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Abstract. The analysis of a data area or segment containingor even three dimensions, or directly a two-dimensional im-
steep transitions between regions with different textures (forage (radiance). Moreover, such a generator should satisfy the
example a cloud and its background) leads to addressing theonstraint of not consuming too much computer time.
problem of discontinuities and their impact on texture anal- The most common algorithm to perform this task is based
ysis. In that purpose, an original one-dimensional analyticalon the Fourier transform @vesque, 1991; Simoneau et al.,
model of spectrum and roughness function has been worke8002) implemented as a fast Fourier transform (FFT). Given
out, with a discontinuity between two fractal regions, eachthe slope-g (in logarithmic scales) and the outer scale wave
one specified by its average standard deviatios, spectral  numberkg, the Power-Spectral Density (PSD) is defined gen-
indexs and Hurst exponerfil. This has the advantage of not erally in two dimensions as:

needing the generation of a fractal structure with a particular

—B/2
algorithm or random functions and clearly puts into evidence P (u, v) = Py (kg +u?+ v2) i . Q)
the role played by the average in generating spectral poles

and side lobes. A map of fluctuationsF'(x, y) is then built up from the am-

After validation of the model calibration, a parametric plitude, v/ P(u, v), and a set of random phaségu, v) by
study is carried out in order to understand the influence ofinverse Fourier transform:
this discontinuity on the estimation of the spectral ingex ) .
and the Hurst p)ellrametéf. It shows that for Epura-gap, Fx,y) = // VP, v)e! e N dudy @)
H is well estimated everywhere, though overestimated, and D
B is overestimated in the anti-correlation range and saturate
in the correlation range. For a puregap the retrieval off is
excellent everywhere and the behavioupa$ better than for M N , ,
aj-gap, leading to less overestimation in the anti-correlationF (x. ) = Y _ Y y/P(mAu, nAv)e! P~ mrautmiv - (3)
range. For a pur@-gap, saturation degrades measurements m=1n=1
in the case of raw data and the medium with smaller spectrairhe corresponding relations in one dimension are obtained
index is predominant in the case of trend-corrected data. FOby S|mp|y removing the variable in the above expressions
a pureH-gap, there is also dominance of the medium with (1), (2) and (3).
smaller fractal exponent. Conversely, the parametefsandko can be rather easily
retrieved from original data by classical spectral analysis in
one (Davis et al., 1996) or two dimensions (Moghaddam et
al., 1991; Tessendorf et al., 1992).

In the context of developed turbulence, multiplicative cas-

The necessity of working out realistic models for the genera-c2des provide another method widely used to build a frac-
tion of natural scenes including clouds or sea waves is not td@! random process (Cahalan, 1994; Davis et al., 1994,
be demonstrated. The scope of such models is to provide efl€nabde, 1998). Another algorithm which has gained much
ther the spatial distribution of physical characteristics in thePOPularity is based on Weierstrass-Mandelbrot series and is

medium (elevation, temperature, water content) in one, twdknown as simulating_at best a fractional Brownian motion
FBM (Berry and Lewis, 1980; Ausloos and Berman, 1985;

Correspondence tdR. P. H. Berton Saupe, 1988; Cianciolo, 1993; Chen et al., 1996; Jennane
(berton@onera.fr) et al., 1997; Berizzi et al.,1997; Bachelier et al., 1998).

Brin practice by discrete Fourier transform (DFT):

1 Introduction
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Given the so-called roughness and lacunarity paraméters integral (Mandelbrot and Van Ness, 1968). This method ex-
(0 < H <1)andy (1<y), and a set of random phaseg, plained in App. A3 will be used here to confirm the calibra-
uniformly distributed, the one dimensional function can be tion of our analytical spectrum and fractal function.

written (Berry and Lewis, 1980): The spectral and fractal approaches are related to some ex-
oo tent, because, under conditions of homogeneity and through
—mH iv"kox\ id application of the Wiener-Khinchine theorem, the following
= 1— eV %0 m 4 .
Wip () ;Ooy ( ¢ )e ) relation holds for a FBM (Moghaddam et al., 1991; Mallat,

1998; van den Heuvel et al., 2000):
It is also possible to define the series with real sine functions

(Saupe, 1988): B=2H+E, (6)
+00 where E is the topological dimension of the embedding
Wip(x) = Y y " sin(y"kox + @) . (4bis)  space £ =1 for a line, E = 2 for a plane). In one dimen-
m=—00 sion, the spectral indeg of a FBM is therefore such that 1

It can be proved tha# is the true roughness parameter < B < 3. The non-correlated ordinary Brownian motion is
(Berry and Lewis, 1980; Hunt, 1998). The ordinary Brown- obtained forg = 2 and anticorrelation and correlation sub-
ian motion is obtained foH = 1/2, and corresponds to non- 'anges are respectively such thatp <2 and 2< f < 3.
correlated fluctuations, whereas the sub-rangesd < 1/2 Ve shall examine the relevance of relation (6) in Sect. 4.
and 2 < H < 1 correspond respectively to anti-correlated R€ciprocally, by derivation of a FBM, a fractional Gaus-

and correlated fluctuations, or anti-persistence and persissi@n noise FGN is obtained, and relation (6) writes in this
tence. case (Heneghan and McDarby, 2000):

In two dimensions a map of fractal fluctuatiowsp (x, y) —2H _E @)
can be obtained from two independent sets of random phasefgs ’

@y and W, by the sums (Jennane et al., 1997): In one dimension, the spectral indgof a FGN is therefore
4o 400 Sléch thzt;l < /305 1 and the non-correlated white noise is
— min obtained for = 0.
Wap(x, y) m;oo n;ooy Much work has been devoted to the spatial analysis of
[1 . eiko(ymﬁyny)] i ®mn 4 [1 _ eiko(,,,mxﬂny)] o i clouds, namely cumulus (Malinowski and Zawadzki, 1993;
i (5) Gotoh and Fuijii, 1998), stratocumulus (Davis et al., 1996;
[y +y2] 7 Ivanova et al., 1999), cirrus (van den Heuvel et al., 2000;

o ) o . Ivanova et al., 2003), stratus (lvanova and Ausloos, 1999;
but this is not the unique possibility, and Eq. (4bis) can bejyanova et al., 2002), mixed mesoscale clouds (Carvalho and

also generalised as (Saupe, 1988): Silva Dias, 1998) or landscape data (De Cola, 1989; South-
100 400 gate and Mller, 2000). Typical values found by these au-
Wip(x) = Z Z y ~mtmH thors in clouds are in the range 1.1-1.7 for one-dimensional
m=—o00 n=—oo spectral indiceg (Davis et al., 1996; van den Heuvel et al.,
sin(y"kox + @,,) sin(y" koY + W, (5bis) ~ 2000) and in the range 0.2-0.6 for Hurst exponentdvali-

nowski and Zawadzki, 1993; Gotoh and Fuijii, 1998; Ivanova

The roughness parametéf, or Hurst exponent, at least and Ackerman, 1999; Ivanova and Ausloos, 1999; van den
can be retrieved by various methods, including the rescaledHeuvel et al., 2000). Attempts have been made to relate the
range analysis (Hurst, 1951), the perimeter-area relatiorfractal texture of the medium with the spectral structure of
(Lovejoy, 1982; Gotoh and Fujii, 1998), the box-counting resulting images under simplifying assumptions about the il-
method (Theiler, 1990; Malinowski and Zawadzki, 1993; lumination (Kube and Pentland, 1988).
Buczkowski et al., 1998; Carvalho and Silva Dias, 1998), Actually, the quality of the finally synthesised data de-
the detrended fluctuation analysis or DFA (lvanova and Aus-pends on how accurately the relevant parameserky, H
loos, 1999; Chen et al., 2002), variograms (Curran, 1988pr y are retrieved from natural data. In particular, the inho-
Germann and Joss, 2001) and wavelet transforms (Simonsenogeneity of data can lead to large variations (lvanova and
et al.,, 1998). DFA and spectral analysis have been showmusloos, 1999; lvanova et al., 1999). The aim of our paper is
to provide the same information (Heneghan and McDarby,to model the parametegs and H of one-dimensional mea-
2000). These methods work well only for Gaussian pro-surements performed along the trajectory of the instrument
cesses, and poorly for non-Gaussian processes (Malamuchrrier (aircraft, balloon, rocket) and to show how a discon-
and Turcotte, 1999). Certain authors (Scafetta et al., 2001tinuity between two homogeneous regions can modify the
Scafetta and Grigolini, 2002) proposed a new method, theestimation ofg andH.
diffusion entropy analysis (DEA) which is also efficient for ~ The original point is that no random noise generator is
non-Gaussian processes, such as Levy flights. used in our model, so only the intrinsic spectral or fractal

