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1Institut de Recherche pour le Développement (IRD), S̀ete, France
2Institut National de Recherche en Informatique et Automatique (INRIA), COMORE project, Sophia-Antipolis, France
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Abstract. The principal objective of hydrodynamical-
biological models is to provide estimates of the main carbon
fluxes such as total and export oceanic production. These
models are nitrogen based, that is to say that the variables
are expressed in terms of their nitrogen content. Moreover
models are calibrated using chlorophyll data sets. Therefore
carbon to chlorophyll (C:Chl) and carbon to nitrogen (C:N)
ratios have to be assumed. This paper addresses the prob-
lem of the representation of these ratios. In a 1D framework
at the DYFAMED station (NW Mediterranean Sea) we pro-
pose a model which enables the estimation of the basic bio-
geochemical fluxes and in which the spatio-temporal vari-
ability of the C:Chl and C:N ratios is fully represented in
a mechanical way. This is achieved through the introduc-
tion of new state variables coming from the embedding of a
phytoplankton growth model in a more classical Redfieldian
NNPZD-DOM model (in which the C:N ratio is assumed to
be a constant). Following this modelling step, the parameters
of the model are estimated using the adjoint data assimilation
method which enables the assimilation of chlorophyll and ni-
trate data sets collected at DYFAMED in 1997.

Comparing the predictions of the new Mechanistic model
with those of the classical Redfieldian NNPZD-DOM model
which was calibrated with the same data sets, we find that
both models reproduce the reference data in a comparable
manner. Both fluxes and stocks can be equally well pre-
dicted by either model. However if the models are coincid-
ing on an average basis, they are diverging from a variability
prediction point of view. In the Mechanistic model biology
adapts much faster to its environment giving rise to higher
short term variations. Moreover the seasonal variability in
total production differs from the Redfieldian NNPZD-DOM
model to the Mechanistic model. In summer the Mechanistic
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(blaise.faugeras@ifremer.fr)

model predicts higher production values in carbon unit than
the Redfieldian NNPZD-DOM model. In winter the contrary
holds.

1 Introduction

The estimation of the amount of carbon fixed by oceanic phy-
toplankton during primary production is a key point to quan-
tify the future evolution of atmospheric carbon. To address
this issue biogeochemical models are increasingly being used
and applied to a variety of regions in the ocean. Most of these
models are more or less complex variants of theFasham et al.
(1990) model and are nitrogen based. That is to say that the
compartments or state variables of the model, and in partic-
ular phytoplankton, are expressed in terms of their nitrogen
content (mmolN/m3). The main reason for this is that ni-
trogen plays a critical role in ocean biology as an important
limiting nutrient in a wide range of areas. Therefore it is a
natural currency for modelling biological fluxes.

However, if the aim of such a model is to estimate and pre-
dict carbon fluxes, then carbon to nitrogen ratios have to be
assumed. It is therefore quite common to use the Redfield
ratio to convert the nitrogen fluxes computed from the phy-
toplankton compartment to carbon fluxes. However the ni-
trogen to carbon ratio is known to be highly variable (Droop,
1968; Bury et al., 2001) both in time and space.

A second weakness of the classical approach is due to the
lack of available measurements to calibrate and validate the
model. Since the nitrogen of the phytoplanktonic compart-
ment cannot be measured, the chlorophylla measurements
are broadly used to assess the behaviour of this compart-
ment. Therefore a nitrogen to chlorophyll ratio has to be as-
sumed, or using the C:N already hypothesised, a C:Chl must
be supposed. In most simple models this ratio is assumed
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Fig. 1. Comparison of experimental data in chemostat withRhodomonas salina(Cryptophyceae) and the BIOLOV model output for particular
carbon (left) and chlorophyll (right). The dilution rate is successively set to 0, 0.3 and 0.1 d−1. FromPawlowski et al.(2002).

to be constant (Fasham et al., 1990), and in more detailed
approaches it can be represented as a static function of light
and nitrogen (Doney et al., 1996; Lévy et al., 1998). From
laboratory studies it was demonstrated that the C:Chl is also
highly variable, especially in conditions of nitrogen limita-
tion (Rhee and Gothan, 1981; Sciandra et al., 1997). In the
end, the biochemical models which take explicitly into ac-
count the physiological plasticity of the phytoplankton are
rather scarce (Lefevre et al., 2003).

Then the main question that we want to address in this pa-
per rises. What are the effect of the variability of the C:N and
C:Chl ratio on the predictions of the biogeochemical models
and on their calibration? What is the benefit of complexi-
fying the model by predicting these ratio with a Mechanistic
model integrating the phenomenon of coupling between light
and nitrogen limitation?

The goal of this paper is to address this aspect using a cou-
pled hydrodynamical-biological modelling. This work fol-
lows another study where only the spatial variability of the
C:Chl was considered (Faugeras et al., 2003), and was es-
timated through an assimilation step. Here we consider the
same 1D framework at the DYFAMED station, we propose
a model which enables the estimation of the basic biogeo-
chemical fluxes and in which the spatio-temporal variability
of the C:Chl and C:N ratios is fully represented in a mechan-
ical way.

