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Abstract. The analysis of a data area or segment containing
steep transitions between regions with different textures (for
example a cloud and its background) leads to addressing the
problem of discontinuities and their impact on texture anal-
ysis. In that purpose, an original one-dimensional analytical
model of spectrum and roughness function has been worked
out, with a discontinuity between two fractal regions, each
one specified by its averageµ, standard deviationσ , spectral
indexβ and Hurst exponentH . This has the advantage of not
needing the generation of a fractal structure with a particular
algorithm or random functions and clearly puts into evidence
the role played by the average in generating spectral poles
and side lobes.

After validation of the model calibration, a parametric
study is carried out in order to understand the influence of
this discontinuity on the estimation of the spectral indexβ

and the Hurst parameterH . It shows that for a pureµ-gap,
H is well estimated everywhere, though overestimated, and
β is overestimated in the anti-correlation range and saturates
in the correlation range. For a pureσ -gap the retrieval ofH is
excellent everywhere and the behaviour ofβ is better than for
aµ-gap, leading to less overestimation in the anti-correlation
range. For a pureβ-gap, saturation degrades measurements
in the case of raw data and the medium with smaller spectral
index is predominant in the case of trend-corrected data. For
a pureH -gap, there is also dominance of the medium with
smaller fractal exponent.

1 Introduction

The necessity of working out realistic models for the genera-
tion of natural scenes including clouds or sea waves is not to
be demonstrated. The scope of such models is to provide ei-
ther the spatial distribution of physical characteristics in the
medium (elevation, temperature, water content) in one, two
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or even three dimensions, or directly a two-dimensional im-
age (radiance). Moreover, such a generator should satisfy the
constraint of not consuming too much computer time.

The most common algorithm to perform this task is based
on the Fourier transform (Ĺevesque, 1991; Simoneau et al.,
2002) implemented as a fast Fourier transform (FFT). Given
the slope−β (in logarithmic scales) and the outer scale wave
numberk0, the Power-Spectral Density (PSD) is defined gen-
erally in two dimensions as:

P(u, v) = P0

(
k2

0 + u2
+ v2

)−β/2
. (1)

A map of fluctuationsF(x, y) is then built up from the am-
plitude,

√
P(u, v), and a set of random phases8(u, v) by

inverse Fourier transform:

F(x, y) =

∫∫
D

√
P(u, v)ei8(u,v)e−i(ux+vy)dudv (2)

or in practice by discrete Fourier transform (DFT):

F(x, y) =

M∑
m=1

N∑
n=1

√
P(m1u, n1v)ei8mne−i(mx1u+ny1v). (3)

The corresponding relations in one dimension are obtained
by simply removing the variablev in the above expressions
(1), (2) and (3).

Conversely, the parametersβ andk0 can be rather easily
retrieved from original data by classical spectral analysis in
one (Davis et al., 1996) or two dimensions (Moghaddam et
al., 1991; Tessendorf et al., 1992).

In the context of developed turbulence, multiplicative cas-
cades provide another method widely used to build a frac-
tal random process (Cahalan, 1994; Davis et al., 1994;
Menabde, 1998). Another algorithm which has gained much
popularity is based on Weierstrass-Mandelbrot series and is
known as simulating at best a fractional Brownian motion
FBM (Berry and Lewis, 1980; Ausloos and Berman, 1985;
Saupe, 1988; Cianciolo, 1993; Chen et al., 1996; Jennane
et al., 1997; Berizzi et al.,1997; Bachelier et al., 1998).
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Given the so-called roughness and lacunarity parametersH

(0 ≤ H ≤ 1) andγ (1<γ ), and a set of random phases8m

uniformly distributed, the one dimensional function can be
written (Berry and Lewis, 1980):

W1D(x) =

+∞∑
m=−∞

γ −mH
(
1 − eiγ mk0x

)
ei8m . (4)

It is also possible to define the series with real sine functions
(Saupe, 1988):

W1D(x) =

+∞∑
m=−∞

γ −mH sin
(
γ mk0x + 8m

)
. (4bis)

It can be proved thatH is the true roughness parameter
(Berry and Lewis, 1980; Hunt, 1998). The ordinary Brown-
ian motion is obtained forH = 1/2, and corresponds to non-
correlated fluctuations, whereas the sub-ranges 0≤ H < 1/2
and 1/2 < H ≤ 1 correspond respectively to anti-correlated
and correlated fluctuations, or anti-persistence and persis-
tence.

In two dimensions a map of fractal fluctuationsW2D(x, y)

can be obtained from two independent sets of random phases
8mn and9mn by the sums (Jennane et al., 1997):

W2D(x, y) =

+∞∑
m=−∞

+∞∑
n=−∞

γ
m+n

2

[
1 − eik0(γ

mx+γ ny)
]
ei8mn +

[
1 − eik0(−γ mx+γ ny)

]
ei9mn[

γ 2m + γ 2n
]H+1

2

(5)

but this is not the unique possibility, and Eq. (4bis) can be
also generalised as (Saupe, 1988):

W1D(x) =

+∞∑
m=−∞

+∞∑
n=−∞

γ −(m+n)H

sin
(
γ mk0x + 8m

)
sin

(
γ nk0Y + 9n

)
. (5bis)

The roughness parameterH , or Hurst exponent, at least
can be retrieved by various methods, including the rescaled-
range analysis (Hurst, 1951), the perimeter-area relation
(Lovejoy, 1982; Gotoh and Fujii, 1998), the box-counting
method (Theiler, 1990; Malinowski and Zawadzki, 1993;
Buczkowski et al., 1998; Carvalho and Silva Dias, 1998),
the detrended fluctuation analysis or DFA (Ivanova and Aus-
loos, 1999; Chen et al., 2002), variograms (Curran, 1988;
Germann and Joss, 2001) and wavelet transforms (Simonsen
et al., 1998). DFA and spectral analysis have been shown
to provide the same information (Heneghan and McDarby,
2000). These methods work well only for Gaussian pro-
cesses, and poorly for non-Gaussian processes (Malamud
and Turcotte, 1999). Certain authors (Scafetta et al., 2001;
Scafetta and Grigolini, 2002) proposed a new method, the
diffusion entropy analysis (DEA) which is also efficient for
non-Gaussian processes, such as Levy flights.

Yet another way of fractal synthesis consists in integrat-
ing a Gaussian white noise by means of Riemann-Liouville

integral (Mandelbrot and Van Ness, 1968). This method ex-
plained in App. A3 will be used here to confirm the calibra-
tion of our analytical spectrum and fractal function.

The spectral and fractal approaches are related to some ex-
tent, because, under conditions of homogeneity and through
application of the Wiener-Khinchine theorem, the following
relation holds for a FBM (Moghaddam et al., 1991; Mallat,
1998; van den Heuvel et al., 2000):

β = 2H + E, (6)

where E is the topological dimension of the embedding
space (E = 1 for a line,E = 2 for a plane). In one dimen-
sion, the spectral indexβ of a FBM is therefore such that 1
≤ β ≤ 3. The non-correlated ordinary Brownian motion is
obtained forβ = 2 and anticorrelation and correlation sub-
ranges are respectively such that 1≤ β < 2 and 2< β ≤ 3.
We shall examine the relevance of relation (6) in Sect. 4.

Reciprocally, by derivation of a FBM, a fractional Gaus-
sian noise FGN is obtained, and relation (6) writes in this
case (Heneghan and McDarby, 2000):

β = 2H − E, (7)

In one dimension, the spectral indexβ of a FGN is therefore
such that−1 ≤ β ≤ 1 and the non-correlated white noise is
obtained forβ = 0.

Much work has been devoted to the spatial analysis of
clouds, namely cumulus (Malinowski and Zawadzki, 1993;
Gotoh and Fujii, 1998), stratocumulus (Davis et al., 1996;
Ivanova et al., 1999), cirrus (van den Heuvel et al., 2000;
Ivanova et al., 2003), stratus (Ivanova and Ausloos, 1999;
Ivanova et al., 2002), mixed mesoscale clouds (Carvalho and
Silva Dias, 1998) or landscape data (De Cola, 1989; South-
gate and M̈oller, 2000). Typical values found by these au-
thors in clouds are in the range 1.1–1.7 for one-dimensional
spectral indicesβ (Davis et al., 1996; van den Heuvel et al.,
2000) and in the range 0.2–0.6 for Hurst exponentsH (Mali-
nowski and Zawadzki, 1993; Gotoh and Fujii, 1998; Ivanova
and Ackerman, 1999; Ivanova and Ausloos, 1999; van den
Heuvel et al., 2000). Attempts have been made to relate the
fractal texture of the medium with the spectral structure of
resulting images under simplifying assumptions about the il-
lumination (Kube and Pentland, 1988).

Actually, the quality of the finally synthesised data de-
pends on how accurately the relevant parametersβ, k0, H

or γ are retrieved from natural data. In particular, the inho-
mogeneity of data can lead to large variations (Ivanova and
Ausloos, 1999; Ivanova et al., 1999). The aim of our paper is
to model the parametersβ andH of one-dimensional mea-
surements performed along the trajectory of the instrument
carrier (aircraft, balloon, rocket) and to show how a discon-
tinuity between two homogeneous regions can modify the
estimation ofβ andH .

The original point is that no random noise generator is
used in our model, so only the intrinsic spectral or fractal
properties of the media are taken into account, and their sta-
tistical distributions need not be specified. Generally, works
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devoted to the estimation of statistical parameters (Taqqu et
al., 1995; Schmittbuhl et al., 1995; Rangarajan and Ding,
2000; Chen et al., 2002) deal with signals generated by
Fourier filtering method (FFM) of a Gaussian noise and mix
up the statistical properties of the random number generator
(Gammel, 1998). For instance, the nature of the statistical
distribution is relevant to ensure the positiveness of the scalar
field to be generated (Malamud and Turcotte, 1999), and in
that case log-normal, gamma orK-distributions are more
suitable than Gaussian distributions. Nevertheless, since our
analytical model is worked out in the Fourier space, and
the calibration as well, which is of crucial importance, we
shall check the consistency with a numerical model based
on the fractional integration of white noise and introduced in
App. A3.

