolutions for(@guifle)s (c), and(d) are
0.5° x 0.5°,1° x 1°, 2° x 2°, and # x 4°, respectively. All retrieved sources are hormalized so that the maximum of the integrated field be
1. The ETEX release site is indicated by the center of the drawn circle.

3.2.3 Steady state release conducted in 1994 by the European Joint Research Centre
(Joint Research Centr&998. 340 kilograms (M) of Per-
The reconstruction method can also be applied to steady-stafioromethylcyclohexane (PMCH) were released uniformly
emission, with potential applications to @®ux inversion,  from 23 October 1994 16:00 UTC to 24 October 1994
atmospheric mercury inversion, etc. In that case, an approxg3:50 UTC, at Monterfil (Britanny, France, locatec@8 N,
imation is to consider the retroplumes as steady-state soluz°00' W). Many research teams were involved in taking mea-

tions with a typical sampling function of = §(x — xo). surements to characterize the dispersion of the PMCH cloud
The typical diagonal Gram entry is over Europe. The results of the experiment were used to cali-
brate various atmospheric dispersion models (see the special
g= [ dx (c*(x))z ) (40)  issue of “Atmospheric Environment”, 32, 24, 4089-4375 or
Wo the proceedings of the “ETEX symposium on long-range at-

The steady state three-dimensional purely diffusive retro-MOSPheric transport, model verification and emergency re-

plume is characterized by a decrease from the ground recer?—ponse”_' 13-16 May 1997, Vienna (Austria), K. Nodop Ed.).
tor site of /|x| (Seinfeld and Pandid998. Then ford < 2 Alternatively these measurements can be used to test source

inversion methods.
In the following sections, twin experiments are performed
for three sets of observations denoted A, B, and C of increas-
Those results have a significant impact on the reconstrucind Size (48, 137 and 237 measurements, respectively) (see
tion. This will be detailed in the next sections, with an em- Bocauet 2005h for a complete description of those sets).

phasis on the grid resolution used for the retrievals. The resolution will be varied. The time-step is set to
A, = 1h, whereas the zonal and meridional angular steps

take four different values (B8° x 0.5°, 1° x 1°, 2° x 2°, and
4 Numerical reconstructions for an accident-type re-  4°x4°). The source which is numerically implemented mim-
lease ics the ETEX-I source. It is contained in the cell to which
the ETEX-I release site is attached, and uniformly distributed
Before any analytical account is given, examples of nu-over 12h.
merical reconstructions will be presented. They are based The transport model used iSOPAIR3D (Boutahar et aJ.
on the European Tracer EXperiment (ETEX). This exper-2004 Sartelet et a).2002 Sportisse et al2003. ECMWF
iment (here the first campaign will be emphasized) waswind fields serve as inputs to the model.

there is a divergenceg behaves likeA?=2. The critical di-
mension is thereford = 2. Aboved = 2, no divergence is
expected.
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Fig. 2. Reconstructions with a Poisson prior. Features are the same as for the graphs related to the Gaussiaf.case Fig.

As suggested before, two types of prior will be used: have been integrated in time. Since there is no prior positive-
Gaussian prior and Poisson prior. They are expected to pemess with a Gaussian prior, negative values may be obtained.
form poorly and fairly, respectively, with the observation sets Cells with negative values appear white on those graphs. The
and resolution at hand. They are interesting choices sinceeconstructed mass is 309 kg, 314 kg, 333 kg and 412 kg, re-
they correspond to quite different outcomes of reconstruc-spectively (to compare with 340 kg). Incidentally, this shows
tions and performances in the inversion (for optimal resultswhy the reconstructed mass cannot be retained as a score for

of the inversion methods, s@w»cquet 20058). the reconstruction (as opposeddalefined later on): those
masses are actually differences between sources and sinks.
4.1 Gaussian prior To a limited extent, these graphs allow to check visually how

the reconstruction degrades as the resolution increases. It is
More precisely, the Gaussian prior is specified by the priorobserved that the receptor prints on the retrieved sources get

covariance matrix stronger as the resolution increases. For the higher resolu-
) tion (graph a), higher values of the field are hidden by the
B = m?I. (41)  triangles marking the receptors.