This is achieved through the use of a new biological model
(the BIOLOV modelPawlowski et al., 2002; Pawlowski,
2004)) developed and validated in chemostat experiments.
This phytoplanktonic model describes independently the be-
haviour of phytoplanktonic carbonC, nitrogenN and chloro-
phyll L. It is an alternative to other existing models, like
the model presented inGeider et al.(1997) or in Baumert
(1996). Note that other more complicated phytoplankton
growth models predicting the behaviour of these variables
could be used (Zonneveld, 1998; Flynn, 2001), but their
higher complexity make them much more difficult to inte-
grate in the framework of a biogeochemical model. Figure1
demonstrates the ability of the BIOLOV model to reproduce,
with a limited set of parameters, both the steady state val-

ues and the transients for chemostat experiments with the
Cryptophyceae Rhodomonas salina. The considered cou-
pled hydrodynamical-biological model thus results from the
embedding of this BIOLOV phytoplankton growth model,
in a 1D Redfieldian NNPZD-DOM model (Nitrate, Ammo-
nium, Phytoplankton, Zooplankton Detritus, Dissolved Or-
ganic Matter) already validated at DYFAMED under con-
stant and fluctuating experimental conditions.

The objective of this paper is not to fully compare this
“classical” 1D Redfieldian NNPZD-DOM model with our
new model in terms of the quality of the simulated most im-
portant biogeochemical fluxes such as production and export.
Actually this would have been an interesting question to ad-
dress but as shown inFaugeras et al.(2003) production and
export fluxes estimates can not be recovered at DYFAMED
from stock (chlorophyll and nitrate) data. Indeed they have
shown that some measurements of these fluxes need to be in-
cluded in the assimilation process in order to constrain pa-
rameter estimation and to guaranty consistent predictions.
As a consequence both models produce comparable average
fluxes values since these are constrained by data assimilation.
Therefore we clearly concentrate on the spatial and temporal
variability of the fluxes and ratios as predicted by the mod-
els. Then we estimate the benefit of using more complicated
models if we want to account both the average value and the
variability of these quantities.

There are several reasons why the DYFAMED station, lo-
cated in the Northwestern Mediterranean Sea, is an inter-
esting test case. First, several biogeochemical production
regimes that take place in the world ocean are found here.
Deep convection occurs during winter, leading to a spring
bloom. Oligotrophy prevails during summer while pertur-
bations in the meteorological forcing generate a secondary
bloom in fall. Secondly, the station is far enough away from
the Ligurian Current to be sufficiently protected from lat-
eral transport, thereby permitting a 1D study (Marty, 1993).
Moreover, DYFAMED is a JGOFS time-series station which
means that a data base of biogeochemical and physical pa-
rameters is available to carry out and validate simulations.
A final reason for using the DYFAMED station is that it is
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Fig. 2. Temperature profiles. Model results vs. data collected at DYFAMED in 1997; solid line: data; dashed

line: simulation.
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Fig. 2. Temperature profiles. Model results vs. data collected at DYFAMED in 1997; solid line: data; dashed line: simulation.

relatively well known (Deep-Sea Res. II, special issue, 49,
11, 2002), and has been the subject of previous model stud-
ies (Lévy et al., 1998; Mémery et al., 2002; Faugeras et al.,
2003).

The paper is organized as follows: Sect. 2 is devoted to the
construction of the new model by embedding the BIOLOV
model into the 1D Redfieldian NNPZD-DOM model. In all
this paper the Redfieldian NNPZD-DOM model is also sim-
ply referred to as “the Redfieldian model” or “the NNPZD-
DOM model”, and the new proposed model is referred to as
“the Mechanistic model”.

Section 3 discusses the calibration of the Mechanistic
model using data assimilation. Numerical results are pre-
sented in Sect. 4 and a Discussion section ends the paper.

2 Model presentation

2.1 A one-dimensional NNPZD-DOM model

The main goal of this section is to briefly present the one-
dimensional NNPZD-DOM biological model proposed in
Mémery et al.(2002), originally qualitatively calibrated for
DYFAMED and then used to assimilate data from this station
in Faugeras et al.(2003). This model is one of the two ba-
sis elements of the new model proposed in this paper and for
sake of clarity we will recall a few elements about it. How-
ever, we refer toMémery et al.(2002) andLévy et al.(1998)
for details of the different modelled processes and for the
parameterizations used. Compared to other more complete
models (Fasham et al., 1990; Spitz et al., 2001), the relative
simplicity of this model is a trade-off to obtain a first approx-
imation of the basic biogeochemical fluxes with a minimum
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Fig. 3. Schematic representation of the compartments and processes
of the NNPZD-DOM surface layer model.

number of prognostic variables. Nitrate and ammonium al-
low the estimation of new and regenerated production, zoo-
plankton mortality and detrital sedimentation feed the parti-
cle export flux.

The biological model is embedded in a 1D physical model,
which simulates the evolution over time of velocity, temper-
ature, salinity and turbulent kinetic energy (TKE). Figure2
shows temperature profiles (simulated profiles versus data
which were used to calibrate the physical model). As for dy-
namical processes, the only one taken into account is vertical
diffusion. The mixing coefficient,K, is obtained diagnosti-
cally from TKE, with a 1.5 closure scheme in the Mellor Ya-
mada nomenclature (Gaspar et al., 1990). The model covers
the first 400 m of the water column, with a vertical discretiza-
tion of 5 m.

Biological tracers are vertically mixed with the same dif-
fusion coefficient as temperature and salinity. A specific bi-
ological reaction term,FB , is added to the diffusion equa-
tion. Tracers are expressed in terms of their nitrogen contents
(mmolNm−3). For each of the state variables, NO3, NH4, P ,
Z, D andDOM, the prognostic equation reads as follows:

∂B

∂t
−

∂

∂z
(K

∂B

∂z
) = FB , (1)

whereB is one of the state variables i.e. one of the biolog-
ical tracer concentration. A schematic representation of the
model is shown on Fig.3 and the parameters are presented in
Table1.