Of course, spectral and fractal models are used not only
in geophysics (Davis et al., 1994; Eneva, 1994; Main et al.,
1999; Malamud and Turcotte, 1999; Southgate and Möller,
2000), but also in astrophysics (Labini et al., 1998; Stutzki
et al., 1998), fluid mechanics (Mandelbrot, 1974; Scotti and
Meneveau, 1999), biology (Peng et al., 1994; Buldyrev et al.,
1995), medecine (Schlesinger and West, 1991; Chen et al.,
1997; Geraets and van der Stelt, 2000; Ivanov et al., 2001;
Echeverria et al., 2003), economics (Elliott, 1938; Mandel-
brot, 1997; Ausloos et al., 1999), fine arts (Spehar et al.,
2003; Hagerhall et al., 2004) and music (Voss and Clarke,
1978; Bulmer, 2000). In consequence, the results of the
present paper can be hopefully applied to these fields of mod-
elling.

We shall first proceed to the spectral analysis in Sect. 2 and
fractal analysis in Sect. 3 and eventually propose a discussion
of the consistency of both approaches in Sect. 4 and perspec-
tives of this work in Sect. 5. The comparison with published
results will be given thorough the paper along with commen-
taries of our own results.

2 Spectral analysis

2.1 Method

The usual way to get spectral components from the sampled
measurements Fm of a functionF(x) is to apply a discrete
Fourier transform (or FFT) in one dimension:

F̃ (k) =

M∑
m=1

Fmeimk1x with Fm = F (m1x) (8)

and then take the amplitude:

S(k) =

∣∣∣F̃ (k)

∣∣∣2 . (9)

For practical use, the discrete transformF(k) is itself sam-
pled:

F̃n =

M∑
m=1

Fmeimn1k1x with F̃n = F̃ (n1k) . (10)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1.  Model of one-dimensional discontinuity between two homogeneous fractal media. 

 

N1 N2 

µ1 , σ1 , H1, β1

µ2 , σ2 , H2, β2 

Fig. 1. Model of one-dimensional discontinuity between two ho-
mogeneous fractal media.

2.2 Analytical model

Now, in order to grasp how a discontinuity between two ho-
mogeneous regions 1 and 2 can alter the estimation of the
spectral index, we have built up a one-dimensional model
(see App. A1 for derivation of formulas). Region 1 may rep-
resent the background and region 2 a cloud. LetN1, N2 be
the pixel numbers of regions 1 and 2,µ1, µ2 the mean levels,
σ1, σ2 the standard deviations andβ1, β2 the spectral indices
of the fluctuating scalar fieldsF1 andF2 (Fig. 1). These may
represent the temperature, the water content, the humidity
for instance, and since these quantities are positive, the stan-
dard deviationσ should be smaller than the averageµ. In the
contrary, note that detrended data obtained by removing the
average trend, usually by linear fitting (Chen et al., 2002),
can also be described by our model withµ = 0.

Let us first define the spectral form of the PSD. If we sep-
arate each of the scalar fieldsF1 andF2 in two components,
an averageµj and a fluctuating partGj of zero mean and
standard deviationσj (j = 1, 2) we can write:

Fj (x) = µj + Gj (x) with

{
Gj (x) = 0

Gj (x)2 = σ 2
j

. (11)

Then Gj cannot have a simple power-law spectrumk−βj ,
like a self-affine fractal (Malamud and Turcotte, 1999), since
it would have an infinite average. A compromise consists in
defining the spectrum ofGj by:

G̃j (k) = Aj (k) ei8j (k) with Aj (k) =
aj(

k2
0 + k2

)βj /4
, (12)

where Aj (k) and8j (k) are the amplitude and phase spectra
respectively,k0 is the outer scale wave number chosen equal
to π /(N1x), and the constantaj is found by normalisation
of the PSD toσ 2

j . Note that we take equal outer scale wave-
numbersk01 = k02 = k0. With the reduced wave-numberξ ,
these quantities write:

ξ0 =
π

N
aj =

Nj√
J (Nj , ξ0, βj )

σj (13)
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        (a) µ = 5, σ = 1, β = 1    (b) µ = 10, σ = 5, β = 1 

 
        (c) µ = 5, σ = 1, β = 2    (d) µ = 10, σ = 5, β = 2 

 
        (e) µ = 5, σ = 1, β = 3    (f) µ = 10, σ = 5, β = 3 

 
Fig. 2. Optimisation of the regression interval [ka , kb]. Plot of the differenceβest–β between the true and the estimated spectral indices as a
function of the bounds (ka , kb).

and:

J
(
Nj , ξ0, βj

)
=

Nj∑
n=0

1(
ξ2

0 + ξ2
n

)βj /2
whereξn =

n

N
ξN . (14)

The computation of the spectrum obtained by the superposi-
tion of those of media 1 and 2 eventually leads to the analyt-

ical PSD (App. A1):∣∣∣F̃ (ξ)

∣∣∣2 =
(µ1−µ2)

(
µ1 sin2 N1ξ

2 −µ2 sin2 N2ξ

2

)
+µ1µ2 sin2 Nξ

2

sin2 ξ
2

+
N2

1
J1

σ2
1(

ξ2
0+ξ2

)1+β1/2 +
N2

2
J2

σ2
2(

ξ2
0+ξ2

)1+β2/2 ,

(15)

whereN = N1+N2. It depends on eight parametersN1, N2,
µ1, µ2, σ1, σ2, β1 andβ2. In relation (15), the first contri-
bution is relative to the steady component (average) and the
next two to the fluctuations about the average. It is impor-
tant to keep in mind that it results from a compromise where
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the Fourier transform of the steady componentµ has been
calculated on the bounded support, whereas that of the fluc-
tuating componentG has been approximated on an infinite
support for the sake of analytical handiness (see App. A1).
Therefore Fejer’s kernels relative to the average will cause
oscillations in the spectral plots whereas the fluctuating part
of the spectrum will be smooth.

2.3 Validation

Before performing simulations and a parametric study of
Eq. (15) we proceed to validating, or better, checking the
consistency of our analytic model, especially as regards cal-
ibration, which is of crucial importance, with the numeri-
cal model of FBM based on Monte-Carlo and described in
App. A3. For a unique medium, the expression (15) of the
spectrum reduces to:∣∣∣F̃ (ξ)

∣∣∣2 = µ2 sin2 Nξ
2

sin2 ξ
2

+
N2

J

σ 2(
ξ2

0 + ξ2
)1+β/2

. (16)

Since the interval [ka , kb] where the slope is estimated has
some influence on the results, we determined the best fitting
by plotting the difference1β = βest−β between the true and
the estimated spectral index as a function of the bounds (ka ,
kb) in six situations of the three parameters (µ, σ , β) (Fig. 2).
From this figure, it comes out that the best fitting interval,
given by the level curve1β = 0, is about [−0.8,+0.2] in the
caseβ = 2. In other cases, the spectrum of raw data is con-
taminated by Fejer’s kernel contribution and the fitting inter-
val is not so relevant because the spectrum is rather straight.
The actual bounds are therefore chosen as log10 ka = −0.766
and log10 kb = 0.181.

Examples of this analytical spectrum for a single medium
sampled with one hundred points, together with a realisation
of the numerical spectra possessing the sameµ, σ , β sampled
with one thousand points (N = 1000) are shown on Fig. 3.
The sampling of our analytical model is exponential whereas
that of the numerical realisation is linear.

The agreement between both models seems quite satisfy-
ing, as regards levels and slopes. The two situations of raw
data (Fig. 3, left side) and detrended data (Fig. 3, right side)
are displayed. Note that whenµ/σ ≥ 1, the fluctuation com-
ponent is larger than the steady component and the estima-
tion of β is altered whereas whenµ/σ � 1, µ = 0 in the
limit of detrended data, the fractal component is predomi-
nant and the trueβ is ideally retrieved. In the former case,
the first term in Eq. (16), Fejer’s Kernel, is dominant and
since it admits as envelope the equivalent expression:∣∣∣F̃ (ξ)

∣∣∣2 ∝ 4
µ2

ξ2
(17)

we conclude that the slope of the spectrum tends towards
−2 (Rustom and B́elair, 1997). As could be also expected,
even for detrended data (µ = 0) the numerical spectrum oscil-
lates at small scales whereas our analytical spectrum does not
(Figs. 3b, d, f and 4e), since we kept the smoothed fluctuation

spectrum unconvolved with Dirichlet kernel (see App. A1,
Eq. A12 instead of Eq. A10).

2.4 Simulations

The influence of the eight parametersN1, N2, µ1, µ2, σ1, σ2,
β1 andβ2 can be now examined. The analytic spectra defined
by relation (15) are sampled with one hundred points and the
slope−β is computed (βest ) between the bounds chosen in
the previous subsection (Fig. 4). On the same figure, the nu-
merical FBM is illustrated withN = 1000. As we shall see in
Sect. 3, more points are necessary to the fitting of the spectral
curves (31 points) as compared to that of roughness curves (6
points) because of oscillations present in the spectra at mid-
dle scales, caused by Fejer’s kernels due to the contribution
of average in relation (15). The size of the samples (N = 100,
1000, 10 000) has been chosen in relation with the analysis
of real data performed in standard works.

In double logarithmic scales the curves have approxi-
mately straight decreasing parts at small and middle scales,
so that straight lines can be fitted to them, andβ be esti-
mated (Fig. 4). The interplay between the contribution due
to Fejer’s kernels (envelope slope close to−2) and the frac-
tal spectrum causes large discrepancies except with detrented
data (Fig. 4e). For raw data this leads to underestimatingβ

and to non-monotonous variations ofβ as a function of pa-
rameters.

Assuming that region 1 is the background and region 2 is
the structure under study, we distinguished on the one hand
two cases due to a gap of the statistical parametersµ and
σ (monofractal discontinuity): a) aµ-type, consisting in a
gap ofµ only, with all other parameters unchanged; b) aσ -
type, consisting in a gap ofσ only, with all other parameters
unchanged (µ > σ)

and a special, detrended,σ -type, with only a gap ofσ and
µ1 = µ2 = 0.