m? sets the scale of the local variance. In absence of noise; »  pgisson prior

its actual value is of no consequence because it is easy to

see in Eq. 29) that the retrieved source is independent of aThe Poisson prior is defined by a reference masshich
rescaling ofB. In Fig. 1 four reconstructions are considered. will be taken to beng = M/12. SinceM is not supposed to
In order for the various reconstructions to be comparablepe known prior to the inversion, this choice should be con-
the simplifications used iBocquet(2005) were dropped  sidered optimal. It is unlikely but just as good as any other
(rejection of water bodies cells, specific treatment of quasi-choice. Paramete, is chosen to be uniform &s It depends
null measurements), so that the number of variables to inverbn the resolution since? is the prior average released mass
is the same at constant resolution. in a cell. The choice of = 6 for 0.5°, wheredy = 1075,

The reconstruction is performed within the following vol- leads consistently t6§ = 46 for 1°, & = 1646, for 2°, and
ume: from 12 Wto 16 E, and 40 Nto 66° N over atime- 9 = 646, for 4°. The explicit form of the Poisson prior
period of 75 h centered around the real release period. should depend on the scale so that the physical prior assump-

The assimilated observations belong to set B. The angulations remain scale invariant. However because we are look-
resolution is set for bothA, andA, to 0.5°, 1°, 2°, and 4 on ing for a near black source, the parameétaemains small
graphs (a), (b), (c) and (d), respectively. Because it is not poswhatever the resolution tested here, and the effect of its vari-
sible to give on paper a temporal account of the sources, thegtion on the reconstruction is expected to be weak.
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Fig. 3. These curves represent the scpr®r various reconstructions of the toy-model described in the text. Qigatorresponds to basis
functions of Gaussian type. Grapfig, (c) and(d) correspond to power law functions of exponerit/2, —1 and—3/2, respectively. The
curves corresponding ta = 1, 2, 3,4 and 5 (symbolg), A, ¢, v, and, respectively) are plotted with respect to the resolution index
n=123579and 11.

Four reconstructions with a spatial resolution 05°0x PTc;.*. The projected state 8. The true solutiors also be-
0.5°,1° x 1°, 2° x 2°, and 4 x 4° are considered, with the longs to this vector space (see FH{). We need to estimate
time-integrated retrieved source shown on Fi.b, c and  the distance between the two states using the metric defined
d, respectively. The conditions for the retrieval are the sameby the scalar product. Building on an r.m.s. indicator sug-
as for the Gaussian case and therefore comparable. The rgests takind|o — @||5-1. Unfortunately its computation re-
constructed mass is 166 kg, 223 kg, 338 kg and 340 kg, requires a knowrs. Additionally, for a complex correlation
spectively. The receptors imprints on the retrieved sourcesnatrix, this computation is too numerically demanding for a
are visible on the upper graphs corresponding to higher resfine grid. Those two obstacles can be overcome in the follow-
olution and degraded reconstruction. ing way. Because of the projection, the Pythagoras theorem

The reconstructions are better in the Poisson case than inan be invoked:
the Gaussian case. However it is difficult to judge by the
mass or by the graphs for the finest resolutions (a and b). Ajoe — E||§,1 = ||a||i,1 - ||E||§,l. (42)
quantitative indicator of the performance is therefore needed.