The formulation of phytoplankton growth takes into ac-
count limitation by both nutrients and light. FollowingHurtt
and Armstrong(1996), a Michaelis-Menten function,LNH4,
is used to express limitation by ammonium:

LNH4 =
NH4

kn + NH4
. (2)

Based on the hypothesis that the total limitation, by both am-
monium and nitrate,LNO3 + LNH4, follows the same law,
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Fig. 4. Dashed line: first guess constant C:Chl ratio. Continuous
line: C:Chl ratio allowing vertical variability estimated through the
assimilation of the 1997 DYFAMED data set (fromFaugeras et al.,
2003). Also see Fig.12 for a plot of this ratio as a function of light.

i.e.

LNO3 + LNH4 =
NO3 + NH4

(kn + NO3 + NH4)
, (3)

we obtain for the expression of limitation by nitrate,

LNO3 =
knNO3

(kn + NH4)(kn + NO3 + NH4)
. (4)

The function, LI , representing limitation by light is ex-
pressed as follows:

LI = 1 − exp(−I (z, P )/kpar). (5)

The photosynthetic available radiation,I (z, P ), is predicted
from surface irradiance and phytoplankton pigment content
according to a simplified version of a light absorption model
detailed inMorel (1988). Two different wavelengths corre-
sponding to green and red are considered and the associated
absorption coefficients,kg andkr , depend on the local phy-
toplankton concentrations:

kg = kgo + kgp(
12Prd

rpigrc
)lg , (6)
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Table 1. The 28 parameters of the NNPZD-DOM model (excluding the 20 parameters of the C:Chl profile).

parameter name value unit

half-saturation const. for nutrients kn 0.01 mmolN.m−3

carbon/chlorophyll ratio rc 55 mgC.mgChla−1

phyto. exudation fraction γ 0.05
zoo. nominal preference for phyto food r 0.7
max. specific zoo. grazing rate gz 8.68E-6 s−1

half-saturation const. for grazing kz 1 mmolN.m−3

non-assimilated phyto. by zoo. ap 0.3
non-assimilated detritus by zoo. ad 0.5
zoo. specific exudation rate µz 1.16E-6 s−1

phyto. mortality rate mp 9.027E-7 s−1

zoo. mortality rate mz 1.0E-7 mmolN.m−3.s−1

detritus breakdown rate µd 1.04E-6 s−1

detritus sedimentation speed vd 5.8E-5 m.s−1

max. phyto. growth rate µp 2.31E-5 s−1

light half-saturation const. kpr 33.33 W.m−2

decay rate below the euphotic layer τ 5.80E-5 s−1

ratio of inorganic exudation fn 0.8
nitrification rate µn 3.81E-7 s−1

slow remineral. rate ofDOM to NH4 µdm 6.43E-8 s−1

coeff. for Martin’s remineralization profile hr −0.858
pigment absorption in red krp 0.037 m−1.(mgChl.m−3)−lr

pigment absorption in green kgp 0.074 m−1.(mgChl.m−3)−lg

power law for absorption in red lr 0.629
power law for absorption in green lg 0.674
contribution of Chl to absorbing pigments rpig 0.7
water absorption in green kgo 0.0232 m−1

water absorption in red kro 0.225 m−1

carbon/nitrogen ratio rd 6.625 mmolC.mmolN−1

kr = kro + krp(
12Prd

rpigrc
)lr . (7)

ThenI (z, P ) is written as the sum of the contribution from
each of the two considered wave lengths:

I (z, P ) = Ir(z, P ) + Ig(z, P ). (8)

Given an initial condition on the surface,I (z=0) propor-
tional to the solar flux and split equally into

Ig(z = 0) = Ir(z = 0) = I (z = 0)/2, (9)

Ir(z, P ) andIg(z, P ) are computed recursively according to
the following absorption equations:

Ig(z, P ) = Ig(z − 1z, P )(1 − exp(−kg1z)), (10)

Ir(z, P ) = Ir(z − 1z,P )(1 − exp(−kr1z)), (11)

where1z is the space discretization step along the water col-
umn.

Grazing of phytoplankton and detritus is formulated fol-
lowing Fasham et al.(1990):

Gp=Gp(P, Z, D)=
gzrPZ

kz(rP+(1−r)D)+rP 2+(1−r)D2
, (12)

Gd=Gd(P, Z, D)=
gz(1−r)DZ

kz(rP+(1−r)D)+rP 2+(1−r)D2
. (13)

Other modelled biogeochemical interactions include phyto-
plankton mortality, phytoplankton exudation, zooplankton
mortality (considered as large particles which are supposed
to be instantaneously exported below the productive layer
and remineralized in the water column), zooplankton exuda-
tion, fecal pellet production, detritus sedimentation, detritus
breakdown, nitrification, and dissolved organic matter rem-
ineralization (Fig.3).

Below a depth of 150 m, remineralization processes are
preponderant and the surface model does not apply. Instead,
decay of phytoplankton, zooplankton and detritus in nutri-
ents with a rateτ , and a vertical redistribution of zooplankton
mortality according to Martin’s profile (Martin and Fitzwa-
ter, 1992) parameterize remineralization below the surface
layer. This parameterization conserves total nitrogen.