The spectral index is chosen as describing typically:
a) anti-correlated (A) or anti-persistent fluctuations (β = 1);
b) non-correlated (N) fluctuations (β = 2);
c) correlated (C) or persistent fluctuations (β = 3).

On the other hand we distinguish three cases due to a gap
in the spectral indexβ (true bifractal discontinuity):
a) an A-N case, consisting in two regions (β1 = 1 ; β2 = 2)
with same (µ, σ);
b) an N-C case, consisting in two regions (β1 = 2; β2 = 3)
with same (µ, σ);
c) an A-C case, consisting in two regions (β1 = 1 ; β2 = 3)
with same (µ, σ).

In the monofractal cases (Figs. 5a, c, e), the discontinuity
is due to a gap ofµ, σ on raw data (solid and dotted lines)
or only σ on detrended data (dashed line). As pointed out
above, Fejer’s kernels produce sidelobes in the total spectrum
which are reflected in oscillations on theβ(N2/N ) plot when
µ1 6= µ2 and they are enhanced as the ratioµ/σ increases.
They become smoother asβ → 1 because the fractal spec-
trum has then a smaller slope and it is therefore above the
steady component spectrum ifµ/σ is large enough (Fig. 5a).
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(a) µ = 5 ; σ = 1 ; β = 1 ;    (b) µ = 0 ; σ =1 ; β = 1 ; 

βest an  = 1.087 ; βest num  = 1.061  βest an  = 1.000 ; βest num  = 1.158 

 
(c) µ = 5 ; σ = 1 ; β = 2 ;    (d) µ = 0 ; σ = 1 ; β = 2 ; 

βest an  = 1.989 ; βest num  = 2.037  βest an  = 2.000 ; βest num  = 1.952 

 
(e) µ = 5 ; σ = 1 ; β = 3 ;    (f) µ = 0 ; σ = 1 ; β = 3 ; 

βest an  = 1.893 ; βest num  = 2.107  βest an  = 2.999 ; βest num  = 2.543 
 

Figure 3. Comparison of Power-Spectral Density (PSD) profiles for a single medium (N = 
1000) as given by the analytical formula (16) (solid smooth or upper curve) and as calculated 
from a realisation of the numerical FBM, App. A3 (solid wavy curve) with raw data (left) and 

detrended data (right). For the analytical model, the individual PSD contributions due to 
Fejer’kernel (dotted) and the fluctuations (dashed) are also plotted. 

Fig. 3. Comparison of Power-Spectral Density (PSD) profiles for a single medium (N = 1000) as given by the analytical formula (16) (solid
smooth or upper curve) and as calculated from a realisation of the numerical FBM, App. A3 (solid wavy curve) with raw data (left) and
detrended data (right). For the analytical model, the individual PSD contributions due to Fejer’kernel (dotted) and the fluctuations (dashed)
are also plotted.

On the opposite whenβ → 3 oscillations are stronger and
there is some kind of saturation effect since the estimatedβ

does not grow larger than 2.4 (Fig. 5e). These curves are
getting smoother asN increases (compare top, middle and
bottom curves).

In the purely bifractal cases (Figs. 5 b, d, f), the disconti-
nuity is due essentially to a gap ofβ. The oscillations are still
contaminating the results though a trend is clearly shown by
the curveµ1 = µ2 (dotted line) growing monotonously from
β1 to β2 asN2 goes up toN . Detrended data (µ = 0) produce
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(a) µ  1 = 5 ; µ2 = 10 ; σ1 = 1 ; σ2 = 1 ; (b) µ1 = 5 ; µ2 = 5 ; σ1 = 1 ; σ2 = 1 ; 

β1 = 2 ; β2 = 2 ;     β1 = 1 ; β2 = 2 ; 
βest an = 2.081 ; βest num = 2.006  βest an = 1.284 ; βest num  = 1.518 

 
(c) µ  1 = 10 ; µ2 = 10 ; σ1 = 1 ; σ2 = 5 ; (d) µ1 = 5 ; µ2 = 5 ; σ1 = 1 ; σ2 = 1 ; 

β1 = 2 ; β2 = 2 ;    β1 = 2 ; β2 = 3 ; 
βest an = 1.979 ; βest num = 2.070  βest an = 1.927 ; βest num = 2.114 

 
(e) µ  1 = 0 ; µ2 = 0 ; σ1 = 1 ; σ2 = 5 ;   (f) µ1 = 5 ; µ2 = 5 ; σ1 = 1 ; σ2 = 1 ;  

β1 = 2 ; β2 = 2 ;    β1 = 1 ; β2 = 3 ; 
βest an = 2.000 ; βest num = 2.005  βest an = 1.276 ; βest num = 1.433 

 
Figure 4. Examples of Power-Spectral Density (PSD) profiles for monofractal (left) and 

bifractal (right) discontinuities (N1 = N2 = 500) as given by the analytical formula (15) (solid 
Fig. 4. Examples of Power-Spectral Density (PSD) profiles for monofractal (left) and bifractal (right) discontinuities (N1 = N2 = 500) as
given by the analytical formula (15) (solid smooth or upper curve) and as calculated from a realisation of the numerical FBM, App. A3 (solid
wavy curve).

ideal variations of the estimatedβ (dashed lines) since the
contribution of the steady component is removed, and only

the mixing of the pure fractal spectra comes into play. The
functionβ(N2/N ) is either constant for the monofractal dis-
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(a) β  1 = 1 ; β2 = 1 (A-A)   (b) β1 = 1 ; β2 = 2 (A-N) 

 
(c) β  1 = 2 ; β2 = 2 (N-N)   (d) β1 = 2 ; β2 = 3 (N-C) 

 
(e) β  1 = 3 ; β2 = 3 (C-C)   (f) β1 = 1 ; β2 = 3 (A-C) 

 
Figure 5. Variations of the estimated spectral index β as a function of the relative structure 

size N2/N in the µ, σ and detrended cases for monofractal (left) and bifractal (right) 
discontinuities. In each plot, N = 100 (upper curves), N = 1000 (middle curves) and N = 
10000 (lower curves) ; the middle and lower curves are shifted downwards by –1 and –2 

respectively to avoid confusion. 
µ1 = 5 ; µ2 = 10 ; σ1 = 1 ; σ2 = 1 (solid line) 

µ1 = 10 ; µ2 = 10 ; σ1 = 1 ; σ2 = 5 (dotted line) 
µ1 = 0 ; µ2 = 0 ; σ1 = 1 ; σ2 = 5 (dashed line) 

 

Fig. 5. Variations of the estimated spectral indexβ as a function of the relative structure sizeN2/N in theµ, σ and detrended cases for
monofractal (left) and bifractal (right) discontinuities. In each plot,N = 100 (upper curves),N = 1000 (middle curves) andN = 10 000
(lower curves); the middle and lower curves are shifted downwards by−1 and−2, respectively to avoid confusion.µ1 = 5; µ2 = 10;σ1 = 1;
σ2 = 1 (solid line).µ1 = 10;µ2 = 10;σ1 = 1; σ2 = 5 (dotted line).µ1 = 0; µ2 = 0; σ1 = 1; σ2 = 5 (dashed line).

continuity or increasing for the bifractal discontinuity. Note
that in this latter case, the medium with smallerσ is predom-
inant (σ1 < σ2) and steepens the increase asN2/N → 1.

For a monofractal discontinuity, the influence of (β1, β2)

such thatβ1 = β2 is also investigated withN1 = N2 = N /2
(Fig. 6). It appears thatβ is overestimated ifβ < 2 (Fig. 6b)
much more for aµ-gap with an amount1β = 0.2 (N =
10 000) to1β = 0.7 (N = 100), than for aσ -gap with1β

= 0.05 (N = 10 000) to1β = 0.2 (N = 100). Of course the

saturation effect mentioned before occurs forβ > 2 in any
(µ,σ) situation, even whenµ1 ≈ µ2, since Fejer’s kernel is
still present, although weighted by the productµ1µ2:

∣∣∣F̃ (ξ)

∣∣∣2 =

µ1µ2
sin2 Nξ

2

sin2 ξ
2

+
N2

1

J1

σ 2
1(

ξ2
0 + ξ2

)1+β1/2
+

N2
2

J2

σ 2
2(

ξ2
0 + ξ2

)1+β2/2
. (18)
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Thus the influence of Fejer’s kernel is perfectly cancelled out
if and only if µ1 = µ2 = 0 (Fig. 6c) and this property may
justify trend-corrected methods such as the Detrended Fluc-
tuation Analysis (DFA).

For a bifractal discontinuity, the influence ofβ2 whenβ1
is kept constant is investigated withN1 = N2 = N /2 (Fig. 7).
The medium with anti-correlated fluctuations (β1 = 1) is
clearly predominant (Figs. 7a, c). This can be explained by
the fact that its slope being smaller, the spectrum will have
relatively more energy at middle scales. Nevertheless, for
raw data (µ 6= 0) a saturation effect due to Fejer’s kernel
adds up whenβ1 � 2 (Fig. 7e). In any case the curves in-
tersect the diagonal ideally for large N atβ1 = β2, i.e. where
the whole sample is monofractal, and the overestimation1β

amounts 0.2 (N = 10 000) up to 0.7 (N = 100).

3 Fractal analysis

3.1 Method

The box counting method, which will be applied here, con-
sists in computing the standard deviationσ of data in a glid-
ing box of constant sizeL, then taking the ensemble average
σ of σ . By repeating the operation for different sizesL, we
can plot the functionσ = f (L). In simple situations, it can
be modelled by a power law:

σ (L) = σ0

(
L

L0

)H

(19)

and the slopes of straight parts in double logarithmic scales
yield the scaling exponentH , the so-called Hurst parameter,
related to the fractal dimensionD by (Moghaddam et al.,
1991):

H = E + 1 − D, (20)

whereE is the topological dimension. This is an approxi-
mation which does not hold for certain classes of processes
(Gneiting and Schlather, 2004). ActuallyH describes the
asymptotic behaviour at large correlation distances whereas
D scales the growing rate at small distances.