Obviously the norm|a || -1 is not known. Butitis clear that
[lo|| -1 is enough to indicate if a reconstruction gets better
with changing conditions. Note that §&| ;-1 grows, the
reconstruction improves. This could be confusing because

. . . can be seen alternatively as the state of the vector space gen-
In order to study the impact of resolution on the retrieval, theerated by theP” ¢* which has the minimal norm. The two

error made in the reconstruction of a discrete sodrceust . .
. . . ) . statements are independent however and there is no contra-
be estimated. To quantify this error, a visual account is often

. . L diction.
insufficient, all the more since& may represent a complex Theref _ ds to b luated. It ical
multidimensional field. erefore||o|| ;-1 needs to be evaluated. Its numerical

computation makes use of the dual approach. It was stated
that the level-1 primal cost function i = —%||a||3_1. In
addition, at the optimum, the level-1 cost function equals the
Atfirst the prior is assumed Gaussian, although the first guestevel-2 cost function: 7 (o, v) = K(pz,v). K(ps,v) is

is not known and hence taken to be null. The reconstruc-a natural outcome of the minimization ghhowever, and
tion is equivalent to a projection. The first guess (actually ||| -1 can be computed efficiently through this procedure.
the null sourced) is projected orthogonally with respect to ~ From the analytical perspective calculatifig|| ;-1 is a

the scalar produdt ) -1 onto the vector space generated by difficult problem-dependent task. However there are a few

5 Estimating the analysis error and its dependence on
the mesh step

5.1 Error estimation for the Gaussian case
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5.3 Behaviours of the score

Although the formp = (&, VV' &)/ (5, 5) is elegant, it is
easier to use the form = (g, G"x) / (¢, B~Y0) in the

limit where the reconstruction scopedecreases. Indeed as
the resolution increases, the noffa|| ;-1 remains roughly
constant. As do the measurements in the context of a syn-
thetic experiment (for a real experiment, measurements are
Fig. 4. The left figure depicts the optimization procedure in the obviously model resolution independent). Therefore the be-

. . . . _1
Gaussian framework. The first guess (actually the null vegggs ~ haviour of p is given by some properties &~ only. De-
projected orthogonally onto the space of sources which satisfy thé?@nding on the choice of the projection space, essentially two
measurement constraints. The true sowrdgelongs to this space. kinds of behaviour are expected. Assume, as this is the case

The right figure depicts the optimization for a general prior within for retroplumes, that the projection basis is made of posi-

the maximum entropy on the mean approach. The prisr“pro- tive vectors. In the continuum limit, those vectors should

jected” onto the manifold of the exponential laws, the average ofpecome positive integrable functions. However they may be

which satisfies the measurement constraints. The exponential lawgn square-integrable.

whose first moment is the true source belongs to this manifold. First suppose they are square-integrable, as the resolution
increases the Gram matrix converges to a well-defined oper-

S . L . ator limit. It is therefore expected thattends to a finite limit
simplifications in the asymptotic limit where the divergence between 0 and 1. If they are not integrable, then all diagonal

takes place, i.e. when the spatial mesh step becomes sma”%rrements of the Gram matrix diverge, while all off-diagonal

converge (we assume that the singularities responsible for
the non square-integrability of two disctinct functions do not

To give an account of the performance of a reconstruction irceincide, which is the case for retroplumes). Therefore the
this context, and building on the previous remarks, we mayGram matrix tends towards a diagonal matrix of increasing

5.2 Score of the reconstruction (Gaussian case)

introduce the ratio norm. This means that the functions forming the basis are
less and less correlated. The norm of its inverse decreases,
p=1E11%1/llo]15 - (43)  andthe scorp tends to 0. The reconstruction will eventually

fails. The absence of correlation between basis functions im-
Let us write a form 01]|E||§,1 that depends on the sourée  plies that the projected source cannot span onto many func-

only. Usinge = BH” G~ 1p with G = HBH” , we have tions but picks up a few of them localized on the true source
support. This provides a mathematical explanation of why
||E||§,l =u'G'HBB'BH"G 1 the solution is strongly influenced by the receptors in this
Tl limit for an atmospheric source reconstruction.
=n'G (44) : . )
T oo T ool This was valid for a single set of measurements. Of course,
=o' H G "Ho,

insufficient observations will always make the reconstruction

becausqw = Ho. Consider the matriH as an operator be- fail. ) ) ]
tween Hilbert space®” , B~1) and(R?, I) (I, the identity We have tested these ideas on a one-dimensional toy

matrix, stands for the canonical scalar product). Then therdn0dél, exhibiting several kinds of behaviour. The behaviour
exists a singular value decompositionff is determined by the nature of the basis functions which

are not necessarily square integrable. The experiment takes
H=UDVT. (45) place between date = 0 and date = 1. The continu-
ous source is constant and equal to 1 betweea 0.45