Yet another way of fractal synthesis consists in integrat-properties of the media are taken into account, and their sta-
ing a Gaussian white noise by means of Riemann-Liouvilletistical distributions need not be specified. Generally, works
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devoted to the estimation of statistical parameters (Tagqu et
al., 1995; Schmittbuhl et al., 1995; Rangarajan and Ding, Ko, 0, Ho, By
2000; Chen et al.,, 2002) deal with signals generated by

Fourier filtering method (FFM) of a Gaussian noise and mix

up the statistical properties of the random number generator

(Gammel, 1998). For instance, the nature of the statistical

distribution is relevant to ensure the positiveness of the scalar

field to be generated (Malamud and Turcotte, 1999), and in

that case log-normal, gamma @f-distributions are more W, o, Hy, By
suitable than Gaussian distributions. Nevertheless, since our
analytical model is worked out in the Fourier space, and _, A A AAAA
the calibration as well, which is of crucial importance, we
shall check the consistency with a numerical model based *
on the fractional integration of white noise and introduced in
App. A3.

Of course, spectral and fractal models are used not onl
in geophysics (Davis et al., 1994; Eneva, 1994; Main et al.,
1999; Malamud and Turcotte, 1999; Southgate ariidldv,
2000), but also in astrophysics (Labini et al., 1998; Stutzki2.2 Analytical model
et al., 1998), fluid mechanics (Mandelbrot, 1974; Scotti and
Meneveau, 1999), biology (Peng et al., 1994; Buldyrev et al. Now, in order to grasp how a discontinuity between two ho-
1995), medecine (Schlesinger and West, 1991; Chen et almogeneous regions 1 and 2 can alter the estimation of the
1997; Geraets and van der Stelt, 2000; Ivanov et al., 2001spectral index, we have built up a one-dimensional model
Echeverria et al., 2003), economics (Elliott, 1938; Mandel- (see App. Al for derivation of formulas). Region 1 may rep-
brot, 1997; Ausloos et al., 1999), fine arts (Spehar et al.resent the background and region 2 a cloud. Agt N> be
2003; Hagerhall et al., 2004) and music (Voss and Clarkethe pixel numbers of regions 1 andi2;, 2 the mean levels,
1978; Bulmer, 2000). In consequence, the results of ther1, o2 the standard deviations agd, 8, the spectral indices
present paper can be hopefully applied to these fields of modef the fluctuating scalar fields; and F» (Fig. 1). These may
elling. represent the temperature, the water content, the humidity

We shall first proceed to the spectral analysis in Sect. 2 andor instance, and since these quantities are positive, the stan-
fractal analysis in Sect. 3 and eventually propose a discussioflard deviatiorr should be smaller than the averageln the
of the consistency of both approaches in Sect. 4 and perspegontrary, note that detrended data obtained by removing the
tives of this work in Sect. 5. The comparison with published average trend, usually by linear fitting (Chen et al., 2002),
results will be given thorough the paper along with commen-can also be described by our model witf+ 0.
taries of our own results. Let us first define the spectral form of the PSD. If we sep-

arate each of the scalar fields and F» in two components,
an average:; and a fluctuating parG ; of zero mean and
2 Spectral analysis standard deviation; (j = 1, 2) we can write:

\
A
4

N] NZ

Fig. 1. Model of one-dimensional discontinuity between two ho-
ogeneous fractal media.

2.1 Method Fi(x) = u; + G (x) with —2’82 _002 .
The usual way to get spectral components from the sampled ! !
measurements,Fof a function F(x) is to apply a discrete Then G; cannot have a simple power-law spectrumf/,
Fourier transform (or FFT) in one dimension: like a self-affine fractal (Malamud and Turcotte, 1999), since
it would have an infinite average. A compromise consists in
defining the spectrum af ; by:

(11)

M
F(k) = Z Fpe™A%  with  F, =F (mAx) (8)
m=1

~ — A. i®; (k) i . _ aj
. Gj(k)—AJ (k)e J with A] (k)—m, (12)
and then take the amplitude: ( ot )
0 where A (k) and®; (k) are the amplitude and phase spectra
Sk) = ‘F(k)‘ . (9) respectivelykg is the outer scale wave nhumber chosen equal

to /(N Ax), and the constant; is found by normalisation
For practical use, the discrete transfoffk) is itself sam-  of the PSD tar2. Note that we take equal outer scale wave-

pled: numbersko: = kg2 = ko. With the reduced wave-numbér
M these quantities write:
Fy=)" Fpe™®A%  with  F, = F (nAk). (10) b4 N;

m=1 EO:N = J(Njy";:O’ﬁj)

O‘j (13)
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Fig. 2. Optimisation of the regression interval,| k,]. Plot of the difference.s;—8 between the true and the estimated spectral indices as a

function of the boundsk(, kp).

and:
Nj
J(Nj. k0. B5) =)
n=0

(&2 +8)""

whereg, = %SN. (14)

ical PSD (App. Al):

(u1—p2) (uasiv? “35 — iz sir? %)ﬂth sir? &
sir? §

N o3

J2 (§§+S2)1+/32/2 ’

~ 2
Fe| =

N2 o?

J_i (§g+52)1+31/2 +

(15)

whereN = Ni+N>. It depends on eight paramete¥s, No,
u1, K2, o1, o2, f1 andBy. In relation (15), the first contri-
bution is relative to the steady component (average) and the

The computation of the spectrum obtained by the superposinext two to the fluctuations about the average. It is impor-
tion of those of media 1 and 2 eventually leads to the analyttant to keep in mind that it results from a compromise where
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the Fourier transform of the steady compongnihas been  spectrum unconvolved with Dirichlet kernel (see App. Al,
calculated on the bounded support, whereas that of the flucEq. A12 instead of Eqg. A10).

tuating componen& has been approximated on an infinite

support for the sake of analytical handiness (see App. A1)2.4 Simulations

Therefore Fejer's kernels relative to the average will cause .

oscillations in the spectral plots whereas the fluctuating part! he influence of the eight paramete¥s, N2, i1, 112, 01, 02,

of the spectrum will be smooth. B1 andg, can be now examined. The analytic spectra defined
by relation (15) are sampled with one hundred points and the
2.3 Validation slope—g is computed §.;,) between the bounds chosen in

the previous subsection (Fig. 4). On the same figure, the nu-
Before performing simulations and a parametric study ofmerical FBM is illustrated withv = 1000. As we shall see in
Eqg. (15) we proceed to validating, or better, checking theSect. 3, more points are necessary to the fitting of the spectral
consistency of our analytic model, especially as regards caleurves (31 points) as compared to that of roughness curves (6
ibration, which is of crucial importance, with the numeri- points) because of oscillations present in the spectra at mid-
cal model of FBM based on Monte-Carlo and described indle scales, caused by Fejer’'s kernels due to the contribution
App. A3. For a unigue medium, the expression (15) of theof average in relation (15). The size of the samplés=(100,

spectrum reduces to: 1000, 10000) has been chosen in relation with the analysis
o N of real data performed in standard works.
‘~ 2 zsszE N? o? In double logarithmic scales the curves have approxi-
Fo| =n . . (16) e log _ /e app
sir? % J (,’eg + 52)“/3/2 mately straight decreasing parts at small and middle scales,