Let us mention by the way that a monofractal structure
should be characterised not only by its fractal dimension
(or Hurst exponent) but also by its lacunarity3 through
a box counting or moments method (Mandelbrot, 1982;
Moghaddam et al., 1991; Blumenfeld and Mandelbrot, 1997;
Domon and Honda, 1999) or the dilation method (Domon
and Honda, 1999). Unfortunately, this quantity is a function
3(L) of the box sizeL and, so far as we know, no link with
the lacunarity parameterγ in expressions (4) and (5) has yet
been proposed. Therefore we shall restrict ourselves to the
roughness analysis.

3.2 Analytical model

As a complement information to the spectral analysis it is
important to study the influence of a discontinuity on the es-
timation of the roughness parameterH . In that purpose, a

 

 

 
 

 
(a) µ  1 = 5 ; µ2 = 10 ; σ1 = 1 ; σ2 = 1 

 
(b) µ  1 = 10 ; µ2 = 10 ; σ1 = 1 ; σ2 = 5 

 
(c) µ  1 = 0 ; µ2 = 0 ; σ1 = 1 ; σ2 = 5 

 
Figure 6. Variations of the estimated spectral index β as a function of the spectral index 
β1 = β2 (monofractal discontinuity) for raw (a, b) and detrended (c) data. In each plot, 

N = 100, N1 = N2 = 50 (dotted line), N = 1000, N1 = N2 = 500 (dashed line), N = 10000, 
N1 = N2 = 5000 (dotted-dashed line) and diagonal β = β1 (solid line). 

Fig. 6. Variations of the estimated spectral indexβ as a function of
the spectral indexβ1 = β2 (monofractal discontinuity) for raw(a),
(b) and detrended(c) data. In each plot,N = 100,N1 = N2 = 50
(dotted line),N = 1000,N1 = N2 = 500 (dashed line),N = 10 000,
N1 = N2 = 5000 (dotted-dashed line) and diagonalβ = β1 (solid
line).

one-dimensional analytical model has been built up and the
details of its derivation are described in App. A2. LetN1,
N2 be the pixel numbers in regions 1 and 2,µ1, µ2 the mean
levels,σ1, σ2 the standard deviations andH1, H2 the Hurst
parameters of the fluctuating scalar fieldsF1 andF2 (Fig. 1).
Like in the spectral analysis we shall make the distinction
between raw (µ 6= 0) and detrended (µ = 0) data.

For a normalised box size containingL pixels, the average
standard deviation in the box through scanning of each of the
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(a) µ  1 = 5 ; µ2 = 5 ; σ1 = 1 ; σ2 = 1 ;  (b) µ1 = 0 ; µ2 = 0 ; σ1 = 1 ; σ2 = 1 ; 

β1 = 1      β1 = 1 

 
(c) µ  1 = 5 ; µ2 = 5 ; σ1 = 1 ; σ2 = 1 ;   (d) µ1 = 0 ; µ2 = 0 ; σ1 = 1 ; σ2 = 1 ; 

β1 = 2      β1 = 2 

 
(e) µ  1 = 5 ; µ2 = 5 ; σ1 = 1 ; σ2 = 1 ;  (f) µ1 =0 ; µ2 = 0 ; σ1 = 1 ; σ2 = 1 ; 

β1 = 3      β1 = 3 
 

Figure 7. Variations of the estimated spectral index β as a function of the spectral index β2 
(bifractal discontinuity) for raw (left) and detrended (right) data. In each plot, N = 100, 

N1 = N2 = 50  (dotted line), N = 1000, N1 = N2 = 500  (dashed line), N = 10000, 
N1 = N2 = 5000 (dotted-dashed line) and diagonal β = β1 (solid line). 

 

Fig. 7. Variations of the estimated spectral indexβ as a function of the spectral indexβ2 (bifractal discontinuity) for raw (left) and detrended
(right) data. In each plot,N = 100,N1 = N2 = 50 (dotted line),N = 1000,N1 = N2 = 500 (dashed line),N = 10 000,N1 = N2 = 5000
(dotted-dashed line) and diagonalβ = β1 (solid line).

regions is given by the expressions:

σ (L) = σ1

(
L

N1

)H1

σ (L) = σ2

(
L

N2

)H2

(21)

and for the global data by the expressions (App. A2):

a) if 0 ≤ L ≤ min(N1, N2)

(N−L+1)σ (L)=

L−1∑
n=1

√
n

L
σ 2

1

(
L
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)2H1

+

(
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n

L

)
σ 2
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(
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)2H2

+
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L

)
(µ1−µ2)

2
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+σ1(N1+1−L)

(
L

N1

)H1

+σ2(N2+1−L)

(
L

N2

)H2

(22)

b) if max(N1, N2) ≤ L ≤ N

(N − L + 1)σ (L) =

N−L+1∑
n=1

√
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σ 2
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+
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)
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2 (23)

c) if min(N1, N2) ≤ L ≤ max(N1, N2) andN1 < N2

(N − L + 1)σ (L) =

N1∑
n=1

√
n

L
σ 2
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(
L
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+
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2 (24)

+σ2(N2 + 1 − L)

(
L

N2

)H2

d) if min(N1, N2) ≤ L ≤ max(N1, N2) andN2 < N1

(N − L + 1)σ (L) =

N2∑
n=1

√
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+
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2 (25)

+σ1(N1 + 1 − L)

(
L

N1

)H1

with the trivial cases

e) if N1 = 0 : σ(L) = σ2

(
L

N

)H2

(26)

and

f) if N2 = 0 : σ(L) = σ1

(
L

N

)H1

. (27)

At “small” scales, which are described by expression (22),
the sum of the first term represents the discontinuity, whereas
the other two terms represent the textures of media 1 et 2
separately. At “large” scales, which are described by ex-
pression (23), there only remains the contribution of the dis-
continuity because, in that case, the discontinuity always lies
within the gliding box. The intermediate scales are described
by expressions (24) and (25), and the limit cases by expres-
sions (26) and (27).

3.3 Validation

Before performing simulations and a parametric study of re-
lations (22)–(27) we proceed, like in the spectral analysis, to
checking the consistency of our analytic model, mainly as
regards calibration, with the numerical model of FBM de-
scribed in App. A3. Note that for a unique medium, the ex-
pressions (22)–(27) reduce to:

σ(L) = σ0

(
L

N

)H

. (28)

The bounds (La , Lb) of the linear regression interval have
been chosen in consistency with those (ka , kb) of the spectral
analysis (Sect. 2.3) such that:

kaLa = 2π kbLb = 2π. (29)

The actual bounds, compatible with relations (29) and the
exponentialL-sampling, are therefore chosen as log10 La =
0.632 and log10 Lb = 1.579.

Examples of this analytical model are plotted on Fig. 8, to-
gether with the roughness graph of a realisation of the FBM
possessing the sameµ, σ , β (same cases as with Fig. 3). The
agreement between both models seems quite satisfying, as
regards levels and slopes, except for the slope whenH ap-
proaches zero. As we explained in App. A3, this behaviour
is not really a difficulty here since we are interested in vali-
dating first of all the calibration, i.e. the function levels, and
the slopes in most of the cases. Note that these graphs are
not contaminated with oscillations, either for raw (Fig. 8, left
side) or detrended (Fig. 8, right side) data.

3.4 Simulations

A sensitivity analysis to the parameters of the analytical
model can be now performed. Indeed, expressions (22)–(25)
show that wheneverµ1 6= µ2 only the ratiosσ1/|µ1–µ2| and
σ2/|µ1–µ2| are relevant, rather thanµ1, µ2, σ1 andσ2 sep-
arately. Therefore, we may define the dimensionless ratios
(µ1 6= µ2):

r1 =
σ1

|µ1 − µ2|
r2 =

σ2

|µ1 − µ2|
(30)

and reduce the number of degrees of freedom to six:N1, N2,
r1, r2, H1, H2 whereverN1 6= 0 andN2 6= 0. Nevertheless,
for the sake of consistency with the spectral approach, we
shall deal with the same parameter sets (µ, σ) as in Sect. 2.4.
Note that whenµ1 is equal toµ2, the expression under the
square root reduces to the ordinary superposition rule (Chen
et al., 2002) and does not depend onµ1, µ2 any more.

The analytic spectra are sampled with only twenty points
and the slopeH is computed (Hest ) between the bounds (6
points) chosen in the previous subsection (Fig. 10). The rea-
sons for that are essentially:
– oscillations are present in the PSD (15) but not in the rough-
ness function (22)–(27);
– there is a slope change on roughness curves for windows
of large size (log L> 2.5).

These profiles have nearly straight increasing parts at
small and middle scales, so that straight lines can be fitted to
them. Even in monofractal cases,H is much overestimated
when there is aµ-gap |µ1 – µ2| (Fig. 9a) and less with a
σ -gap |σ1 – σ2| (Fig. 9b). At large scales, curves generally
have a maximum and a decreasing part. It should be noted
that also in the bifractal case (Fig. 9, right) the curve has
an extended inertial range for log L<2.5: theH -estimator
sees the global structure as if it were homogeneous, i.e. as a
monofractal.
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(a) µ = 5 ; σ = 1 ; H = 0 ;    (b) µ = 0 ; σ = 1 ; H = 0 ; 

Hest an  = 0.000 ; Hest num  = 0.228  Hest an  = 0.000 ; Hest num  = 0.225 

 
(c) µ = 5 ; σ = 1 ; H = 0.5 ;    (d) µ = 0 ; σ = 1 ; H = 0.5 ; 

Hest an  = 0.500 ; Hest num  = 0.495  Hest an  = 0.500 ; Hest num  = 0.512 

 
(e) µ = 5 ; σ = 1 ; H = 1 ;    (f) µ = 0 ; σ = 1 ; H = 1 ; 

Hest an  = 1.000 ; Hest num  = 0.997  Hest an  = 1.000 ; Hest num  = 0.989 
 

Figure 8. Comparison of roughness graphs for a single medium as given by the analytical 
formulas (22)-(27) (crosses) and as calculated from a realisation of the numerical FBM, 

App. A3 (solid curve) (N = 1000) with raw data (left) and detrended data (right). 
Same cases as Fig. 3. 