An important point in the formulation of this NNPZD-
DOM model concerns the C:Chl ratio,rc. It is a parame-
ter which enters the model through the light limitation term
LI (Eqs.6 and 7). It is used to convert phytoplanktonP
into Chl which is one of the measured quantity to which
the model’s output can be compared. The simplest way to
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Fig. 5. Schematic representation of the compartments and processes
of the BIOLOV model.

chooserc is to take a constant (in space and time) value.
However as with earlier studies, (Geider et al., 1997), it is
quantitatively shown inFaugeras et al.(2003) assimilating
data from the DYFAMED station that it is impossible to sim-
ulate a correct surface chlorophyll bloom intensity together
with a correct summer subsurface chlorophyll maximum in
an oligotrophic regime using this constant C:Chl ratio. This
is also in agreement with experimental observations show-
ing a large increase of the C:Chl ratio with respect to light
(Cullen, 1990; Chalup and Laws, 1990). To overcome this
difficulty the authors gave a vertical variability to this ratio
(Fig. 4). This lead to a significant improvement of the data
assimilation results. However this is expensive from a com-
putational point of view since a function of depth involving
20 parameters has to be estimated instead of a single param-
eter. Moreover the obtained profile of C:Chl ratio is strongly
site dependent and extrapolation of the model to other areas
is therefore delicate. Some other studies (Doney et al., 1996;
Lévy et al., 1998) propose to parameterize the C:Chl ratio as
a static function of light in the water column. It is therefore
varying in space and time. Here we propose a mechanical
and more realistic representation of the dynamical variations
of the C:Chl ratio with respect to environmental conditions.
The main tool we use to achieve this objective is the BIOLOV
model presented in the following section.

2.2 The BIOLOV model

Modelling growth of phytoplankton both limited by light and
nitrogen has been an active research field in the previous
years. It resulted in several models of various complexity.
Some works describe with much details the involved mech-
anisms of coupling between carbon and nitrogen assimila-
tion, resulting in complex models where many state vari-
ables are necessary to describe phytoplankton growth (Zon-
neveld, 1998; Flynn, 2001). These models are less con-
venient to integrate in a biogeochemical framework since
they considerably increase the computational cost. More-
over the calibration of such models becomes a critic issue
since the large number of parameters to be estimated may
jeopardize the classical assimilation techniques. On the other
hand there exists simpler models that focus on the main vari-
ables of interest: total cellular carbon, nitrogen and chloro-
phyll (Baumert, 1996; Geider et al., 1997). The application
of these models have so far been limited to balanced growth
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Fig. 6. Schematic representation of the compartments and processes of the new model.
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Fig. 6. Schematic representation of the compartments and processes
of the new model.

conditions for which they have been validated. The BIOLOV
model (Pawlowski et al., 2002) is a phytoplankton growth
model which was developed and validated in chemostat ex-
periments, under unbalanced growth conditions (see Fig.1).

In the BIOLOV model phytoplankton is represented by
3 variables: the carbonC, the non-chlorophyllian nitrogen
U and the chlorophyllian nitrogenL. It was originally for-
mulated for a chemostat as a system of ordinary differen-
tial equations describing the evolution of 4 state variablesC

(expressed in mmolC.m−3), U, L andS, the nitrogen source
(expressed in mmolN.m−3). Let f (mmolN.mmol Chla−1)
denote the conversion factor from chlorophyllian nitrogen to
chlorophylla (see Table3): Chl=f L. The model integrates
both limitation by light and nitrogen and has been designed
to have a simple formulation with few parameters and state
variables representing measurable quantities in a photobiore-
actor or in the open ocean. Figure5 shows a schematic rep-
resentation of the model and its parameters are presented in
Table2.

Phytoplankton growth is assumed to be triggered by two
distinct metabolic pathways: uptake and assimilation of ni-
trogen on one hand and carbon fixation through photosynthe-
sis on the other hand.

The full nitrogen pathway consists in three steps. First ni-
trogen (S) is uptaken by the cell into the cellular nitrogen
pool (U ). The uptake rate is classically represented by a
Monod kinetics,

ρm

S

KS + S
. (14)

In a second step, the nitrogen pool is used to produce chloro-
phyllian proteins (L). The chlorophyll synthesis is assumed

to be dependent on light intensity,I , and on the ratio
L

C
. It

is also proportional to the nitrogen poolU . The rate of the

reaction is therefore assumed to be given byγ (I )U
L

C
where

γ (I ) =
αKLI

KI + I

KC

KC + I
. (15)
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Table 2. Parameters of the BIOLOV model.

parameter name value unit

max. assimilation rate ρm 5.787 E-6 mmolN.mmolC−1.s−1

half-saturation const. for assimilation KS 0.43 mmolN m−3

max. Chl synthesis rate KL 6.59
Chl. synthesis threshold coefficient KC 33.0 µ mol quanta.m−2.s−1

max. fixation rate for carbon α 2.7894 E-4 s−1

half-saturation const. for carbon fixation KI 208.5 µ mol quanta.m−2.s−1

respiration rate λ 6.25 E-7 s−1

Chl. degradation rate β 3.9931 E-6 s−1

Finally, a natural degradation of chlorophyll is also taken into
account through a rateβL.

The carbon pathway results from two reactions. First, in-
organic carbon (DIC Dissolved Inorganic Carbon) is incor-
porated into the cell through photosynthesis to form particu-
late carbon,C.