Uisap x p orthogonal matrixD is ap x p diagonal matrix — gnd; = 0.55, and null elsewhere.The grid resolution is
andV is an x p matrix satisfyingV” BV = I (itscolumn  a; — 2713 with  — 1,3,57,9,11. The projection

vectors are orthogonal with respect to the scalar product despace is spanned by a set pf = 27~ functions, with

fined by B). Itis then easy to show that m =1,2,3,4,5. Four cases are considered. First Gaussians
- Y ~~T with equal root mean square but various centers are used.
_(.VVio) (¢.VV o) 46)  Next, singular functions of the form— |r — 1172, with 1;
(o6, B o) (0,0) being their centeri(e [1, p]). Centers are chosen so that the

_ - ——T . _ o corresponding vectors at a finite resolution be well defined.
wheres = P~'o andV = PTV. VV' is asemi-definitt  The square of these functions are not integrable. Eventually,
operator. MoreoveV' V = VI BV = I, so that the Spec- we consider — |t — til_l and: — |t — ti|_3/2 functions,
trumof VV' is a set of eigenvalues, 0 or 1. We conclude thatwith similar properties though being steeper neafthe cor-

0 < p < 1 (which is obvious from Eg42), and thatp is a responding divergence gf in the time-step is expected to
good indicator to evaluate the efficiency of the reconstructionto be—In A, Al‘l and A,‘z for the last three cases, respec-
(the closer to 1, the better). tively. Measurements performed are perfect.
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The numenca} implementation of this toy model conﬂrms. Table 1. Values of the scorg for ETEX-like reconstructions, when
the results obtained so far. The score curves are plotted ifhe priory is Gaussian.

Fig. 3. For the first case (graph a), the reconstruction stabi-
lizes as the resolution increases, given a single set of mea-
surements. In the second case (graph b), the reconstruc-

set/resolution B° x 0.5° 1° x 1° 2°x2° 4° x4°

tion becomes poorer as the resolution increases. The recon- A 0.007 0033 0295 0.661
structed mass becomes smaller, and the shape of the retrieved B 0.007 0.034  0.303  0.862
C 0.008 0.035 0.330 0.913

object is increasingly sharper, strongly influenced by a re-
stricted number of basis functions. A similar behaviour is
observed in the last two cases (graphs ¢ and d). However the
quality of the reconstruction decreases much more rapidly as
the resolution increases.

In the following sections, first applications will be consid-
ered. In particular the rate of decreasepofill be evaluated — Four magniﬁcations are insufficient to make serious
in the asymptotic limit. comparisons with the analytical predictipnoc A2 o

47" put the trend is convincingly similar.

as expected. In any case the score is a decreasing func-
tion of the resolution.

5.4 Application to atmospheric source reconstruction
— As for the dependence of the quality of the reconstruc-

5.4.1 Ground source and ground observations tion on the observation set, the monotony is clearly re-
o ] spected. Indeed, it is easy to prove that if measurement

For the sake of S|mpI|C|_tyB is set tol from now on. A . set B encompasses measurement set A, thes p4.

source of an atmospheric inert tracer, kr)own to be surfacic, Nevertheless, in this particular example, the dependence

is to be retrieved. Alp ground concentration measurements on the measurement set is not very relevant because sets

are performed over a time and space muc_h smallerman A, B, and C are very peculiar.

and A,, so that they can be considered Dirac-like. Results

of Sect.3 can be usedl§ = 3,d = 2 case)A, serving as On one hand it has been shown that for that kind of at-

cut-off. They correspond to the ETEX-type Gaussian recon-mnospheric inverse problem increasing the resolution will ul-

struction of Sect4. One then ha& o« A;?I and timately degrade the reconstruction. On the other hand the
source description should be as precise as possible. There-

II571)% o (,,,T,L) AZ, (47)  fore, there exists an optimal resolution for that type of inverse
problem.