 

 

Fig. 8. Comparison of roughness graphs for a single medium as given by the analytical formulas (22)–(27) (crosses) and as calculated from
a realisation of the numerical FBM, App. A3 (solid curve) (N = 1000) with raw data (left) and detrended data (right). Same cases as Fig. 3.

When one of the two media has anti-correlated fluctua-
tions (H1 = 0), the curve exhibits a kind of crossover at large
scales and becomes slightly steeper (Figs. 9b, f). This is in
perfect agreement with another published approach based on
DFA (Chen et al., 2002). Note that unlike in the spectral ap-
proach, the analysis of raw data withoutµ-gap (µ1 = µ2) or
detrended data (µ = 0) will give the same result (Figs. 9c, e)

as could be expected from relations (22)–(25).
We assumed again that region 1 is the background, region

2 is the structure under study, and we distinguished the two
monofractal cases (gap inµ andσ) like in the spectral anal-
ysis. The fractal scaling exponent is chosen as describing:
a) anti-correlated (A) or anti-persistent fluctuations (H = 0);
b) non-correlated (N) fluctuations (H = 1/2);
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(a) µ  1 = 5 ; µ2 = 10 ; σ1 = 1 ; σ2 = 1 ; (b) µ1 = 5 ; µ2 = 5 ; σ1 = 1 ; σ2 = 1 ; 

H1 = 0.5 ; H2 = 0.5 ;     H1 = 0 ; H2 = 0.5 ; 
Hest an =  0.568 ; Hest num = 0.579  Hest an =  0.076 ; Hest num  = 0.306 

 
(c) µ  1 = 10 ; µ2 = 10 ; σ1 = 1 ; σ2 = 5 ; (d) µ1 = 5 ; µ2 = 5 ; σ1 = 1 ; σ2 = 1 ; 

H1 = 0.5 ; H2 = 0.5 ;    H1 = 0.5 ; H2 = 1 ; 
Hest an = 0.503 ; Hest num = 0.495  Hest an = 0.576 ; Hest num  = 0.580 

 
(e) µ  1 = 0 ; µ2 = 0 ; σ1 = 1 ; σ2 = 5 ;   (f) µ1 = 5 ; µ2 = 5 ; σ1 = 1 ; σ2 = 1 ;  

H1 = 0.5 ; H2 = 0.5 ;    H1 = 0 ; H2 = 1 ; 
Hest an =  0.503 ; Hest num = 0.502  Hest an = 0.036 ; Hest num  = 0.289 

 

Figure 9. Examples of roughness graphs for monofractal (left) and bifractal (right) 
discontinuities (N1 = N2 = 500) as given by the analytical formulas (22)-(27) (crosses) 

and as calculated from a realisation of the numerical FBM, App. A3 (solid curve) (N = 1000). 
Same cases as Fig. 4. 

Fig. 9. Examples of roughness graphs for monofractal (left) and bifractal (right) discontinuities (N1 = N2 = 500) as given by the analytical
formulas (22)–(27) (crosses) and as calculated from a realisation of the numerical FBM, App. A3 (solid curve) (N = 1000). Same cases as
Fig. 4.

c) correlated (C) or persistent fluctuations (H = 1).

On the other hand we define three cases due to a gap in the
fractal indexH (true bifractal discontinuity):

a) an A-N case, consisting in two regions (H1 = 0; H2 = 1/2)
with same (µ,σ);
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(a) H  1 = 0 ; H2 = 0 (A-A)    (b) H1 = 0 ; H2 = 0.5 (A-N) 

 
(c) H  1 = 0.5 ; H2 = 0.5 (N-N)   (d) H1 = 0.5 ; H2 = 1 (N-C) 

 
(e) H  1 = 1 ; H2 = 1 (C-C)    (f) H1 = 0 ; H2 = 1 (A-C) 

 
Figure 10. Variations of the estimated fractal index H as a function of the relative structure 

size N2/N in the µ, σ and detrended cases for monofractal (left) and bifractal (right) 
discontinuities. In each plot, N = 100, N1 = N2 = 50 (upper curves), N = 1000, N1 = N2 = 500 
(middle curves) and N = 10000, N1 = N2 = 5000 (lower curves) ; the middle and lower curves 

are shifted downwards by –1 and –2 respectively to avoid confusion. 
Same cases as Fig. 5. 

µ1 = 5 ; µ2 = 10 ; σ1 = 1 ; σ2 = 1 (solid line) 
µ1 =10 ; µ2 = 10 ; σ1 = 1 ; σ2 = 5 (dotted line) 
µ1 = 0 ; µ2 = 0 ; σ1 = 1 ; σ2 = 5 (dashed line) 

 

Fig. 10. Variations of the estimated fractal indexH as a function of the relative structure sizeN2/N in theµ, σ and detrended cases for
monofractal (left) and bifractal (right) discontinuities. In each plot,N = 100,N1 = N2 = 50 (upper curves),N = 1000,N1 = N2 = 500 (middle
curves) andN = 10 000,N1 = N2 = 5000 (lower curves); the middle and lower curves are shifted downwards by−1 and−2 respectively to
avoid confusion. Same cases as Fig. 5.

b) an N-C case, consisting in two regions (H1 = 1/2;H2 = 1)
with same (µ,σ);

c) an A-C case, consisting in two regions (H1 = 0; H2 = 1)
with same (µ,σ).

In the monofractal cases (Figs. 10a, c, e), the discontinuity
is due to a gap ofµ or σ . The absence of oscillations enables
a much better retrieval of the true behaviour and detrending
the data does not make any difference ifµ1 = µ2 (dotted and
dashed lines coincide). Of course, the presence of the term

proportional to (µ1 − µ2)
2 under the square root enhances

some discrepancies at the segment boundaries (Fig. 10c, up-
per curves, solid line) and produces an overestimation in gen-
eral, but these effects are smoothed asN increases (ibid.
lower curves).

In the purely bifractal cases, the discontinuity is due to a
gap ofH (Figs. 10b, d, f). The monotonous increase of the
functionH (H2) is well verified, except for small irregulari-
ties at the segment boundaries too, in the vicinity ofN2 = 0
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(a) µ  1 = 5 ; µ2 = 10 ; σ1 = 1 ; σ2 = 1 

 
(b) µ  1 = 10 ; µ2 = 10 ; σ1 = 1 ; σ2 = 5 

 
(c) µ  1 = 0 ; µ2 = 0 ; σ1 = 1 ; σ2 = 5 

 
Figure 11. Variations of the estimated fractal index H as a function of the fractal index 
H1 = H2 (monofractal discontinuity) for raw (a, b) and detrended (c) data. In each plot, 

N = 100, N1 = N2 = 50 (dotted line), N = 1000, N1 = N2 = 500 (dashed line), N = 10000, 
N1 = N2 = 5000 (dotted-dashed line) and diagonal H = H1 (solid line). 

Same cases as Fig. 6. 

Fig. 11. Variations of the estimated fractal indexH as a function of
the fractal indexH1 = H2 (monofractal discontinuity) for raw(a),
(b) and detrended(c) data. In each plot,N = 100,N1 = N2 = 50
(dotted line),N = 1000,N1 = N2 = 500 (dashed line),N = 10 000,
N1 = N2 = 5000 (dotted-dashed line) and diagonalH = H1 (solid
line). Same cases as Fig. 6.

andN2 = N for small N (N = 100, 1000) due to sampling
effects, which tend to vanish for largerN (N = 10 000, lower
curves). Note that in this latter case the well-behaved pro-
files are highly non-linear and quickly increase nearN2 = N .
This behaviour is quite similar to that of the spectral index
(Figs. 5b, d, f).

For a monofractal discontinuity, the influence of (H1, H2)

such thatH1 = H2 is also investigated withN1 = N2 = N /2
(Fig. 11). It shows the retrieved parameterHest to differ a

little in excess from the theoretical valueH whenµ1 6= µ2
(Fig. 11a), with1H = 0.05 (N = 10 000) up to1H = 0.15
(N = 100), but to get very close toH as σ /µ increases
(Figs. 11b, c) whatever beH between 0 and 1. Moreover,
as could be expected, the behaviour is exactly the same for
detrended data (µ = 0; Fig. 11c) or for raw data withoutµ-
gap (µ1 = µ2; Fig. 11b), and there is nearly no difference be-
tween estimated and original value. This again confirms pub-
lished results already mentioned (Chen et al., 2002). Other
authors (Schmittbuhl et al., 1995) found that small self-affine
exponents are overestimated whereas large exponents are un-
derestimated, which is rather the behaviour we found our-
selves with the spectral method (Figs. 6a, b).

For a bifractal discontinuity, the influence ofH2 when
H1 is kept constant is investigated withN1 = N2 = N /2
(Fig. 12). It appears that the anti-correlated fluctuations (H1
= 0) are predominant and cancel out the influence of the
correlated fluctuations (Figs. 12a, b). The estimation is im-
proved when the first medium is subject to correlated fluctu-
ations (Fig. 12c). This is in agreement with already quoted
works (Chen et al., 2002) which show that the behaviour of
σ(L) is dominated byH1 at small scales andH2 at large
scales whenH1 < H2. There is again a slight overestimation
of 1H amounting 0.05 (N = 10 000) up to 0.15 (N = 100).

4 Consistency of both approaches

As relation (6) suggests, we may try to a certain extent to
connect in our context (E=1) the behaviours of the spectral
indexβ and the Hurst exponentH to check the consistency
of both approaches.

A first difficulty arises because of the oscillations in the
spectra, but this input is necessary because the gap of average
levels (trends) is an important component of the discontinu-
ity. A second problem is due to the property that the fractal
model actually depends on two normalised parametersr1 and
r2 through (30), whereas the spectral model depends on the
four original parametersµ1, µ2, σ1 andσ2.