so that straight lines can be fitted to them, ghde esti-
Since the intervald,, k] where the slope is estimated has mated (Fig. 4). The interplay between the contribution due
some influence on the results, we determined the best fittingo Fejer's kernels (en\/e|ope s|ope C|ose_t@) and the frac-
by plotting the differencép = B.;,—B betweenthe true and  tal spectrum causes large discrepancies except with detrented
the estimated spectral index as a function of the boukds ( data (Fig. 4e). For raw data this leads to underestimaging
kp) in six situations of the three parameters ¢, 8) (Fig. 2).  and to non-monotonous variations @fas a function of pa-
From this figure, it comes out that the best fitting interval, rgmeters.
given by the level curveé\g = 0, is about {-0.8,+0.2] in the Assuming that region 1 is the background and region 2 is
casep = 2. In other cases, the spectrum of raw data is con-the structure under study, we distinguished on the one hand
taminated by Fejer’s kernel contribution and the fitting inter- two cases due to a gap of the statistical parameteasid
val is not so relevant because the spectrum is rather straight; (monofractal discontinuity): a) a-type, consisting in a
The actual bounds are therefore chosen a§)|b(g: —0.766 gap ofu on|y’ with all other parameters unchanged; b;)_a
and logo k, = 0.181. type, consisting in a gap ef only, with all other parameters

Examples of this analytical spectrum for a single mediumynchangedy > o)

sampled with one hundred points, together with a realisation gnd a special, detrendetktype, with only a gap of and

of the numerical spectra possessing the sane 8 sampled 1= p2=0.

with one thousand points\( = 1000) are shown on Fig. 3. The spectral index is chosen as describing typically:

The sampling of our analytical model is exponential Whereasa) anti-correlated (A) or anti-persistent fluctuatiofis{1);

that of the numerical realisation is linear. b) non-correlated (N) fluctuationg & 2);

. The agreement between both models seems q.uite satisfyy) correlated (C) or persistent fluctuationis< 3).

ing, as Iregards Ieyels and slopes. The two situations of'raw On the other hand we distinguish three cases due to a gap
data (Fig. 3, left side) and detrended data (Fig. 3, right side), he spectral indeg (true bifractal discontinuity):

are displayed. Note that whetrlo > 1, the fluctuation com- a) an A-N case, consisting in two region& 1 ; S = 2)
ponent is larger than the steady component and the estimgg;ith same ( 0)’. ’

tion of B is altered whereas whem/oc « 1, u = 0 in the
limit of detrended data, the fractal component is predomi-
nant and the trug is ideally retrieved. In the former case,
the first term in Eqg. (16), Fejer's Kernel, is dominant and
since it admits as envelope the equivalent expression:

b) an N-C case, consisting in two region E 2; B2 = 3)
with same [, 0);
¢) an A-C case, consisting in two regions = 1 ; 82 = 3)
with same [, o).

In the monofractal cases (Figs. 5a, c, €), the discontinuity
~ P 12 is due to a gap oft, o on raw data (solid and dotted lines)
‘F (S)‘ x4— (17)  or only o on detrended data (dashed line). As pointed out

§ above, Fejer’s kernels produce sidelobes in the total spectrum
we conclude that the slope of the spectrum tends towardsvhich are reflected in oscillations on tgéN,/N) plot when
—2 (Rustom and Blair, 1997). As could be also expected, w1 # u2 and they are enhanced as the ratie increases.
even for detrended data & 0) the numerical spectrum oscil- They become smoother #s— 1 because the fractal spec-
lates at small scales whereas our analytical spectrum does ngum has then a smaller slope and it is therefore above the
(Figs. 3b, d, fand 4e), since we kept the smoothed fluctuatiorsteady component spectrumifo is large enough (Fig. 5a).
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-5 .
-z 0
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QQu=5,0=1,p=2; Du=0;,0=1;p=2;
ﬂestan = ]989 ; ﬂestnum = 2037 ﬂestan = 2000 s ﬂestnum = ]952
10
spatiol wovenumber (log) apotiol wovenumber (log)
@u=5,0=1,p=3; Hu=0,0=1;p=3;
ﬁestan =1.893 y ﬂestnum =2.107 ﬁestan =2.999 y ﬂestnum = 2.543

Fig. 3. Comparison of Power-Spectral Density (PSD) profiles for a single medium1000) as given by the analytical formula (16) (solid
smooth or upper curve) and as calculated from a realisation of the numerical FBM, App. A3 (solid wavy curve) with raw data (left) and
detrended data (right). For the analytical model, the individual PSD contributions due to Fejer’kernel (dotted) and the fluctuations (dashed)

are also plotted.

On the opposite whepp — 3 oscillations are stronger and In the purely bifractal cases (Figs. 5 b, d, f), the disconti-
there is some kind of saturation effect since the estimAted nuity is due essentially to a gap gf The oscillations are still
does not grow larger than 2.4 (Fig. 5e). These curves areontaminating the results though a trend is clearly shown by
getting smoother a® increases (compare top, middle and the curveu; = p2 (dotted line) growing monotonously from

bottom curves). B1to B2 asN» goes up taV. Detrended data4 = 0) produce
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-2 L
-2z 0
spatiol wovenumber (log) spatial wavenumber (log)
@u =5, =10;,01=1,0,=1; O w=5;w=5,00=1;,00=1;
Bi=2;5=2; Bi=1;5=2;
ﬂestan = 2081 5 ﬂestnum = 2006 ﬂestan = ]284 ;s ﬁestnum = ]518
8
g zr E
ok
-2 .
-z 0
spatial wavenumber (log) spatial wavenumber (log)
Qur =10, 1,=10;01=1;0=5; (D=5 =5, 0=1;00=1;
Bi=2;p=2; Bi=2;p=3;
,Bestan =1.979; ﬁestnum =2.070 ﬁestan =1.927; ﬂestnum =2.114
5}
spatiol wovenumber (log) spotial wovenumber (log)
@ u=0;=0;0=1;0=5, Ow=5; =5 0=1;0=1;
Bi=2:5=2; pi=1;0=3;
ﬂest an = 2.000 ; ﬂest mm = 2.005 ﬂest an = 1.276 y ﬂest num — 1.433

Fig. 4. Examples of Power-Spectral Density (PSD) profiles for monofractal (left) and bifractal (right) discontindifies N2 = 500) as
given by the analytical formula (15) (solid smooth or upper curve) and as calculated from a realisation of the numerical FBM, App. A3 (solid

wavy curve).

ideal variations of the estimategl (dashed lines) since the the mixing of the pure fractal spectra comes into play. The
contribution of the steady component is removed, and onlyfunction 8(N2/N) is either constant for the monofractal dis-
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Fig. 5. Variations of the estimated spectral indéxas a function of the relative structure sixe/N in the i, o and detrended cases for
monofractal (left) and bifractal (right) discontinuities. In each plgt= 100 (upper curves)y = 1000 (middle curves) any = 10000
(lower curves); the middle and lower curves are shifted downwardslbgnd—2, respectively to avoid confusiopy = 5; u2 =10;01 = 1;
oo =1 (solid line).uq = 10; up = 10;01 = 1; 02 = 5 (dotted line) uq = 0; up = 0;01 = 1; 0p = 5 (dashed line).

continuity or increasing for the bifractal discontinuity. Note saturation effect mentioned before occurs foe- 2 in any

that in this latter case, the medium with smadeis predom-
inant (01 < o2) and steepens the increaseNgg N — 1.