For sake of simplicity we assume a constant quantum
yield, resulting thus in the photosynthesis rate per carbon unit
a(I )L/C with

a(I ) =
αI

KI + I
. (16)

This rate is highly dependent on light level and chlorophyll
pigments which act as catalyzers for this reaction. This very
simple expression compared to the one used e.g. by (Gei-
der et al., 1997) allows to keep the model simple avoiding
additional parameters that may limit the efficiency of the as-
similation procedure.

Inorganic carbon is considered as non-limiting for phyto-
plankton growth in marine environment and therefore it does
not intervene. Second, a proportion of the carbon is lost by
respiration. The respiration rate is proportional to the carbon
biomass and is writtenλC.

2.3 Combining the 1D NNPZD-DOM model and the BI-
OLOV model

Now that we have briefly described the 1D NNPZD-DOM
model and the BIOLOV model we are able to construct our
new model. Our goal is to embed the BIOLOV model into
the NNPZD-DOM model, in order to obtain a model which
can be compared to the DYFAMED data set and in which
the carbon/chlorophyll ratio evolves dynamically. In line
with our objective to compare the effect of different phyto-
plankton parametrization on prediction variability we kept
unchanged the hydrodynamical model as well as the other
compartments of the biological model.

Phytoplankton is not anymore represented by a single vari-
ableP but by the 3 variablesU, L andC. Figure6 shows a
complete representation of the compartments and processes
of the new model, and all parameters are presented in Table3.
The different reaction terms can now be written as follows.

FNO3 = −ρp(I )LNO3C + µnNH4, (17)

0
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Fig. 7. Surface chlorophyll (mgChla/m3) computed with the Mechanistic model (first guess and assimilated

run) and with the Redfieldian model. Crosses are the surface observations. Squares are the surface measure-

ments taken from the chlorophyll profile set (Fig. 8).
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Fig. 7. Surface chlorophyll (mgChla/m3) computed with the Mech-
anistic model (first guess and assimilated run) and with the Red-
fieldian model. Crosses are the surface observations. Squares are
the surface measurements taken from the chlorophyll profile set
(Fig. 8).

FNH4 = −ρp(I )LNH4C + fnγρp(I )(LNO3 + LNH4)C

+fnµzZ + fnµdD − µnNH4 + µdomDOM,
(18)

FU = ρp(I )LNO3C+ρp(I )LNH4C−fnγρp(I )(LNO3+LNH4)C

−(1−fn)γρp(I )(LNO3+LNH4)C−γ (I )U
L

C
+βL

−Gp(U+L, D, Z)U−mpU,

(19)

FL = γ (I )U
L

C
− βL − mpL − Gp(U + L, D, Z)L, (20)

FC = a(I )L − λC − mpC − Gp(U + L,D,Z)C, (21)

FZ = Gp(U+L, D, Z)(U+L)+Gd(U+L, D, Z)D

−(1−ad)Gd(U+L, D, Z)D

−(1−ap)Gp(U+L, D, Z)(U+L)−mzZ
2
−µzZ,

(22)

FD = (1 − ap)Gp(U + L,D,Z)(U + L)

+(1 − ad)Gd(U + L, D, Z)D

−Gd(U + L,D,Z)D + mp(U + L)

−fnµdD − (1 − fn)µdD − vd

∂D

∂z
,

(23)
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Table 3. 33 parameters of the Mechanistic model.

parameter name value unit

half-saturation const. for nutrients kn 0.3208 mmolN m−3

phyto. exudation fraction γ 0.0649
zoo. nominal preference for phyto food r 0.6279
max. specific zoo. grazing rate gz 1.2152E-5 s−1

half-saturation const. for grazing kz 1.291 mmolN.m−3

non-assimilated phyto. by zoo. ap 0.333
non-assimilated detritus by zoo. ad 0.555
zoo. specific exudation rate µz 8.120E-7 s−1

phyto. mortality rate mp 1.354E-6 s−1

zoo. mortality rate mz 1.058E-7 mmolN.m−3.s−1

detritus breakdown rate µd 1.352E-6 s−1

detritus sedimentation speed vd 4.1122E-5 m.s−1

decay rate below the euphotic layer τ 5.5738E-5 s−1

ratio of inorganic exudation fn 0.7488
nitrification rate µn 3.0213E-7 s−1

slow remineral. rate ofDOM to NH4 µdm 4.8675E-8 s−1

coeff. for Martin’s remineralization profile hr -0.858
pigment absorption in red krp 0.037 m−1.(mgChl.m−3)−lr

pigment absorption in green kgp 0.074 m−1.(mgChl.m−3)−lg

power law for absorption in red lr 0.629
power law for absorption in green lg 0.674
contribution of Chl to absorbing pigments rpig 0.7
water absorptions in green kgo 0.0232 m−1

water absorptions in red kro 0.225 m−1

max. assimilation rate ρm 8.6805E-6 mmolN.mmolC−1.s−1

light half-saturation const. for assimilation KI2 104.25 µ mol quanta.m−2.s−1

Chl. synthesis threshold coefficient KC 33.0 µ mol quanta.m−2.s−1

max. fixation rate for carbon α 2.7894 E-4 s−1

max. Chl. synthesis rate αK 1.800E-3 s−1

half-saturation const. for carbon fixation KI 208.5 µ mol quanta.m−2.s−1

respiration rate λ 6.25 E-7 s−1

Chl. degradation rate β 7.9862 E-7 s−1

L/Chl ratio f 0.43 mmolN.m−3/mgChl.m−3

FDOM = (1−fn)γρp(I )(LNO3+LNH4)C

+(1−fn)µzZ+(1−fn)µdD−µdomDOM,
(24)

where

Gp = Gp(U + L, D, Z), (25)

and

Gd = Gd(U + L, D, Z). (26)

Let us make a few comments on some important modelled
processes:

– nutrient uptake :

Contrary to the BIOLOV model not only nitrate but also
ammonium is represented in the model. However the
uptake rate still uses a Monod kinetics as in the BI-
OLOV model (henceS = NO3 + NH4),

LNO3 + LNH4 =
NO3 + NH4

kn + NO3 + NH4
.