As the mesh-step goes to zeffg|| will ultimately vanish. So far we have assumed that the measurements were

In particular in an ideal situation, the score would asymptot-Dirac-like and as such responsible for the singularities. Yet,
ically behave likep Afc. This is alike case (d) of the toy- operational measurements are different. For example, ETEX
model. Therefore making the mesh-step too small degrademeasurements of PMCH concentration are integrated over
the reconstruction. This hints at the fact that the amount of3 h. This is a way to regularize the singularities in the Gram
tracer retrieved is smaller and smaller. However sibtand ~ matrix. However, it does not change basically the issue for a
L? norms are distinct, there is no guarantee this statement igetrieval at continental scale. Indeed, even regularized retro-
always true (especially for a Gaussian prior where positiveplumes, should still look very steep close to the receptor area.
and negative emission in a cell is allowed). Only truly non-local observation would change the analysis
A physical argument can be proposed to explain the in-(for example a column measurement). However, strong cor-
creasing unphysical importance of the receptor sites in theelations with a non-diagond may change conclusions, as
reconstruction. In the limit where the grid cells are smaller it may be a way to regularize the Gram matrix. However we
and smaller, it is not difficult to imagine a solution easily do not explore this topic here.
satisfying the measurement constraints. A small source is
placed upwind of any receptor with the right amount of tracer5.4.2  Other source types

to explain the measurement. The other receptors will be little . . o
affected. Such a solution is difficult to settle with a larye. In the case where the source is volumic (three spatial dimen-

In addition such a solution is preferred by the regularizationSIONs Plus time) instead of surfacic, and the observations are
(orthogonal projection here) to any ETEX-like one because itSU"facic and airborne, results of Segyield p oc Ay. This

is likely to have a small norm. In this limit the reconstruction IS "eminiscent of case (c) of the toy-model. The degradation
is bound to fail. with increasing resolution is less pronounced. Note that it

In Table 1 the scores for the reconstructions detailed in 90€S not imply the reconstruction is easier as the score de-

Sect.4 for a Gaussian-type reconstruction are given. We ob-P€Nds on many other factors. o _ _
serve that For an accidental release reconstruction with a single site

release known a priori, i.e. when one is interested in retriev-
— Although the resolution does not change over a largeing the temporal profile of the accidental release, there is no
range, the score gets worse as the resolution improvegjivergence in the Gram matriy. goes to a finite limit which
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Table 2. Values of the scorg for ETEX-like reconstructions, when log of the orthogonal .p-rOJGCtIO-n IS knoyvn as the Czizar th.e—
the priorv is Poisson. orem). Three probability density functions are to be consid-

ered. First is the priop. To define the last two pdfs, the
following family of pdfs must be introduced

set/resolution B° x 0.5° 1° x 1° 2°x2° 4° x 4°

A 0.082 0.223 0.700  0.996 (s) = v(s) explec’s) (49)
B 0325 0515 0994 0.998 Pri =5 0 explaTs’)
C 0.475 0.917 0.998  0.998