In connection with these features, from theβ(β2) and
H(H2) plots (Figs. 6 and 11, respectively) we can expect
good consistency in the anti-correlation range (1< β < 2
and 0< H < 1/2) and some saturation effects in the corre-
lation range (2< β < 3 and 1/2< H < 1). We choose the
inputβ1 andβ2 as equal to 2H1+1 and 2H2+1 so that we can
check whether the output (β, H ) is such thatβ = 2H+1, for a
monofractal (Fig. 13) and a bifractal (Fig. 14) discontinuity.

For a monofractal discontinuity, relation (6) is exactly sat-
isfied when data is trend-corrected (Fig. 13c). Otherwise,
approximate linearity withβ > 2H + 1 holds in the anti-
correlation range and saturation takes place atβ ≈ 2 in the
correlation range. Theµ-gap (Fig. 13a) produces a larger
deviation|2H + 1 − β| than theσ -gap (Fig. 13b). This de-
viation vanishes in the vicinity of the correlation point (H =
1/2). The sample numberN has little influence on the gen-
eral behaviour and the saturation.
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(a) µ  1 = 5 ; µ2 = 5 ; σ1 = 1 ; σ2 = 1 ; 

H1 = 0 

 
(b) µ  1 = 5 ; µ2 = 5 ; σ1 = 1 ; σ2 = 1 ; 

H1 = 0.5 

 
(c) µ  1 = 5 ; µ2 = 5 ; σ1 = 1 ; σ2 = 1 ; 

H1 = 1 
 

Figure 12. Variations of the estimated fractal index H as a function of the fractal index H2 
without µ or σ gap (bifractal discontinuity). In each plot, N = 100, N1 = N2 = 50 (dotted line), 

N = 1000, N1 = N2 = 500 (dashed line), N = 10000, N1 = N2 = 5000 (dotted-dashed line) 
and diagonal H = H1 (solid line). Same cases as Fig. 7. 

 

Fig. 12. Variations of the estimated fractal indexH as a function of
the fractal indexH2 withoutµ or σ gap (bifractal discontinuity). In
each plot,N = 100,N1 = N2 = 50 (dotted line),N = 1000,N1 = N2
= 500 (dashed line),N = 10 000,N1 = N2 = 5000 (dotted-dashed
line) and diagonalH = H1 (solid line). Same cases as Fig. 7.

For a bifractal discontinuity, the saturation has the effect of
cutting off the curve partH > H1, β > β1. Raw data show
relation (6) to be roughly satisfied in the anti-correlation
range with a slight overestimation ofβ (Fig. 14, left side).
Despite the cut-off, detrended data provide a better verifica-
tion of relation (6), with a small underestimation ofβ, and
the best agreement is obtained atH1 = H2 and β1 = β2

(Fig. 14, right side).
A somewhat similar comparison of two methods (rescaled-

range and spectral analyses) has been carried out for a ho-
mogeneous medium subject to a pure FGN and several other
kinds of processes (Rangarajan and Ding, 2000). This work
shows that one of the two methods fails as soon as the under-
lying process is not fundamental and therefore relation (7)
is not satisfied. For the standard analysis methods, relations
(6) and (7) have been shown to work with Gaussian processes
but to fail with log-normal processes (Malamud and Turcotte,
1999).

The influence of nonstationarities on the parameter re-
trieval by pure DFA has been addressed (Chen et al., 2000)
in a more complex situation for a medium or signal com-
posed of patches of two kinds randomly distributed whereas
we consider only two such patches. Moreover, DFA requires
a local linear fit of data in intervals which may have an impact
on the results. The superposition rule in this work misses the
termµ1 − µ2 due to theµ-gap and its influence.

5 Conclusion and prospects

The present paper has shown how much the structure of
an inhomogeneous scalar field can influence the measure-
ment of its own texture. The original model of discontinu-
ity in a fractal field presented here has the advantage of not
needing any calculation of a fractal field using a particular
algorithm (multiplicative cascades, Weierstrass-Mandelbrot
series, fractional integration of white noise. . . ) or random
functions, and it may pretend to some kind of universal char-
acterisation. Nevertheless, this approach requires a careful
calibration of the amplitude spectra (12) and the roughness
function (21), which is a crucial step because it determines
their precise dependence on the momentsµ andσ .

This puts stress on the advantage of removing trends in
data prior to processing, provided transitions and linear be-
haviour can be simply detected. If not, detrending may alter
spectral slopes (Malamud and Turcotte, 1999). Moreover,
the difficulty due to Fejer’s kernel in estimating the slope of
the side lobes is well known and has been addressed else-
where (Rustom and B́elair, 1997).

Since we chose the outer scale wave numberk0 (or ξ0 di-
mensionless) as inversely proportional to the total number
of pointsN , we made its influence vanishing for largeN .
Nevertheless, for small samples, this parameter has a great
importance: the media is no longer a pure fractal.

As for the fitting range, there is no definitive way to choose
it, because it depends on the ratioµ/σ (Fig. 3). According
to its value, the envelope of Fejer’s kernel and the fractal
spectrum cross at a specific abscissaki : in the rangek < ki ,
the latter contribution is higher, whilst in the rangek > ki ,
the former contribution is higher. The automatic detection of
the best fitting intervals and crossovers has been addressed
for geophysical data (Main et al., 1999), but for checking
consistency with the fractal analysis in our analytical model
it was simpler to take a compromise in a first step.
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The parametric study performed here shows that for a pure
µ-gap,H is well estimated everywhere though overestimated
(1H ≤ 0.15) andβ is overestimated in the anti-correlation
range (1β ≤ 0.7) and saturates in the correlation range (β

≤ 2.5). For a pureσ -gap the retrieval ofH is excellent
everywhere (1H ≤ 0.01) and the behaviour ofβ is better
than for aµ-gap, leading to less overestimation in the anti-
correlation range (1β ≤ 0.2). For detrended dataH andβ

are well estimated everywhere. For aβ-gap, saturation de-
grades measurements in the case of raw data and the medium
with smaller spectral index is dominant in the case of de-
trended data. For aH -gap, there is also predominance of the
medium with smaller fractal exponent. A similar comparison
carried out with 50 realisations of a FGN (Taqqu et al., 1995)
shows that the nominal value ofH is retrieved within 1% to
10% accuracy, depending on the method used, but unfortu-
nately, the problem of discontinuities is not addressed.

An interesting development of our one-dimensional model
would be to insert a finite-gradient transition between the re-
gions 1 and 2 (Fig. 14) so as to model a smoothed disconti-
nuity. The signal function in the transition medium 0 would
be locally split into an averageµ0 and a fluctuation with zero
mean and standard deviationσ0 like in Eq. (11). If this tran-
sition is composed of N0 points, it can be assumed thatµ0
andσ0 vary linearly in the intervals [µ1,µ2] and [σ1,σ2], re-
spectively:

{
µ0(x) =

µ2−µ1
N0−1 x + µ1

σ0(x) =
σ2−σ1
N0−1 x + σ1

0 ≤ x ≤ N0 − 1. (31)

This kind of profile would be quite relevant since it would
involve typical data segments from which linear trends are
removed in the DFA method.

We actually focused here on the monofractal description
of a bifractal object, because of our final purpose being the
inverse problem of 2D- or 3D-synthesis from a minimal set
of parameters. So to say, the present work basically considers
a bifractal structure and examines the behaviour of the global
structure seen as a monofractal.

Multifractals seem to be more realistic for modelling the
texture of satellite images (Parrinello and Vaughan, 2002),
the cloud liquid water content (Ivanova and Ackerman, 1999)
and the dynamics of atmospheric phenomena (Schertzer and
Lovejoy, 1988; Chigirinskaya et al., 1994; Lazarev et al.,
1994). Nevertheless, the factors affecting multiscaling anal-
ysis (Harris et al., 1997) and the distinction between genuine
and spurious multifractals have been also examined (Eneva,
1994; Tchiguirinskaia et al., 2000). Moreover, multifractal
generation would require much more descriptive parameters
(Tessier et al., 1993; Davis et al., 1994).

Because of this difficulty, the synthesis of multifractal data
in two or three dimensions using a parametric process is
not yet common, though very promising methods, based on
wavelets (Deguy and Benassi, 2001), are presently gaining
importance. In a multifractal analysis, instead of considering

 

 

 
(a) µ1 = 5 ; µ2 = 10 ; σ1 = 1 ; σ2 = 1 

 
(b) µ1 = 10 ; µ2 = 10 ; σ1 = 1 ; σ2 = 5 

 
(c) µ1 = 0 ; µ2 = 0 ; σ1 = 1 ; σ2 = 5 

Fig. 13. Consistency of the spectral and fractal approaches
(monofractal discontinuity) for raw(a), (b) and detrended(c) data.
In each plot,N = 100,N1 = N2 = 50 (dotted line),N = 1000,N1
= N2 = 500 (dashed line),N = 10 000,N1 = N2 = 5000 (dotted-
dashed line) and diagonalβ = 2H + 1 (solid line).

only the standard deviationσ such as expression (19), one
has to involve the p-th order moments defined by:

mp = (F − µ)p (32)

and such that:

mp (L) = m0

(
L

L0

)K(p)

, (33)

whereK(p) is the moment scaling function (Tessier et al.,
1993):

K(p) = pH(p). (34)
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(a) µ  1 = 5 ; µ2 = 5 ; σ1 = 1 ; σ2 = 1 ;  (b) µ1 = 0 ; µ2 = 0 ; σ1 = 1 ; σ2 = 1 ; 

H1 = 0 ; β1 = 1    H1 = 0 ; β1 = 1 

 
(c) µ  1 = 5 ; µ2 = 5 ; σ1 = 1 ; σ2 = 1 ;   (d) µ1 = 0 ; µ2 = 0 ; σ1 = 1 ; σ2 = 1 ; 

H1 = 0.5 ; β1 = 2    H1 = 0.5 ; β1 = 2 

 
(e) µ  1 = 5 ; µ2 = 5 ; σ1 = 1 ; σ2 = 1 ;  (f) µ1 =0 ; µ2 = 0 ; σ1 = 1 ; σ2 = 1 ; 

H1 = 1 ; β1 = 3    H1 = 1 ; β1 = 3 
 
Figure 14. Consistency of the spectral and fractal approaches (bifractal discontinuity) for raw 
(left) and detrended (right) data. In each plot, N = 100, N1 = N2 = 50 (dotted line), N = 1000, 

N1 = N2 = 500 (dashed line), N = 10000, N1 = N2 = 5000 (dotted-dashed line) 
and diagonal β = 2H+1 (solid line). 