Concerning the BIOLOV model the new variableC ap-
pears in the formulation of the uptake rate,

ρp(I )(LNO3 + LNH4)C.

However in the simplest version of the BIOLOV model
the maximum uptake rate is a constant,ρm, and the up-
take rate does not depend explicitly on light. Numeri-
cal sensitivity studies reinforced by light dark chemo-
stat experiments suggested that this is a too raw approx-
imation in our 1D DYFAMED context. We therefore
choose to allow light dependence of the maximum up-
take rate through the following formulation:

ρp(I ) =
ρmI

KI2 + I
.

– Concerning the NNPZDDOM model phytoplankton or-
ganic and inorganic exudation are proportional to the
total uptake of nitrate and ammonium (Eq.19).
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Fig. 8. Chlorophyll profiles (mgChla/m3) computed with the Mechanistic model (first guess and assimilated

run) and with the Redfieldian model. Depth in meters.
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Fig. 8. Chlorophyll profiles (mgChla/m3) computed with the Mechanistic model (first guess and assimilated run) and with the Redfieldian
model. Depth in meters.

– Phytoplankton mortality and zooplankton grazing:

Phytoplankton mortality appears in the 3 equations for
U,L andC. The mortality rate,mp, is the same for
each of these variables.

In the same way, zooplankton grazing on phytoplankton
now appears in each of the 3 equations forU, L andC.
The grazing rateGp(U +L, D, Z) is the same for each
of these variables (U + L represents total phytoplank-
tonic nitrogen).

The carbon/chlorophyll ratio in mgC.mg Chla−1 (com-
puted as 12f C

L
) is now a diagnostic variable of the model

and evolves dynamically in space and time. Chlorophyll
data can be directly compared to the variablef L of the
model, whereas in former studies phytoplankton and chloro-
phyll were related through a linear relation,12Prd

rc
(whererd

is the C:N ratio andrc the C:Chl ratio), in which the poorly
known C:Chl ratio played a crucial role.

3 Calibration of the new model using data assimilation

3.1 The DYFAMED data set

The model general set up is the same as inMémery et al.
(2002) andFaugeras et al.(2003). The standard run consists
of the simulation of year 1997. The simulation is forced with
ECMWF atmospheric data, which give the wind stresses and
heat fluxes every 6 h.

The data used in this study are monthly chlorophyll and
nitrate profiles collected during year 1997 at the DYFAMED
station, and surface fluorescence data measured by the Cari-
oca buoy (Hood and Merlivat, 2001) moored at DYFAMED
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Fig. 9. NO3 profiles (mmolN/m3) computed with the Mechanistic model (first guess and assimilated run) and

with the Redfieldian model. Depth in meters.
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Fig. 9. NO3 profiles (mmolN/m3) computed with the Mechanistic model (first guess and assimilated run) and with the Redfieldian model.
Depth in meters.

in 1997 (Figs.7, 8, 9). Following the conclusions ofFaugeras
et al. (2003) concerning the necessity to use flux and zoo-
plankton data in the parameter estimation process, we also
make use of annual estimates of total production (TP), nitrate
uptake (NU) and export fluxes (EF, estimated from disparate
measurements undertaken in the 90s), and of the zooplank-
ton content estimated during a special cruise in May 1995
(Andersen and Prieur, 2000).

3.2 Parameter estimation

The purpose of parameter estimation is to find a set of op-
timal parameters that minimises a cost function,J , which
measures the distance, in a weighted least-squares sense, be-
tween the model’s solution and the observations. The op-
timisation is carried out using the quasi-Newton algorithm
implemented in then1qn3 Fortran subroutine ofGilbert and
Lemaŕechal(1989). The computation of the gradient ofJ

with respect to control parameters is required at each step of
the minimisation. This gradient results in one integration of
the adjoint model. The adjoint code was partially obtained
using the automatic differentiation program Odyssée (Faure
and Papegay, 1997; Griewank, 2000), which is an efficient
tool for obtaining adjoint codes since it enables the automatic
production of adjoint instructions. This so called variational

adjoint method has already been applied in marine biogeo-
chemistry by several authors (seeLawson et al., 1995, for
example).

As shown in Table3, the biological parameters have very
different orders of magnitude. To avoid any numerical diffi-
culties which might arise from this during the minimization,
we adimensionalise the parameter vectorK, dividing each
parameterKi by its first guess valueK0

i , ki = Ki/K
0
i . Such

a non-dimensionalisation procedure can be regarded as a pre-
conditioning for minimization. The control variable isk of
sizep, wherep is the number of parameters, andk is dimen-
sionless.

The model-data misfit part,J0, of the cost function can be
written as the sum of five terms:

J0(k) = Jsc(k) + Jcp(k) + Jnp(k) + Jzoo(k) + Jflux(k).