For a monofractal discontinuity, the influence @f ( 82)
such thatg; = B2 is also investigated wittvy = No = N/2
(Fig. 6). It appears that is overestimated i < 2 (Fig. 6b)
much more for au-gap with an amounzng = 0.2 (N =
10000) toAB = 0.7 (N = 100), than for ar-gap with AB
= 0.05 (v = 10000) toAB = 0.2 (N = 100). Of course the

(u,0) situation, even whep1 ~ o, since Fejer’'s kernel is
still present, although weighted by the produgius:

~ 2
F©| =
SinZ% le 012 N22 o2

2
1H2—, + + . (18)
sir? % J1 (sg + 3}:2)1+ﬁ1/2 J (Eg + 52)l+ﬂ2/2
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Thus the influence of Fejer’s kernel is perfectly cancelled out
if and only if u1 = w2 = 0 (Fig. 6¢) and this property may
justify trend-corrected methods such as the Detrended Fluc-
tuation Analysis (DFA).

For a bifractal discontinuity, the influence 85 when g1
is kept constant is investigated wity = N» = N/2 (Fig. 7).
The medium with anti-correlated fluctuationg; (= 1) is
clearly predominant (Figs. 7a, c). This can be explained by
the fact that its slope being smaller, the spectrum will have
relatively more energy at middle scales. Nevertheless, for
raw data [t # 0) a saturation effect due to Fejer's kernel
adds up wherB1 > 2 (Fig. 7e). In any case the curves in-
tersect the diagonal ideally for large Nt = B, i.e. where
the whole sample is monofractal, and the overestimatign
amounts 0.2 = 10000) up to 0.7 = 100).

3 Fractal analysis
3.1 Method

The box counting method, which will be applied here, con-
sists in computing the standard deviatioof data in a glid-
ing box of constant sizé, then taking the ensemble average
o of o. By repeating the operation for different sizeswe
can plot the functiom = f(L). In simple situations, it can
be modelled by a power law:

_ L\
‘”“Z“(’(a)

and the slopes of straight parts in double logarithmic scales
yield the scaling exponeri{, the so-called Hurst parameter,
related to the fractal dimensioP by (Moghaddam et al.,
1991):

H =E+1-D,

(19)

(20)

estimated spectral index

estimated spectral index
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where E is the topological dimension. This is an approxi-
mation which does not hold for certain classes of processes
(Gneiting and Schlather, 2004). Actually describes the
asymptotic behaviour at large correlation distances whereas

D scales the growing rate at small distances. . - . ) _
L ion by th h f | Fig. 6. Variations of the estimated spectral indgas a function of
et us mention by the way that a monoiracta Stl‘UCturethe spectral indeg; = B2 (monofractal discontinuity) for raa),

should be characterised not only by its fractal dimension,) and detrendedc) data. In each ploty = 100, N; = No = 50
(or Hurst exponent) but also by its lacunarity through  (dotted line),N = 1000,N1 = N, = 500 (dashed line)}y = 10000,
a box counting or moments method (Mandelbrot, 1982;y; = N, = 5000 (dotted-dashed line) and diagopia= B (solid
Moghaddam et al., 1991; Blumenfeld and Mandelbrot, 1997;line).

Domon and Honda, 1999) or the dilation method (Domon

and Honda, 1999). Unfortunately, this quantity is a function

A(L) of the box sizeL and, so far as we know, no link with - o6 _gimensional analytical model has been built up and the
the lacunarity parameter in expressions (4) and (5) has yet yeqails of its derivation are described in App. A2. ¥,

been proposed. '_rherefore we shall restrict ourselves to t &, be the pixel numbers in regions 1 anda, 12> the mean
roughness analysis. levels, o1, o, the standard deviations ard, H, the Hurst
parameters of the fluctuating scalar fielgsand F» (Fig. 1).

Like in the spectral analysis we shall make the distinction
As a complement information to the spectral analysis it isPetween rawj # 0) and detrended(= 0) data.

important to study the influence of a discontinuity on the es- For a normalised box size containifigpixels, the average
timation of the roughness paramet#r In that purpose, a standard deviation in the box through scanning of each of the

betal, beta?

Qu=0,w=0,0,=1;,0=35

3.2 Analytical model
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Fig. 7. Variations of the estimated spectral inggxas a function of the spectral indgy (bifractal discontinuity) for raw (left) and detrended
(right) data. In each ploty = 100, N1 = N> = 50 (dotted line), N = 1000,N1 = N» = 500 (dashed line)y = 10000,N1 = N, = 5000

(dotted-dashed line) and diagorgak 81 (solid line).

regions is given by the expressions:

L\™M L\

and for the global data by the expressions (App. A2):

a)if 0 < L < min(N1, N2)
(N—L+1)o(L)=

L-1 2H; 2H,
n ,(L ( n) 5 L n( n) 5
= = 1—— = (1= _

) \/L01<N1) f-)ely,) 1\ (u1—p2)

n=1
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L Hy L Hy
+o01(N1+1-L) (—) +02(N2+1—L) (—) (22)
N1 N>
b) if max(N1, N2) <L <N
(N—L+1a(L) =

N-L+1 2H, 2H,
ma(L Va2 (VL (Y (i
5 /Lol(Nl) () () (T i@

n=1

¢) if min(N1, N2) < L < max(N1, N2) andN1 < Nz
(N—-—L+1o(L) =

Moy L\ n L\ n
3 Laf(Nl) +(1_L)03(N2) 2 (1) e @4)

n=1

L\
+02(Na+1—1L) (—)
2
<L<

d) if min(Ny, N2)

(N—-L+1Do(L) =
L. In 2L 2H; ny (L M2 g )
2\/1461 (Nl) + (1—Z> 0y <NZ) ‘|‘Z (1—Z> (m1—p2) (25)

L\™M
N 1-0L)| —
+o1(N1 + )(N>

with the trivial cases

L\

e)if Ny =0:  F(L) =0 (-) (26)
N

and
L\™M

fif No=0: o(L) =01 (N) . 27)

At “small” scales, which are described by expression (22),
the sum of the first term represents the discontinuity, wherea
the other two terms represent the textures of media 1 et
separately. At “large” scales, which are described by ex-
pression (23), there only remains the contribution of the dis-
continuity because, in that case, the discontinuity always lie
within the gliding box. The intermediate scales are described®
by expressions (24) and (25), and the limit cases by expres

sions (26) and (27).

3.3 Validation

The bounds 4, L) of the linear regression interval have
been chosen in consistency with thokg &) of the spectral
analysis (Sect. 2.3) such that:

koLo =21 kpLp = 2. (29)

The actual bounds, compatible with relations (29) and the
exponentialL-sampling, are therefore chosen asitpg, =
0.632 and logp L, = 1.579.

Examples of this analytical model are plotted on Fig. 8, to-
gether with the roughness graph of a realisation of the FBM
possessing the sameg o, S (same cases as with Fig. 3). The
agreement between both models seems quite satisfying, as
regards levels and slopes, except for the slope wiiesp-
proaches zero. As we explained in App. A3, this behaviour
is not really a difficulty here since we are interested in vali-
dating first of all the calibration, i.e. the function levels, and
the slopes in most of the cases. Note that these graphs are
not contaminated with oscillations, either for raw (Fig. 8, left
side) or detrended (Fig. 8, right side) data.

3.4 Simulations

A sensitivity analysis to the parameters of the analytical
model can be now performed. Indeed, expressions (22)—(25)
show that whenevar, # uo only the ratiosr; /| u1—u2| and
o2/|u1—u2| are relevant, rather thamy, w2, o1 andos sep-
arately. Therefore, we may define the dimensionless ratios

(n1 # p2):
o1 02

=— rnp=—- (30)
Iy — w2l |1 — pa2l

rn
and reduce the number of degrees of freedom to/8ix:N>,

r1, r2, Hi, H» whereverN1 # 0 andN2 # 0. Nevertheless,

for the sake of consistency with the spectral approach, we
shall deal with the same parameter sgts) as in Sect. 2.4.
Note that wheru1 is equal touy, the expression under the
gquare root reduces to the ordinary superposition rule (Chen

ft al., 2002) and does not dependon w2 any more.

The analytic spectra are sampled with only twenty points
and the sloped is computed H,,,) between the bounds (6

Spoints) chosen in the previous subsection (Fig. 10). The rea-

ons for that are essentially:

— oscillations are present in the PSD (15) but not in the rough-
ness function (22)—(27);

— there is a slope change on roughness curves for windows
of large size (log L> 2.5).