where theN-vectora parameterizes the family is related
to o throughv = Vg jIn) ", v(s)e“TS . Equivalently,v is
the mean of the pdp,. By reciprocity,a can be obtained
is not necessarily 0, as the resolution increases. This was olfrom v by &« = V.7 (s, V)|, WhereJ is the level-1 primal
Sf-l‘fved irBoc_:quet(ZOOSt_). The reconsfcrugtion is then easier cost function. The second pdbg, is the solution of the in-
since there is a resolution above which it cannot get worseversion (posterior pdf). It is a member of the exponential
This is not an optimal resolution anymore (except from the family with « = H”B. The third pdf,p, is characterizing
point of view of sparing CPU time). the true source. It is a member of the exponential fam-
For surfacic sources and airborne observations, the conity with « = V.7 (s, V), o designates this pdf because

clusion should be similar. It suggests, at least theoretically,p, is the only member of the exponential family of densities
that using aircraft or satellite data prevents there being a resyhose mean is the true sourge

olution limit. The Pythagoras identity can be proved along the lines:
For time-averaging studies of steady ground emissions and
sinks, observed by a ground network, one has K(pg,v) = Z peIN (p—°>
2 wp ) )
4 - : 48 _ Po i (PT
111 o = (48) —XS:Paln (pa> Xs:paln( . ) (50)
provided the dispersion can be considered purely diffusive. _ in(Pe
This is comparable to case (b) of the toy-model. This might +2s:(p" pa) ( v )

be of relevance for trace gas flux inversions. The degradation
of the reconstruction as the resolution increases is expecte§'nce
to be very moderate here. Finding the optimal resolution is | (P?) a7

o . . L —pa)nl{—) = —p7)B Hs
more difficult in this case, because the degradation is slow as; (Po = P5) v Xs: (Po = ra) B
the resolution increases (no sharp transition to help decide). T .
=B H(o —0)=0, (51)

5.5 Score of the reconstruction (general case) one eventually obtains

Le_t_us consider the case of a general pbio_lEven if anex- i (po pe) = K(pe,v) — K(pg, v) (52)

plicit formula for the secondary entropy exists, analytical in-

vestigations are much more difficult since there is usually nowhich is adopted as a measure of the distance (though it is
explicit formula for8. That would require an expansion anal- not in the mathematical sense) between the estimate and the
ysis in the moments of pdfs, or alternatively an expansion oftrue source. As for the Gaussian cak#&p,, v) cannot be
order greater than two in thg, in the secondary entropy. known. Nevertheless the behaviour/ofps, v) can be stud-

Yet, the dependence from the dimensionality put forward soied. It is not difficult to check that whenis normal, we re-

far is not to change qualitatively. A similar behaviour of the trieve Eq. 42). The geometrical analogy between the Gaus-
reconstruction with respect to the resolution is still expected.sian prior and the general case is represented orFig.

For numerical twin experiments, it is crucial to define a It is therefore natural to define the following reconstruc-
score that generalizgs An r.m.s., similar to the scorg in tion score
the Gaussian case, may look like a good indicator. Unfor- K(ps, v)
tunately, the usual Pythagoras equality does not hold heree = m
Besides there is not a clear correspondence to the dual cost Po>
function anymore, which was very useful for numerical ap- which is an analog of Eq.4@). They correspond when
plications in the Gaussian case. Because the dual functionas Gaussian. Although there is no explicit analytical solu-
cannot be used to get the computing cost of this indicator tion in the general case, formula E§J] is of great help in
could be prohibitive. numerics. Sinc&C > 0 and because of Eg5%), one has

The solution stems from a similar identity to the 0<p <1.

Pythagorean equality for the general case. Instead of the In Table 2 the scores for the reconstructions detailed in
scalar product metric, one should use the Kullback-LeiblerSect.4 are given for a Poisson-type reconstruction. General
divergence (se&zyl, 1995 and references therein: the ana- remarks made on the Gaussian prior case also apply to this

(53)
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case. With the Poisson prior being better, it is not surprisingwith o ande as the true source and error vector, anande
that the scores are bigger. The scores range from excellent tilve retrieved source and error vector.
poor and they ranged from good to bad in the normal case. A rather complex study of the efficiency of the inversion
However the trends are similar to those of the Gaussian casédn this more realistic framework should be undertaken. How-
ever this is far beyond the scope of this paper. An example is
. . . nevertheless given on ETEX-I. The set up is the same as in
6 Taking model and observation errors into account Sect 4.