Let d denote the data andφ the operator which, to a set of
parameterk, associates the equivalents to the data computed
by the model,φ(k). ThenJsc, the cost related to thensc

surface chlorophyll observations,dsc reads:

Jsc(k) =
1

2

ncs∑
i=1

wsc(φsc(k)i − dsci)
2.
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Fig. 10. Mean carbon to chlorophyll ratio profiles for year 1997 at DYFAMED. Thin dashed lines indicate that

the algal biomass is very weak, and thus that the ratio is computed with very small values of C or Chl.
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Fig. 10. Mean carbon to chlorophyll ratio profiles for year 1997 at DYFAMED. Thin dashed lines indicate that the algal biomass is very
weak, and thus that the ratio is computed with very small values of C or Chl.

Jcp is related to thencp chlorophyll profile observations,dcp

(mcp measurement points on the vertical),

Jcp(k) =
1

2

ncp∑
i=1

mcp∑
l=1

wcp(φcp(k)i,l − dcpi,l)
2.

Jnp is related to thennp NO3 profile observations,dnp (mnp

measurement points on the vertical),

Jnp(k) =
1

2

nnp∑
i=1

mnp∑
l=1

wnp(φnp(k)i,l − dnpi,l)
2.

Jzoo is related to the single zooplankton data,

Jzoo(k) =
wzoo

2
(φzoo(k) − dzoo)2.

Jflux is related to the TP, NU and EF data estimates.

Jflux(k) =
wtp

2
(φtp(k) − dtp)2

+
wnu

2
(φnu(k) − dnu)2

+

wef

2
(φef (k) − def )2.

The different weightsw are composed of the square of the
assumed a priori observation errors and of a scaling factor ac-
counting for the number of each type of observation. There-

fore, we havewcs =
1

ncs.σ 2
cs

, wcp =
1

(ncp.mcp)σ 2
cp

, and

wnp =
1

(nnp.mnp)σ 2
np

.
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Fig. 11. Mean carbon to nitrogen ratio profiles for year 1997 at DYFAMED. Thin dashed lines indicate that the

algal biomass is very weak, and thus that the ratio is computed with very small values of C, Chl or N.
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Fig. 11. Mean carbon to nitrogen ratio profiles for year 1997 at DYFAMED. Thin dashed lines indicate that the algal biomass is very weak,
and thus that the ratio is computed with very small values of C, Chl or N.

We also add two penalty terms toJ0. The first term,

Jp(k) =
1

2

p∑
i=1

wi(ki − k0
i )

2,

accounts for the a priori parameter values and their standard
deviations,σi =

1
√

wi
. This term forces the minimization to

avoid biologically absurd optimal parameter values.
The second term,

Jrc(k) =
wrc

2

∑
j

∑
n

((12f (C/L)j,n − 250)+)2,

where n refers to time andj to space, is added to pe-
nalize carbon/chlorophyll ratio values greater than 250
mgC.mg Chla−1 which is considered as an upper bound by
biologists. The choice of the weightwrc is not straightfor-
ward, since a compromise has to be found between the qual-
ity of the minimization ofJ0 and realistic bound for the car-
bon/chlorophyll ratios. In practice,wrc was chosen so that
the data misfit part of the cost and its regularization part are
balanced.
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Fig. 12. Carbon to chlorophyll ratio versus light intensity. Mean
values and standard deviation by interval of light intensity of length
10 Watt/m2 calculated for the whole water column during year
1997. The thin dashed line corresponds to the parameterization
of this ratio as function of light given by Eqs. (27) and (28). The
bold dashed line corresponds to the ratio obtained inFaugeras et al.
(2003) plotted against the mean light intensity in the water column.

Table 4. Flux data (from Marty and Chiaverini, 2002) and com-
puted fluxes at 200m with the Redfieldian NNPZD-DOM model
and the Mechanistic model. Values are given in gC.m−2.y−1. NU
stands for NO3 uptake, TP for total production, EF for export flux.

flux data Redfieldian
model

Mech.
model
first guess

Mech.
model
opt.

NU 42±15 49.6 48.7 47.2
TP 156±30 136.2 92.8 106.3
EF 2±0.8 2.4 0.2 2.5

4 Numerical results

4.1 Model fit to the DYFAMED data

An a priori parameter set is constructed in the following way:
parameters which were already included in the NNPZD-
DOM model are given the values estimated using data from
the DYFAMED station inFaugeras et al.(2003). Parameters
coming from the BIOLOV model are given the values pro-
posed inPawlowski et al.(2002). A few parameters were
then hand-tuned empirically in order to obtain a qualitatively
correct first guess simulation. Note that since parameterKL

(Table 2) only enters the equations of the BIOLOV model
in theαKL product form (Eq.15), for the sake of parameter
estimation those two parameters are concatenated in a single
parameterαK .

A first run is carried out using the a priori parameter set
and without any data assimilation. Figures7, 8 and9 show
surface chlorophyll, chlorophyll and nitrate profiles com-
puted with the Mechanistic model versus the data (for the
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Fig. 13. Chlorophyll to nitrogen ratio versus light intensity. Mean
values and standard deviation by interval of light intensity of length
10 Watt/m2 computed for the whole water column during year 1997.
The dashed line corresponds to the parameterization of this ratio as
function of light given by Eqs. (27) and (28).

sake of completeness the results given by the Redfieldian
model with the light dependent C:Chl ratio described in Sec-
tion 4.2are also depicted on the same figures). The seasonal
variability is well reproduced, but the spring bloom appears
to be too strong and the transition towards oligotrophy poorly
represented. This first guess run predicts reasonably good
TP and NU fluxes estimates (Table4). On the other hand,
the export flux is underestimated and is associated with an
underestimation of the zooplankton content (Table5).