These profiles have nearly straight increasing parts at

Before performing simulations and a parametric study of re-small and middle scales, so that straight lines can be fitted to
lations (22)—(27) we proceed, like in the spectral analysis, tothem. Even in monofractal cased,is much overestimated
checking the consistency of our analytic model, mainly aswhen there is au-gap |1 — u2| (Fig. 9a) and less with a
regards calibration, with the numerical model of FBM de- o-gap|o1 — 02| (Fig. 9b). At large scales, curves generally
scribed in App. A3. Note that for a unique medium, the ex- have a maximum and a decreasing part. It should be noted

pressions (22)—(27) reduce to:

H
(L) = o (%) : (28)

that also in the bifractal case (Fig. 9, right) the curve has
an extended inertial range for log £2.5: the H-estimator
sees the global structure as if it were homogeneous, i.e. as a
monofractal.
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Fig. 8. Comparison of roughness graphs for a single medium as given by the analytical formulas (22)—(27) (crosses) and as calculated from
a realisation of the numerical FBM, App. A3 (solid curv@) € 1000) with raw data (left) and detrended data (right). Same cases as Fig. 3.

When one of the two media has anti-correlated fluctua-as could be expected from relations (22)—(25).
tions (A1 = 0), the curve exhibits a kind of crossover at large  We assumed again that region 1 is the background, region
scales and becomes slightly steeper (Figs. 9b, f). This is ir2 is the structure under study, and we distinguished the two
perfect agreement with another published approach based anonofractal cases (gap jnando) like in the spectral anal-
DFA (Chen et al., 2002). Note that unlike in the spectral ap-ysis. The fractal scaling exponent is chosen as describing:
proach, the analysis of raw data withuigap (11 = p2) or  a) anti-correlated (A) or anti-persistent fluctuatiofs% 0);
detrended data«(= 0) will give the same result (Figs. 9c, €) b) non-correlated (N) fluctuation$(= 1/2);
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Fig. 9. Examples of roughness graphs for monofractal (left) and bifractal (right) discontinuities (Vo = 500) as given by the analytical
formulas (22)—(27) (crosses) and as calculated from a realisation of the numerical FBM, App. A3 (solid Surv&DQ0). Same cases as

Fig. 4.
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a) an A-N case, consisting in two regiong;(= 0; Ho = 1/2)
with same f,0);

On the other hand we define three cases due to a gap in the
fractal indexH (true bifractal discontinuity):
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Fig. 10. Variations of the estimated fractal indéx as a function of the relative structure si¥e/N in the i, o and detrended cases for
monofractal (left) and bifractal (right) discontinuities. In each pMt: 100,N1 = N> = 50 (upper curves)y = 1000,N; = N> =500 (middle
curves) andv = 10000,N1 = No = 5000 (lower curves); the middle and lower curves are shifted downwardd.land—2 respectively to
avoid confusion. Same cases as Fig. 5.

proportional to i1 — 12)? under the square root enhances
some discrepancies at the segment boundaries (Fig. 10c, up-
per curves, solid line) and produces an overestimation in gen-
eral, but these effects are smoothedMsncreases (ibid.
ower curves).

b) an N-C case, consisting in two regior#;(= 1/2; H> = 1)
with same f¢,0);
c) an A-C case, consisting in two regiondy(= 0; Hp = 1)
with same f¢,0). |
In the monofractal cases (Figs. 10a, c, e), the discontinuity
is due to a gap of oro. The absence of oscillations enables  In the purely bifractal cases, the discontinuity is due to a
a much better retrieval of the true behaviour and detrendinggap of H (Figs. 10b, d, f). The monotonous increase of the
the data does not make any differenceif= u» (dotted and  function H(H>) is well verified, except for small irregulari-
dashed lines coincide). Of course, the presence of the terrties at the segment boundaries too, in the vicinityef= 0
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little in excess from the theoretical valde whenu1 # u2

- ) (Fig. 11a), withA H = 0.05 (N = 10 000) up toAH = 0.15
3 O = (N = 100), but to get very close t&/ aso/u increases
zij 0af /// ] (Figs. 11b, c) whatever b& between 0 and 1. Moreover,
E oLl //// ] as could be expected, the behaviour is exactly the same for
- P detrended datau(= 0O; Fig. 11c) or for raw data withoyt-
§ 0.4 /// ] gap (1 = up; Fig. 11b), and there is nearly no difference be-
T ool ] tween estimated and original value. This again confirms pub-
s L | | | | lished results already mentioned (Chen et al., 2002). Other
o 0r 04 os om0 authors (Schmittbuhl et al., 1995) found that small self-affine
- exponents are overestimated whereas large exponents are un-
derestimated, which is rather the behaviour we found our-
@ur=5,=10;01=1;0:=1 selves with the spectral method (Figs. 6a, b).
For a bifractal discontinuity, the influence @f, when
" Hi is kept constant is investigated withi; = No = N/2
rer 7 (Fig. 12). It appears that the anti-correlated fluctuatidis (
osk e ] = 0) are predominant and cancel out the influence of the

correlated fluctuations (Figs. 12a, b). The estimation is im-
proved when the first medium is subject to correlated fluctu-
0.4 e . ations (Fig. 12c¢). This is in agreement with already quoted
’ works (Chen et al., 2002) which show that the behaviour of
o (L) is dominated byH; at small scales andl, at large
scales whertl; < H». There is again a slight overestimation
of AH amounting 0.054 = 10000) up to 0.15X = 100).

0.6 1

estimated Hurst exponent

0.2 L b

0.0 1
0.0 0.2 0.4 0.6 0.8 1.0
H1, HZ

Oy =10, =10, 01=1,03=35

. 4 Consistency of both approaches

o As relation (6) suggests, we may try to a certain extent to

08[ e ] connect in our context{=1) the behaviours of the spectral
’ index 8 and the Hurst exponerfi to check the consistency
of both approaches.

A first difficulty arises because of the oscillations in the

a6F -

0.4 e .

estimated Hurst exponent

o2 7 ] spectra, but this input is necessary because the gap of average
ook ‘ ‘ ‘ levels (trends) is an important component of the discontinu-
0.0 02 0.4 0.6 0.8 1.0 ity. A second problem is due to the property that the fractal
Hi. H2 model actually depends on two normalised parameteaad

r2 through (30), whereas the spectral model depends on the
four original parameterg1, w2, o1 andoy.

Fig. 11.Var.iations of the estimated fractgl indgkasafunction of le;_lconlmtacnlozn Wltg thzsilfeatures,t. fr?m thepz) and t
the fractal indext; = H, (monofractal discontinuity) for raya), (H2) p ots ( '9s. 6 and 11, respective y) we can expec
(b) and detrendedc) data. In each plot¥ = 100, Ny = Ny = 50 good consistency in the anti-correlation range<{18 < 2
(dotted line),N = 1000,N; = N, = 500 (dashed line)y = 10000, and 0< H < 1/2) and some saturation effects in the corre-
N1 = N, = 5000 (dotted-dashed line) and diagoBE H; (solid  lation range (2< g < 3 and 1/2< H < 1). We choose the
line). Same cases as Fig. 6. input 81 and B, as equal to 2/1+1 and Z>+1 so that we can
check whether the outpug( H) is such thag = 2H+1, fora
monofractal (Fig. 13) and a bifractal (Fig. 14) discontinuity.
and N, = N for small N (N = 100, 1000) due to sampling For a monofractal discontinuity, relation (6) is exactly sat-
effects, which tend to vanish for largar (N = 10000, lower  isfied when data is trend-corrected (Fig. 13c). Otherwise,
curves). Note that in this latter case the well-behaved pro-approximate linearity with8 > 2H + 1 holds in the anti-

Qu=0;=0,0,=1;,0,=35

files are highly non-linear and quickly increase n&ar= N.  correlation range and saturation takes placg at 2 in the
This behaviour is quite similar to that of the spectral index correlation range. The-gap (Fig. 13a) produces a larger
(Figs. 5b, d, f). deviation|2H + 1 — g| than theo-gap (Fig. 13b). This de-

For a monofractal discontinuity, the influence &fi( H) viation vanishes in the vicinity of the correlation poit &
such thatH; = H» is also investigated wittv, = N» = N/2 1/2). The sample numbeé¥ has little influence on the gen-
(Fig. 11). It shows the retrieved parametéy,, to differ a  eral behaviour and the saturation.
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(Fig. 14, right side).