As was shown irBocquet(20053, errors (partly stemming To ease the reconstruction, a smaller domain was consid-

from observation but mostly from the model) can be incorpo—ereq: from 12Wto 12 E, and 40 N to 60° N overa t_ir_ne—.
rated into the framework of inversion methods regularized byper_IOd of59h center ed qround the real event. S|m.pI|f|cat|ons
entropy, applied to the reconstruction of tracer sources. Thg"hICh were not retained in Se@are now used (for mstance
PSAS 4D-Var method used in atmospheric data assimilatior€"Y 10W measurements are discarded, but water bodies are

is recovered as one of those methods. When taking errorB°t rejected). Set C was chosen, instead of B (but B is con-
into account, the observation equation is tained in C). The model is still assumed perfect. Measure-

ments are generated with the model then perturbed normally
w=~Ho +¢, (54) with a standard deviation of 10% of the measurements.

The prior source is assumed to follow a Poisson law. We
also assume a normal law for the errors. We choose for the
error prior variances the square of 10% of the noisy measure-
ments. Figuré gives a visual account of the reconstructions
L=K(p,v)+K(q.¢)+B" (n—Ho —e) (55)  (integrated in time). The spatial resolution i$0x 0.5°,
1° x 1°, 2° x 2°, and 2 x 4° for graphs (a), (b), (c), and
(d), respectively. The reconstructed mass is 248 kg, 265 kg,
303 kg, and 321 kg, respectively. TalBegives the related
K. o) = Z g(&)In (@) ) (56) scores, in addition to scores for sets A and B. There is a clear

€ £(e) degradation compared to the noiseless Poisson case. How-
¢ is the prior pdf for the errors, whereasdenotes the pos- €Ver not all scores are !ower to_ their counterpart (for example
terior error pdf to be determined in the optimizationgf ~ S€tB, 05°x0.5°). This is explained by the fact that the score
along with the source pdp. All derivations presented so not only me_lrks the reconstruction of the source but also the
far extend to this enlarged framework using this functional. '€construction of the errors. Therefore a score related to a
In particular when the source prior and the errors prior are"0iSy reconstruction cannot be directly compared to a score

both Gaussian, the level-1 primal functional matches the cosfélated to a noiseless reconstruction.

with e a vector whose components; are the errors related
to measurementg; (though it can also be related to model
error). The level-2 primal problem is extended to

where(q, ¢) is the Kullback-Leibler divergence of the er-
ror vector:

function of the PSAS method. It reads In the case where the resolution is set tod4°, the score
1 1 decreases with the data size. This anomaly can be explained
J = —§||a||§,1 - §||e||i,1. (57) in the following way. In this coarse resolution case, a few
observation sites are located in the same cell. If no noise is
Details can be found iBocquet(20053. generated (perfect twin experiment), the anomaly does not

The score for the reconstruction can be generalized to th%ppear. When noise is taken into account, randomly gener-
inversion problem with errors. A Pythagoras equality can beated errors could be different for two different observations
obtained, following the lines of derivation EGQ), and using 4t the same time, and different sites though in the same cell.
the factthaje = Ho + ¢ = Ho + ¢ to obtain the analog of - Thjs yields distinct measurements. The reconstruction proce-
Eqg. 51). One obtains dure interprets this as a representativeness error, since it was
K(ps. ps) + K(ge. g2) = K(ps. v) + K(ge. ¢) expecting the same measurements from the model. The re-

K (pe. v) — K(gs. 0) (58) construction turns more difficult as more observations share
bz, v qe: §)- the same cell and same date. In that respect, this apparently
Therefore it is quite natural to define the ratio paradoxical behaviour of the score is consistent. When all
_ K(pz,v) + K(gzs, §) observations are separated, the effect disappears.