 

Fig. 14. Consistency of the spectral and fractal approaches (bifractal discontinuity) for raw (left) and detrended (right) data. In each plot,N

= 100,N1 = N2 = 50 (dotted line),N = 1000,N1 = N2 = 500 (dashed line),N = 10 000,N1 = N2 = 5000 (dotted-dashed line) and diagonal
β = 2H + 1 (solid line).

For a monofractalH(p) is a constant, independent of the
order p. This development would therefore consist in ex-
tending the derivation of App. A2 to the moments of higher
order.

The standpoint of monofractals has two advantages. On
the one side, they require very few parameters and they are

less complex for generating a large amount of 2D- or 3D-
data in a short time, which is our very purpose. On the other
side, we may consider in the present work the modelling of
the first and second moments as a first step in the study of
multifractal fields; the next steps would consist in modelling
the moments of higher order (Eq. 33) in the same way.
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Even in the frame of monofractals, the present model is
based only on the estimation of the roughness parameterH .
Nevertheless, it is well-known that a fractal structure must
be characterised by its lacunarity, for which unfortunately
only partial estimators exist (Mandelbrot, 1982; Allain and
Cloitre, 1991; Albregtsen and Nielsen, 1995; Henebry and
Kux, 1995; Plotnick et al., 1996). In other words a set with a
given fractal dimension can be arranged to represent a broad
range of quite different structures, differing only by their la-
cunarity (Blumenfeld and Mandelbrot, 1997). Actually the
scaling relation (19) is subject to revision because the pref-
actorσ0 is not necessarily a constant:

σ (L) = σ0(L)

(
L

L0

)H

. (35)

Its variability has been proposed as a measure of lacunarity
(Blumenfeld and Mandelbrot, 1997). We expect that these
effects of lacunarity could be taken into account in a future
work.

The confidence of Hurst parameter (Schmittbuhl et al.,
1995), fractal dimension (Soille and Rivest, 1996) and spec-
tral index (Malamud and Turcotte, 1999) measurements has
been examined. It appears that the most robust methods
to evaluate the fractal dimension are those of the semi-
variogram, the flat structuring element and the power spec-
trum. This latter one is based on the relationship betweenβ

andD derived by combination of relations (6) and (20):

β = 3E + 2 − 2D (36)

with E = 2 in these authors’ work andE = 1 in ours. Al-
though the box counting method is less robust under linear
transformation, in our context it is much easier to handle.
Another extension to our work would consist in testing an-
other method.

The one-dimensional approach of the problem proposed
in this paper is basic because it naturally applies for instance
to in situ measurements performed along the trajectory of an
aircraft bearing instruments or to remote sensing of medium
parameters along line scans performed by a lidar. Neverthe-
less, the extension to two-dimensional media would be in-
teresting and necessary because we have also to analyse the
texture of images.

Appendix A1: Power spectrum of a one-dimensional dis-
continuity

We wish to show the influence of a one-dimensional dis-
continuity between two monofractal regions on the Power-
Spectral Density (PSD). In that purpose, we build here a one-
dimensional model with a signal functionF(x). Let N1, N2
be the pixel number of regions 1 and 2 (andN = N1 + N2),
µ1, µ2 their mean levels,σ1, σ2 their standard deviations and
β1, β2 their spectral indices (Fig. 1).

 

 

 
 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 

Figure 15.  Model of one-dimensional finite-gradient transition 
between two homogeneous fractal media. 

 

 

N1 N2 

µ1, σ1, H1, β1 

µ2, σ2, H2, β2 

N0

µ0, σ0,
H0, β0 

Fig. 15. Model of one-dimensional transition of finite gradient be-
tween two homogeneous fractal media.

We consider fields decomposed in two parts as defined by
expression (11):{

F1(x) = µ1 + G1(x)

F2(x) = µ2 + G2(x)
(A1)

with{
G1(x) = 0
G2(x) = 0

{
G1(x)2 = σ 2

1

G2(x)2 = σ 2
2

. (A2)

The continuous Fourier transform ofF on unbounded sup-
port writes:

F̃ (k) = µ1δ (k) + A1 (k) ei81(k)
+ µ2δ (k) + A2 (k) ei82(k) (A3)

with δ(k) denoting Dirac impulse,81(k), 82(k) the phase
spectra andA1(k), A2(k) the amplitude spectra ofG1 and
G2, respectively such that:

A1(k) =
a1(

k2
01 + k2

)β1/4
A2(k) =

a2(
k2

02 + k2
)β2/4

. (A4)

Now let F(x) be sampled with a step1x on a bounded
domain containing the initialN points. Its Fourier transform
writes:

F̃ (k) = µ1S1 (k) + T1 (k) + µ2S2 (k) + T2 (k) (A5)

with the following expressions, according to Eq. (8):

S1(k) =

N1∑
m=1

eikm1x S2(k) =

N∑
m=N1+1

eikm1x (A6)

and:

T1(k) =

N1∑
m=1

G1(m1x)eikm1x T2(k) =

N∑
m=N1+1

G2(m1x)eikm1x . (A7)

It is straightforward to calculate the geometrical progres-
sions (Eq. A6) putting Dirichlet kernels into evidence:

S1(k) =

sinN1k1x

2
sink1x

2
ei N1+1

2 k1x S2(k) =

sinN2k1x

2
sink1x

2
e
i
(
N1+

N2+1
2

)
k1x

. (A8)
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The expressions (A7) can be expressed by means ofA1, A2,
81, 82:

G1(x) =
1

2π

+∞∫
−∞

A1(k) ei81(k)e−ikx dk

G2(x) =
1

2π

+∞∫
−∞

A2(k) ei82(k)e−ikx dk

(A9)

to yield:
T1(k) =

1
2π

+∞∫
−∞

A1(k
′) ei81(k

′)S1(k − k′)dk′

T2(k) =
1

2π

+∞∫
−∞

A2(k
′) ei82(k

′)S2(k − k′)dk′

(A10)

This means thatT1(k), T2(k) are equal to the convolution of
the kernelsS1(k), S2(k) and the spectra on infinite support.
Since these exact expressions are difficult to handle, we shall
make a simplification by assuming that, in the limit of large
N1 andN2, the sumsS1, S2 as kernels in Eq. (A10) will give:

S1(k) ≈
N1→∞

2π δ(k) ei
N1+1

2 k1x

S2(k) ≈
N2→∞

2π δ(k) e
i
(
N1+

N2+1
2

)
k1x

(A11)

and therefore Eq. (A10) will reduce to:

T1(k) ≈ A1(k)ei81(k) T2(k) ≈ A2(k)ei82(k). (A12)

On the opposite, the sumsS1, S2 as factors ofµ1, µ2
in Eq. (A5) will be kept since they spread power over all
scales. With Dirac impulse function in Eq. (A3) the contin-
uum power would be concentrated at the origin (k = 0) so that
it would not appear in log-log plots. In summary, inserting
Eq. (A12) into Eq. (A5) we get:

F̃ (k) = µ1S1 (k) + A1 (k) ei81(k)
+ µ2S2 (k) + A2 (k) ei82(k). (A13)

Let us now define the reduced wave number:

ξ = k1x (A14)

the sampling step1k (dimensionless1ξ) and the cut-off
wave numberkN (dimensionlessξN ):

1k =
π

N1x
1ξ =

π

N
kN =

π

1x
ξN = π. (A15)

In Eq. (A4), the outer scale wave numbersk01, k02 (dimen-
sionlessξ01, ξ02) are defined as:

k01 =
2π

N1x
k02 =

2π

N1x
ξ01 =

2π

N
ξ02 =

2π

N
. (A16)

Thanks to Rayleigh’s energy principle (equivalent to Par-
seval’s theorem for continuous Fourier transform) which
states that for any functionF sampled atN points we have:

N∑
m=1

F(xm)2
=

1

N

N∑
n=1

∣∣∣F̃ (kn)

∣∣∣2 (A17)

the variances ofG1 andG2 can be easily expressed by means
of their Fourier transforms:

σ 2
j =

1

Nj

Nj∑
m=1

Gj (xm)2
=

1

N2
j

Nj∑
n=1

Aj (kn)
2 (A18)

and yield the normalising constants of the amplitude spectra
A1(k) andA2(k):

aj =
Nj√

J (Nj , ξ0j , βj )
σj j ∈ {1, 2} (A19)

with the sums:

J
(
Nj , ξ0j , βj

)
=

Nj∑
n=0

1(
ξ2

0j + ξ2
n

)βj /2
whereξn =

n

N
ξN . (A20)

By taking the squared modulus of expression (A13) we get
the PSD:∣∣∣F̃ (k)

∣∣∣2 =µ2
1 |S1 (k)|2 +µ2

2 |S2 (k)|2 +A1 (k)2
+A2 (k)2

+µ1µ2
[
S1 (k) S2 (k)∗ +S1 (k)∗ S2 (k)

]
+µ1A1 (k)

[
S1 (k) e−i81(k)+S1 (k)∗ ei81(k)

]
+µ2A2 (k)

[
S2 (k) e−i82(k)+S2 (k)∗ ei82(k)

]
+µ1A2 (k)

[
S1 (k) e−i82(k)+S1 (k)∗ ei82(k)

]
+µ2A1 (k)

[
S2 (k) e−i81(k)+S2 (k)∗ ei81(k)

]
+2A1 (k) A2 (k) cos[81 (k) −82 (k)] .