A somewhat similar comparison of two methods (rescaled-
range and spectral analyses) has been carried out for a ho-
mogeneous medium subject to a pure FGN and several other
kinds of processes (Rangarajan and Ding, 2000). This work
shows that one of the two methods fails as soon as the under-
lying process is not fundamental and therefore relation (7)
is not satisfied. For the standard analysis methods, relations
(6) and (7) have been shown to work with Gaussian processes
but to fail with log-normal processes (Malamud and Turcotte,
1999).

The influence of nonstationarities on the parameter re-
trieval by pure DFA has been addressed (Chen et al., 2000)
in a more complex situation for a medium or signal com-
posed of patches of two kinds randomly distributed whereas
we consider only two such patches. Moreover, DFA requires
alocal linear fit of data in intervals which may have an impact
on the results. The superposition rule in this work misses the
termu1 — w2 due to theu-gap and its influence.

5 Conclusion and prospects

The present paper has shown how much the structure of
an inhomogeneous scalar field can influence the measure-
ment of its own texture. The original model of discontinu-
ity in a fractal field presented here has the advantage of not
needing any calculation of a fractal field using a particular
algorithm (multiplicative cascades, Weierstrass-Mandelbrot
series, fractional integration of white noise...) or random
functions, and it may pretend to some kind of universal char-
acterisation. Nevertheless, this approach requires a careful
calibration of the amplitude spectra (12) and the roughness
function (21), which is a crucial step because it determines
their precise dependence on the momengdo .

This puts stress on the advantage of removing trends in
data prior to processing, provided transitions and linear be-
haviour can be simply detected. If not, detrending may alter
spectral slopes (Malamud and Turcotte, 1999). Moreover,
the difficulty due to Fejer’s kernel in estimating the slope of

Qu=5;1w=5;,00=1;,0=1;
H1:]

the side lobes is well known and has been addressed else-
where (Rustom and ®air, 1997).

Since we chose the outer scale wave nuntdpor &g di-
mensionless) as inversely proportional to the total number
of points N, we made its influence vanishing for large
Nevertheless, for small samples, this parameter has a great
importance: the media is no longer a pure fractal.

As for the fitting range, there is no definitive way to choose
it, because it depends on the ratido (Fig. 3). According
to its value, the envelope of Fejer's kernel and the fractal

For a bifractal discontinuity, the saturation has the effect ofspectrum cross at a specific abscigsan the rangek < k;,
cutting off the curve part > Hy, B > 1. Raw data show the latter contribution is higher, whilst in the range> k;,
relation (6) to be roughly satisfied in the anti-correlation the former contribution is higher. The automatic detection of
range with a slight overestimation ¢f (Fig. 14, left side).  the best fitting intervals and crossovers has been addressed
Despite the cut-off, detrended data provide a better verificafor geophysical data (Main et al., 1999), but for checking
tion of relation (6), with a small underestimation 8f and  consistency with the fractal analysis in our analytical model
the best agreement is obtainedft = H, and 1 = B2 it was simpler to take a compromise in a first step.

Fig. 12. Variations of the estimated fractal indékas a function of
the fractal indexH» without . or o gap (bifractal discontinuity). In
each plotN =100,N1 = Np =50 (dotted line) N = 1000,N1 = No
=500 (dashed line)y = 10000,N; = N> = 5000 (dotted-dashed
line) and diagonaH = Hy (solid line). Same cases as Fig. 7.
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The parametric study performed here shows that for a pure
u-gap,H is well estimated everywhere though overestimated
(AH < 0.15) andg is overestimated in the anti-correlation
range AB < 0.7) and saturates in the correlation ranfe (
< 2.5). For a pures-gap the retrieval ofd is excellent
everywhere AH < 0.01) and the behaviour ¢ is better
than for au-gap, leading to less overestimation in the anti-
correlation range4S < 0.2). For detrended datd and
are well estimated everywhere. FopBeagap, saturation de-
grades measurements in the case of raw data and the medium
with smaller spectral index is dominant in the case of de-
trended data. For A-gap, there is also predominance of the
medium with smaller fractal exponent. A similar comparison
carried out with 50 realisations of a FGN (Taqqu et al., 1995)
shows that the nominal value &f is retrieved within 1% to
10% accuracy, depending on the method used, but unfortu-
nately, the problem of discontinuities is not addressed.

An interesting development of our one-dimensional model
would be to insert a finite-gradient transition between the re-
gions 1 and 2 (Fig. 14) so as to model a smoothed disconti-
nuity. The signal function in the transition medium 0 would
be locally split into an averageg and a fluctuation with zero
mean and standard deviatieg like in Eq. (11). If this tran-
sition is composed of ppoints, it can be assumed thag
andoyg vary linearly in the intervalsif1,u2] and [o1,02], re-
spectively:

0<x<Nyg-—1 (31)

02—01

pno(x) = ttx + pa

oo(x) = No—1X T o1
This kind of profile would be quite relevant since it would
involve typical data segments from which linear trends are
removed in the DFA method.

We actually focused here on the monofractal description
of a bifractal object, because of our final purpose being the
inverse problem of 2D- or 3D-synthesis from a minimal set
of parameters. So to say, the present work basically considers
a bifractal structure and examines the behaviour of the global
structure seen as a monofractal.

and the dynamics of atmospheric phenomena (Schertzer and
Lovejoy, 1988; Chigirinskaya et al., 1994; Lazarev et al.,

Fig. 13.
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. . . (monofractal discontinuity) for ra¥a), (b) and detrendeéc) data.
Multifractals seem to be more realistic for modelling the |, o4ch plot, N = 100, N3 = Ny = 50 (dotted line) N = 1000, Ny

texture of satellite images (Parrinello and Vaughan, 2002)- y, = 500 (dashed line)y = 10000,N; = N, = 5000 (dotted-
the cloud liquid water content (Ilvanova and Ackerman, 1999)gashed line) and diagongl= 2H + 1 (solid line).

1994). Nevertheless, the factors affecting multiscaling anal-only the standard deviation such as expression (19), one
ysis (Harris et al., 1997) and the distinction between genuin1as to involve the p-th order moments defined by:

and spurious multifractals have been also examined (Enev
1994; Tchiguirinskaia et al., 2000). Moreover, multifractal

Iy = (F — p)?

generation would require much more descriptive parameterg@nd such that:

(Tessier et al., 1993; Davis et al., 1994).

o L\K®P
Because of this difficulty, the synthesis of multifractal data "7 (L) = mo (L_()) ’

in two or three dimensions using a parametric process is
not yet common, though very promising methods, based o
wavelets (Deguy and Benassi, 2001), are presently gaining

importance. In a multifractal analysis, instead of consideringK (p) = pH (p).

(32)

(33)

where K (p) is the moment scaling function (Tessier et al.,
993):

(34)
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Fig. 14. Consistency of the spectral and fractal approaches (bifractal discontinuity) for raw (left) and detrended (right) data. In eéch plot,
=100,N1 = N» =50 (dotted line) N = 1000,N; = N, = 500 (dashed line)y = 10 000,N; = N» = 5000 (dotted-dashed line) and diagonal
B =2H + 1 (solid line).