P= K(pe,v) +K(ge, )’

which satisfies 0< p < 1 because of Eq5@). p is how 7 Conclusions

an indicator for the reconstruction of both the source and the

errors. In this paper, we have investigated a few properties of the
In the Gaussian case and when the error grisra normal  reconstruction of an atmospheric tracer source. Taking into

pdf specified by the error covariance matRxthe ratioreads account more observation data and significant prior informa-

—2 —2 tion in the reconstruction has recently enabled high resolu-

_ ||a||B’1 + ||€||R’1 (60) tion reconstructions. In this paper, it was shown that the lim-
||<r||§rl + ||s||§rl iting behaviour of the reconstructed source with increasing

(59)

0
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Fig. 5. These graphs show the reconstructed sources with a Poisson prior and a Gaussian prior for the observation errors for four different
resolutions. Resolutions for panels (a), (b), (c), and (d) &% R 0.5°, 1° x 1°, 2° x 2°, and 4 x 4°, respectively. Features are the same
as for the panels related to the Poisson caseZgd Gaussian case Fit.

Table 3. Values of the scorg for ETEX-like reconstructions, when Generall_zed Inversion me_thc_)ds were use(_:i. They are based
the priorv is Poisson and when observation error is taken into ac-ON the maximum entropy principle and they include the clas-

count as a Gaussian prior. sical least-square inversion. We have introduced a score
to quantify the retrieval performance in the analytically
set/resolution @° x 0.5° 1° x 1° 2° x 2° 4° x 4° tractable case where the source prior is Gaussian. It is di-

rectly related to a classical r.m.s. It has been generalized to

A 0.086 0222 0.569  0.927 more general priors. Strong arguments were given in favour
B 0.370 0468 0689  0.869 of this score rather than more traditional indicators.
C 0.424 0.554 0.753 0.830

For a given set of observations on tracer concentration per-
formed in the space where the source is expected to be, in-
creasing the resolution of the reconstruction decreases the
score in most cases of interest. The score was proved to
vanish ultimately. For three-dimensional atmospheric dis-

L ) . . persion, the score of an accidental release reconstruction be-
mospheric inert tracer has been explained. This singularit

: ; ; . “haves likeA4~¢ whered is the space dimension of the source
translates visually into strong prints of the receptors sites

; . support. When the resolution is too high (and therefore the
onto the sources resulting from reconstruction. For atmo- P gh (

spheric dispersion. the emeraence of the problem depends 0score too low), the receptors influence on the reconstructed
P P ' g P P &ject is prominent. Low-dimensional reconstructions (for

the d'.m ensions of the prior source support,' the effective dI_example a temporal profile retrieval of an emitting plant) do
mension of the atmospheric turbulent diffusion, and how the o . . L
not exhibit this behaviour, since the score goes to a limiting

observations network compares to the source support. Thﬁnite value. This is generally true when the observation net-

time dimension is also crucial to the analysis. work is away from the place where the source is expected to

o d'ls:h(?tpigoglljzrr:cl)stﬂgt ahn !Sri]gsmsf'i:]l:véigf t;:;g‘:i{/ﬁ';ﬂ r;?;\?v'sbe a priori. Airborne measurements for surfacic emissions
: phy P may help in this respect.

for this fragmented and peaked solutions when the informa- - . I
) . . oo - These findings were supported by analytical derivations
tion available (prior and observation) is insufficient and the ) . .

when the prior on the source is Gaussian. A toy model was

when the grid resolution is too demanding. This effect dis- ; .
s used to corroborate these results. Finally these ideas were
appears when the resolution is coarse enough, or when the .
X S tésted on the case of the ETEX-I experiment for both Gaus-
background information is rich enough. X ) . o .
sian and Poisson priors. The results agree qualitatively with

the theory.

resolution is not simple. The origin of the singular behaviour
in the reconstruction of a multidimensional source of an at-
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