(A21)

On the one hand, we shall focus on the phase-independent
part of the PSD, and take the phase average of Eq. (A21), as-
suming uniformly-distributed random phases. This ensures
that the quantities between the second, third, fourth and fifth
brackets vanish. Moreover, if we assume that the two phase
sets81(k) and 82(k) are independent, the relevant terms
(sixth brackets) also vanish, and there remains only:∣∣∣F̃ (k)

∣∣∣2 =µ2
1 |S1 (k)|2 + µ2

2 |S2 (k)|2 + A1 (k)2

+A2 (k)2
+ µ1µ2

[
S1 (k) S2 (k)∗ + S1 (k)∗ S2 (k)

]
. (A22)

On the other hand, takingξ as the variable, we easily derive
the expressions: |S1 (ξ)|2 =

sin2 N1ξ

2

sin2 ξ
2

|S2 (ξ)|2 =
sin2 N2ξ

2

sin2 ξ
2

S1 (ξ) S2 (ξ)∗ +S1 (ξ)∗ S2 (ξ) =
cosN1ξ+ cosN2ξ− cosNξ−1

1− cosξ

, (A23)

where we made use of the relationN = N1 + N2. Therefore,
we get the simple expression for the PSD:

∣∣∣F̃ (ξ)

∣∣∣2 =
(µ1−µ2)

(
µ1 sin2 N1ξ

2 −µ2 sin2 N2ξ

2

)
+µ1µ2 sin2 Nξ

2

sin2 ξ
2

+
N2

1
J1

σ2
1(

ξ2
01+ξ2

)1+β1/2 +
N2

2
J2

σ2
2(

ξ2
02+ξ2

)1+β2/2

(A24)

that is, relation (15) in the main text. Note that the steady
components are functions of Fejer’s kernels relative toN , N1
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andN2. In the limit of vanishingN1 or N2, relation (A24)
reduces to:

∣∣∣F̃ (ξ)

∣∣∣2 ∝
N1→0

µ2
2

sin2 Nξ
2

sin2 ξ
2

+
N2

J2

σ2
2(

ξ2
02+ξ2

)1+β2/2∣∣∣F̃ (ξ)

∣∣∣2 ∝
N2→0

µ2
1

sin2 Nξ
2

sin2 ξ
2

+
N2

J1

σ2
1(

ξ2
01+ξ2

)1+β1/2

(A25)

The condition (A1) on the averages ofG1 andG2 leads to:

A1(0)ei81(0)
= 0 A2(0)ei82(0)

= 0 (A26)

and sinceA1(0) 6= 0 andA2(0) 6= 0, we conclude that:

81(0) =
π

2
[modπ ] 82(0) =

π

2
[modπ ] . (A27)

Appendix A2: Fractal roughness of a one-dimensional
discontinuity

We want to demonstrate the influence of a one-dimensional
discontinuity between two monofractal regions on the rough-
ness parameterH . In that purpose, we build a one-
dimensional model with a signal functionF(x). Let N1, N2
be the pixel number of regions 1 and 2,µ1, µ2 their mean lev-
els,σ1, σ2 their standard deviations andH1, H2 their Hurst
parameters (Fig. 1). We shall use the box-counting method,
by counting the positions of a box with normalised sizeL

which yield the same standard deviationσ(L). Three main
cases and two trivial cases can be distinguished.
1) if 0 ≤ L ≤ min(N1, N2), three situations are possible.
There areN1 + 1 − L box positions where:{

µ = µ1

σ = σ1

(
L
N1

)H1 (A28)

andN2 + 1 − L positions where:{
µ = µ2

σ = σ2

(
L
N2

)H2 (A29)

since the structures 1 and 2 are assumed to be fractal. Be-
sides, there are alsoL − 1 box positions in which:{

µ = αF1 + (1 − α)F2

σ 2
= α(F1 − µ)2 + (1 − α)(F2 − µ)2

, (A30)

whereα represents the fraction of region 1 covered by the
box, such that:

α =
n

L
with 1 ≤ n ≤ L − 1. (A31)

Replacingµ by its expression, we get:{
F1 − µ = F1 − µ1 + (1 − α)(µ1 − µ2)

F2 − µ = F2 − µ2 − α(µ1 − µ2)
(A32)

and therefore, taking the square and the average:{
(F1 − µ)2 = (F1 − µ1)2 + (1 − α)2(µ1 − µ2)

2

(F2 − µ)2 = (F2 − µ2)2 + α2(µ1 − µ2)
2

. (A33)

Since the regions 1 and 2 are fractal, we have:{
(F1 − µ1)2 = σ 2

1 L2H1

(F2 − µ2)2 = σ 2
2 L2H2

(A34)

and by inserting Eqs. (A33) and (A34) into Eq. (A30) we get:{
µ = αµ1 + (1 − α)µ2

σ 2
= ασ 2

1 L2H1 + (1 − α)σ 2
2 L2H2 + α(1 − α)(µ1 − µ2)

2 . (A35)

We can check that the total number of the positions equals
(N1+1 − L) + (N2+1 − L) + (L − 1) = N − L + 1 where
we have setN=N1+N2. By weighting each value ofσ by its
frequency of occurrence, we eventually get the average:

(N − L + 1)σ (L) =

L−1∑
n=1

√
n

L
σ 2

1

(
L

N1

)2H1

+

(
1 −

n

L

)
σ 2

2

(
L

N2

)2H2

+
n

L

(
1 −

n

L

)
(µ1 − µ2)

2

+σ1(N1 + 1 − L)

(
L

N1

)H1

+ σ2(N2 + 1 − L)

(
L

N2

)H2

(A36)

that is, relation (22) in the main text.
2) if max(N1, N2) ≤ L ≤ N , only one situation is possi-
ble. We findN1+N2 − L + 1 = N − L + 1 box positions
where relations (A30) hold withα representing the covering
fraction of region 1 defined by Eq. (A31). After a calcula-
tion similar to that of the previous case, we likewise derive
relations (A35). Like previously the total number of the po-
sitions equalsN −L+1 (N = N1+N2). By weighting each
value ofσ by its frequency of occurrence, we finally get the
average:

(N − L + 1)σ (L) = (A37)

N−L+1∑
n=1

√
n

L
σ 2

1

(
L

N1

)2H1

+

(
1 −

n

L

)
σ 2

2

(
L

N2

)2H2

+
n

L

(
1 −

n

L

)
(µ1 − µ2)

2

that is, relation (23) in the main text.
3) if min(N1, N2) ≤ L ≤ max(N1, N2), two sub-cases are
possible, according to whetherN1 < N2 or N2 < N1. If
N1 < N2, we findN1 box positions where relations (A30)
hold with α representing the covering fraction of region 1
defined by (A31), andN2 + 1 − L positions where re-
lations (A29) hold. After a calculation similar to that of
the first case, we likewise derive relations (A35). We can
check again that the total number of the positions equals
(N1) + (N2 + 1 − L) = N − L + 1. By weighting each
value ofσ by its frequency of occurrence, we finally get the
average:

(N − L + 1)σ (L) =

N1∑
n=1

√
n

L
σ 2

1

(
L

N1

)2H1

+

(
1 −

n

L

)
σ 2

2

(
L

N2

)2H2

+
n

L

(
1 −

n

L

)
(µ1 − µ2)

2

+σ2(N2 + 1 − L)

(
L

N2

)H2

(A38)

that is, relation (24) in the main text.
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If N2 < N1, we find N2 box positions where rela-
tions (A30) hold withα representing the covering fraction of
region 1 defined by Eq. (A31), andN1+1−L positions where
relations (A28) hold. After a calculation similar to that of the
first case, we likewise derive relations (A35). We can check
that the total number of the positions equals (N1 + 1 − L)
+ (N2) = N − L + 1. By weighting each value ofσ by its
frequency of occurrence (N = N1 + N2), we finally get the
average:

(N − L + 1)σ (L) =

N2∑
n=1

√
n

L
σ 2

1

(
L

N1

)2H1

+

(
1 −

n

L

)
σ 2

2

(
L

N2

)2H2

+
n

L

(
1 −

n

L

)
(µ1 − µ2)

2

+σ1(N1 + 1 − L)

(
L

N1

)H1

(A39)

that is, relation (25) in the main text.
Eventually, the two trivial casesN1 = 0 andN2 = 0 lead

to dropping the square root sums in Eqs. (A38) and (A39) to
yield respectively

if N1 = 0 : σ(L) = σ2

(
L

N

)H2

(A40)

if N2 = 0 : σ(L) = σ1

(
L

N

)H1

(A41)

that is, relations (26) and (27) in the main text.

Appendix A3: Numerical generator of fractional Brown-
ian motion (FBM)

To check the calibration of our analytic model, we generate
a signalF(x) of FBM type with spectral indexβ and equiv-
alent Hurst parameterH given by Eq. (6) by integration of a
Gaussian white noiseW(x) through the left-sided Riemann-
Liouville integral (Mandelbrot and Van Ness, 1968):

F(x) − F(0) =
1

0(H + 1/2){ 0∫
−∞

[
(x − u)H−1/2

− (−u)H−1/2
]
W(u)du (A42)

+

x∫
0

(x − u)H−1/2W(u)du

}

then by a simple calibration ensuring thatµ andσ will be the
average and standard deviation of the resulting signal:

B = σ
F − F̄√
F 2 − F̄ 2

+ µ (A43)

and eventually perform Fourier transform through Eq. (8) or
fractal analysis. Since our signal is limited to the finite set (0,

N), we keep only the second integral, and of course convert
it to a sampled sum:

Fn =

n∑
j=0

(n − j)H−1/2Wj . (A44)

We also dropped the integration constantF(0), the nor-
malising constant0(H+1/2) and the sampling step1x be-
cause the calibration of relation (A43) normalises it again
anyway. The sampled Gaussian white noiseWj is calculated
by means of a random number generator.

Examples of spectra and fractal graphs of this numerical
model are plotted on Figs. 3 and 8, together with the analyti-
cal spectra and fractal graph possessing the sameµ, σ , β, H .
The agreement between both models seems quite satisfying,
as regards levels and slopes. Nevertheless the retrieved slope
is overestimated whenH < 1/2, and this is probably due to
the truncation in the series of relation (A44). Since this ran-
dom FBM is aimed only at validating the calibration of our
analytical spectrum, we shall ignore this discrepancy.
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