For a monofractalH (p) is a constant, independent of the less complex for generating a large amount of 2D- or 3D-
order p. This development would therefore consist in ex- data in a short time, which is our very purpose. On the other
tending the derivation of App. A2 to the moments of higher side, we may consider in the present work the modelling of
the first and second moments as a first step in the study of

The standpoint of monofractals has two advantages. ornultifractal fields; the next steps would consist in modelling
the one side, they require very few parameters and they arE® moments of higher order (Eq. 33) in the same way.

order.
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Even in the frame of monofractals, the present model is
based only on the estimation of the roughness parani&ter
Nevertheless, it is well-known that a fractal structure must /\ /\ /\

o, G2, Hy, B2

be characterised by its lacunarity, for which unfortunately
only partial estimators exist (Mandelbrot, 1982; Allain and

Cloitre, 1991; Albregtsen and Nielsen, 1995; Henebry and Ho, Oo, Yy \/ v
Kux, 1995; Plotnick et al., 1996). In other words a set with a Ho. Bo

given fractal dimension can be arranged to represent a broad

range of quite different structures, differing only by their la- i, 61, Hi, By

cunarity (Blumenfeld and Mandelbrot, 1997). Actually the
scaling relation (19) is subject to revision because the pref-_a/\, /\V/\V/\/\ AN A AA

. . VA]'V'V
actoroyg is not necessarily a constant: VY
- PP »

N, No N,

_ L\"
& (L) = og(L) (L_o) ) (35)

Fig. 15. Model of one-dimensional transition of finite gradient be-
tween two homogeneous fractal media.

Its variability has been proposed as a measure of lacunarity

(Blumenfeld and Mandelbrot, 1997). We expect that these

effects of lacunarity could be taken into account in a future We consider fields decomposed in two parts as defined by

work. expression (11):
The confider]ce of_ Hurst parameter (Schmittbuhl et al., [ Fy(x) = u1 + G1(x) (A1)
199_5), fractal dimension (Soille and Rivest, 1996) and spec-| F,(x) = us + Ga(x)
tral index (Malamud and Turcotte, 1999) measurements has
been examined. It appears that the most robust method¥ith
to gvaluate the fractal dimension are those of the semi- G1x) =0 G1(x)2 = 62
variogram, the flat structuring element and the power spec- Gao() =0 o2 =02 (A2)
trum. This latter one is based on the relationship betwgen 2 -~ 2
and D derived by combination of relations (6) and (20): The continuous Fourier transform &f on unbounded sup-

port writes:

A =3E+2-2D BO) Fky = 1uad (0 + A1 (0 1Y) 4 g () + A2 (k) 6729 (A3)

with E = 2 in these authors’ work an = 1 in ours. Al-  with §(k) denoting Dirac impulse®;(k), ®2(k) the phase
though the box counting method is less robust under lineaspectra andd1(k), A2(k) the amplitude spectra a1 and
transformation, in our context it is much easier to handle.G5, respectively such that:
Another extension to our work would consist in testing an- a as
other method. A1(k) = 2 P4 Az2(k) = (12 o p2\Pe/4
The one-dimensional approach of the problem proposed (koy + 42) (ko + K2)
in this paper is basic because it naturally applies for instance Now let F(x) be sampled with a stepx on a bounded
to in situ measurements performed along the trajectory of amdomain containing the initiaV points. Its Fourier transform
aircraft bearing instruments or to remote sensing of mediumwrites:
arameters along line scans performed by a lidar. Neverthe~
Eass, the extensi%n to two-dirglensional myedia would be in-F'®) = #1516 + T1 (k) + p2S2 (k) + T2 (k) (AS)
teresting and necessary because we have also to analyse tith the following expressions, according to Eq. (8):
texture of images.

(A4)

N1 N
S1(k) = Z elkmAx So(k) = Z elkmAx (A6)
m=1 m=N1+1
Appendix Al: Power spectrum of a one-dimensional dis- and:
continuity '
& ikmAx u ikmAx
We wish to show the influence of a one-dimensional dis-/1*) = ZlGl(’"Ax)e Tok) = ;HGZ('"M)e - (A7)
m= m=N1

continuity between two monofractal regions on the Power-
Spectral Density (PSD). In that purpose, we build here a one- It is straightforward to calculate the geometrical progres-
dimensional model with a signal functidn(x). Let N1, N2 sions (Eg. A6) putting Dirichlet kernels into evidence:

be the pixel number of regions 1 and 2 (a¥d= N1 + N»), sinakr s e
u1, n2 their mean levelsyy, o, their standard deviations and S1(k) = 2 eiNlT+1 _ 2 e'<N1+ZT)kA{

. vels . Sk = — &
1, p2 thelr spectral indices (FIg. . SIn=5~ SIn=5~
B, B2 their spectral indices (Fig. 1) o b

NokAx

(A8)
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The expressions (A7) can be expressed by means ofl,, the variances off; andG; can be easily expressed by means

®q, Oo: of their Fourier transforms:
1 0 idy(k) ,—ikx 1 Y 1
Gl(x) =357 f A]_(k) el 1o dk O.j2 S Z Gj(xm)z — — ZA](kn)z (A18)
—00 (A9) Nj 21 Ny =

+00
Ga(x) = 5= [ Az(k) ¢! P20 =ik gi . . .
20 = 2 ,{o 2k e ¢ and yield the normalising constants of the amplitude spectra

A1(k) and Ao (k):

to yield:
N; ,
+oo o aj = ——~L——0; jef(1,2) (A19)
Ti(k) = % [ ALK P10 § (k — K dk' VI (Nj, &, B))
—00

(A10) with the sums:

+o00 ) ,
(k) = 5 [ Ax(k) P28 Sy(k — K')dk'
—% N;j

n
This means thaly (k), T>(k) are equal to the convolution of T (Nj. €0j B) = Z B2 whereg,, = NSN‘ (A20)

the kernelsSy (k), S2(k) and the spectra on infinite support. n=0 (551' +67
Since these exact expressions are difficult to handle, we shall ) ]
make a simplification by assuming that, in the limit of large  BY t@king the squared modulus of expression (A13) we get
N1 andNo, the sumsSy, S» as kernels in Eg. (A10) will give: the PSD:

- 2
i)~ 2 5k of E kA [P0\ =13 150 002 +13 15 00+ A1 (0% + 42 ()
N
T (i 252 (A11) a2 [S1 () S2(0)° 51 ()" 82 (b))
Sak) ~2mb(k)e ’ +u1A1 (k) [S1 (k) e 10 1.5 (k)* £/ P210)]
o +u2Az () [S2 (k) 1920155 ()" ei®20] - (A21)
and therefore Eq. (A10) will reduce to: 1Az (k) [S1 (k) e P20 18y (k)* e P20
- - +i2A1 (k) [S2 (k) e #1015 (k) &40 |
T1(k) ~ A1(k)e' ™ Ta(k) ~ Ax(k)e' P20 (A12) 1241 (k) Az (k) cos[®1 (k) — @5 (k)] .
On the opposite, the sum, Sz as factors ofus, u2 On the one hand, we shall focus on the phase-independent

in Eq. (A5) will be kept since they spread power over all hart of the PSD, and take the phase average of Eq. (A21), as-
scales. With Dirac impulse function in Eq. (A3) the contin- syming uniformly-distributed random phases. This ensures
uum power would be concentrated at the origiF 0) sothat  hat the quantities between the second, third, fourth and fifth
it would not appear in log-log plots. In summary, inserting prackets vanish. Moreover, if we assume that the two phase
Eq. (A12) into Eq. (A5) we get: sets®1 (k) and ®,(k) are independent, the relevant terms

F k) = paSu () + Az (6) €00 + 108, (k) + Ap (b 6920, (A13) (sixth brackets) also vanish, and there remains only:

Y
Let us now define the reduced wave number: ‘F(k)‘ =13 |81 (k)12 + 115152 () * + Ag (k)
£ =kAx (A14) +A2 ()% + papa [S1 (k) S2 (k)* + S1.(K)* S2 (k)] . (A22)
the sampling step\k (dimensionlessA£) and the cut-off  On the other hand, takingas the variable, we easily derive
wave numbeky (dimensionlesgy): the expressions:
T T T -2 Nié i 2 Noé
Ak = Ae=— ky=-— Ey=m. (A15) 2 _sit=F 9 _siP=g
NAx N Ax 1EOF =Tt 120 ="5 . (A23)
In Eq. (A4), the outer scale wave numbggs, ko2 (dimen- S1(8) S2(&)" +S1(&)* S2(§) =°°SN1§+CfEIZ§,§ cosig1

sionlessto1, £02) are defined as: )
where we made use of the relatidh= N1 + N». Therefore,

2n 2n 2r 2m we get the simple expression for the PSD:
bon = _ T =T (AL6
0= ko= for= o fo2= (A16) . N
. . ) . 2 _ ir2 V15 i N2t i NE
Thanks to Rayleigh’s energy principle (equivalent to Par- ‘F (g)‘ _ pa)(asir 3 “:25; 8 ) truazsin? 3
seval’'s theorem for continuous Fourier transform) which 2 .2 SI'\,Z? .2 (A24)
1 1 2

states that for any functiof sampled aiV points we have: T (@162 + J—j (@162 2
01 02

2 (A17) that is, relation (15) in the main text. Note that the steady

components are functions of Fejer’s kernels relativd vy

N 1 N 5
> FOw?= 3 )| Fik
m=1 n=1
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and N». In the limit of vanishingN1 or N, relation (A24)
reduces to:
I’)2 2 o2
F ‘ 25' N° 2
‘ © Sr':fs 2 (ngJrSz)Hﬂz/z (A25)
2 2
Fef o e T
N0 L s L)

The condition (A1) on the averages@f andG> leads to:

A1(0)e!®1® =0 A2(0)!®2© =0 (A26)

and sinceA1(0) # 0 andA2(0) # 0, we conclude that:

®1(0) = % [mode]  ®(0) = %[modn] . (A27)

Appendix A2: Fractal roughness of a one-dimensional
discontinuity

Since the regions 1 and 2 are fractal, we have:
(F1 — p1)? = o212 (A34)
(F2 = p2)? = oFL2H

and by inserting Egs. (A33) and (A34) into Eq. (A30) we get:

iu=¢w1+(1—a)uz

0_2 — OlO'fLZHl +(1- Ol)UZZLZHZ +a(l- @) (1 — . (A35)

112)?

We can check that the total number of the positions equals
(Ny+1— L)+ (No+t1— L)+ (L —1)=N — L + 1 where
we have seN=N1+N>. By weighting each value af by its
frequency of occurrence, we eventually get the average:

(N—-L+1o(L) =

L-1 n ) L 2H; n ) L 2H, n n )
T2 = 1_7) il u 1_7) -
Z L01<N1) +< )% (Nz) +L( I (u1—p2)

n=1

We want to demonstrate the influence of a one-dimensional L\ M L\ 12
discontinuity between two monofractal regions on the rough-+o1(N1+1— L) (N) +o2(N2+1-1L) <N2> (A36)
1

ness parametei.
dimensional model with a signal functidn(x). Let N1, N2

be the pixel number of regions 1 and.2,, 2 their mean lev-
els, o1, o2 their standard deviations arfdy, H> their Hurst

In that purpose, we build a one-

that is, relation (22) in the main text.
2) if max(N1, N2) < L < N, only one situation is possi-
ble. We findN1+N, — L +1 = N — L + 1 box positions

parameters (Fig. 1). We shall use the box-counting methodwhere relations (A30) hold with representing the covering

by counting the positions of a box with normalised size
which yield the same standard deviati®L). Three main
cases and two trivial cases can be distinguished.

fraction of region 1 defined by Eq. (A31). After a calcula-
tion similar to that of the previous case, we likewise derive
relations (A35). Like previously the total number of the po-

1) if0 < L < min(N1, N2), three situations are possible. sitions equal$v — L +1 (N = N1+ N>). By weighting each

There areN; + 1 — L box positions where:

W=
{ L\ (A28)
o= (k)
andN» + 1 — L positions where:
W= 2
L\ 12 (A29)
=)

since the structures 1 and 2 are assumed to be fractal.
sides, there are aldo— 1 box positions in which:

{Mzawa)FZ 7 (A30)

o2 =a(F1— W2+ 1 —a)(F2—p

value ofo by its frequency of occurrence, we finally get the
average:

(N—L+15(L)=

N—XL:-\-]. A ) L 2H1+<l n) ) L 2H2+n(1 l’l)( )2
L. _m, LRV
AAWA L)%\, A A

n=1

(A37)

that is, relation (23) in the main text.
3) if min(N1, N2) < L < max(N1, N2), two sub-cases are

Béaossmle according to whethéf; < N2> or No < Ni. If

N1 < N2, we find N1 box positions where relations (A30)
hold with « representing the covering fraction of region 1
defined by (A31), andV, + 1 — L positions where re-
lations (A29) hold. After a calculation similar to that of
the first case, we likewise derive relations (A35). We can

wherea represents the fraction of region 1 covered by thecheck again that the total number of the positions equals

box, such that:

a=21 with 1<n<L—-1 (A31)
Replacingu by its expression, we get:
Fi—p=F—p+Q—a)(n1—pn2) (A32)

Fo—u=F—puz—a(ur — n2)

and therefore, taking the square and the average:

(F1— )2 = (F1 — u1)2+ (1 — 0)?(u1 — p2)?

(F2 — )2 = (F2 — u2)? + o?(u1 — p12)?

(A33)

(M) + (WN2+1-L)=N — L+ 1. By weighting each
value ofo by its frequency of occurrence, we finally get the
average:

(N—-L+1o(L) =

Ny 2H; 2H,
n ,(L ( n) o L n( n> 2
= 1-— “(1=-2= _
Z\/Lal (Nl> + L 0y N + L L (n1—p2)

n=1

L\
+02(Na+1—1L) (E) (A38)

that is, relation (24) in the main text.
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If N» < N, we find No box positions where rela-
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N), we keep only the second integral, and of course convert

tions (A30) hold witha representing the covering fraction of it to a sampled sum:

region 1 defined by Eq. (A31), and +1— L positions where 0
relations (A28) hold. After a calculation similar to that of the p _ Z (n— HI=Y2w;.
j=0

(A44)

first case, we likewise derive relations (A35). We can check

that the total number of the positions equalg ¢ 1 — L)

+ (N2) = N — L + 1. By weighting each value af by its

frequency of occurrenceM = N1 + N2), we finally get the
average:

(N—L+15(L) =

3 (B s () (B) ) o
noa(L AW nomy
17\, L)%\, A A

n=1

L\™M
N 1-0L)| —
+o1(N1 + )(Nl)

(A39)

that is, relation (25) in the main text.
Eventually, the two trivial cased; = 0 andN; = 0 lead

We also dropped the integration constah), the nor-
malising constani"(H+1/2) and the sampling stefix be-
cause the calibration of relation (A43) normalises it again
anyway. The sampled Gaussian white ndisgis calculated
by means of a random number generator.

Examples of spectra and fractal graphs of this numerical
model are plotted on Figs. 3 and 8, together with the analyti-
cal spectra and fractal graph possessing the sarmaes, H.

The agreement between both models seems quite satisfying,
as regards levels and slopes. Nevertheless the retrieved slope
is overestimated wheH < 1/2, and this is probably due to

the truncation in the series of relation (A44). Since this ran-
dom FBM is aimed only at validating the calibration of our

to dropping the square root sums in Egs. (A38) and (A39) toanalytical spectrum, we shall ignore this discrepancy.

yield respectively

_ L\
O'(L) = 0?2 (ﬁ)

_ L™
o(L) =01 (ﬁ)

that is, relations (26) and (27) in the main text.

if Ny=0: (A40)

if Np=0: (A41)

Appendix A3: Numerical generator of fractional Brown-
ian motion (FBM)

To check the calibration of our analytic model, we generate

a signalF (x) of FBM type with spectral indeg and equiv-
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