The evolution over time of the chlorophyll and nitrate data
profiles (Figs.8, 9) reflects the seasonal variability at DY-
FAMED. Winter mixing brings nutrients to the surface, but
the short residence time of algae in the euphotic layer, swept
along by strong vertical motions, prevents the development
of biomass. As the year progresses, the surface layer be-
comes more stable, thus allowing the winter nutrient enrich-
ment to be utilized continuously and finally allowing the al-
gae bloom. From mid-May to November, the situation re-
mains fairly stable with the upper layer nutrient content very
low, and the system mainly oligotrophic and characterized
by a deep chlorophyll maximum. It may be noticed that the
nitrate profiles show strong variability below 100m. This
variability cannot be attributed to biological processes since
these occur closer to the surface, and it is therefore most
likely due to horizontal advection. It cannot therefore be cap-
tured by the model. During the oligotrophic period, the loca-
tion of the nitracline and the deep chlorophyll maximum is
fairly constant. This may be an indication of the absence of
strong Ekman pumping and a crude justification for neglect-
ing vertical advection.

In order to calibrate the simulation we estimated 25 pa-
rameters among the 33 parameters of the model. Following
the sensitivity analysis conducted inFaugeras et al.(2003)
which proved that the optical model parameters as well as
parameterhr can not be recovered from the DYFAMED data
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Table 5. Zooplankton content data and computed values at 200 m,
with the Redfieldian NNPZD-DOM model and the Mechanistic
model, for May 1997, in mmolN m−2.

data Redfieldian
model

Mech.
model first
guess

Mech.
model
opt.

20±10 33.3 1.3 19.1

Table 6. Optimal adimensionalized (K/K0) parameters of the
Mechanistic model.

parameter optimal set
kopt

kn 0.944
γ 0.971
r 0.404
gz 1.314
kz 1.135
ap 0.855
ad 0.802
µz 1.220
mp 1.394
mz 0.850
µd 0.867
vd 0.347
τ 1.003
fn 0.947
µn 0.993

µdm 1.299
ρm 1.335
KI2 0.590
KC 0.740
α 1.218

αK 0.464
KI 1.041
λ 1.121
β 1.059
f 0.948

set, we did not include them in the control vector. The opti-
mal parameter set is shown on Table6.

The parameter estimation procedure resulted in several im-
provements in the simulation. Bloom intensity is divided by
a factor of two, in agreement with the observations (Fig.7).
Chlorophyll profiles during the bloom (dates 2 and 21 March
on Fig.8) also show a better fit with the data. The subsur-
face chlorophyll maximum is well simulated in oligotrophic
regime (dates 19 June, 12 July and 1 September). This re-
sults from the use of a variable C:Chl ratio. Concerning NO3
profiles the improvement is less significant. This problem
already occurred in former studies and was attributed to the
fact that these profiles are affected by 3D physics not taken
into account in the model. Data assimilation also forces the

Table 7. Total production computed at 200 m with the Redfieldian
model and the Mechanistic model. “TP in C” is the flux computed
in carbon unit (gC.m−2.y−1) and “TP in N” is the flux computed in
nitrogen unit (gN.m−2.y−1).

flux Redfieldian model Mechanistic model

TP in C 136.2 106.3
TP in N 23.9 28.5

model to predict correct zooplankton quantities (Table5) and
correct fluxes estimates (Table4). Concerning the total pro-
duction flux (TP), it is worth to notice that if in the Redfiel-
dian model it is computed in nitrogen unit and then converted
to carbon unit using a constant C:N ratio, in the Mechanistic
model this flux is directly computed in carbon unit through
the formulation

T P = a(I )L − λC (mmolC/m3/s).

This formulation can also lead to negative production values
when respiration is stronger than photosynthesis. This situ-
ation occurs at least every night in the model whena(I )=0.
Table7 shows total production for both the mechanistic and
the Redfieldian model computed in carbon unit or nitrogen
unit. Total production in carbon unit is higher for the Red-
fieldian model than for the Mechanistic model whereas the
contrary holds for this flux computed in nitrogen unit. How-
ever this difference cannot be considered as significant with
regard to the uncertainty of the data. The same remark holds
for the differences which appear in Figs.7, 8 and9 between
the Mechanistic model and the Redfieldian model.

Figure10 shows the C:Chl ratio profiles at the same dates
than the Chl profiles of Fig.8. The Mechanistic model sim-
ulates values which are in accordance with what one should
have expected. Globally the ratio decreases with depth that
is to say with light. This is certainly a consequence of the
BIOLOV model’s structure which was designed to simu-
late these features observed experimentally at steady state
(Pawlowski et al.(2002), Geider et al.(1998), Chalup and
Laws (1990)). The bloom and post-bloom period corre-
spond to relatively low C:Chl ratio values (lower than 100
mgC/mgChl) and relatively homogeneous profiles. On the
contrary during summer when the oligotrophic regime occurs
surface values are high (between 200 and 250 mgC/mgChl)
and the ratio rapidly decreases with depth from 0 to about
50 m which corresponds to the depth of the subsurface
chlorophyll maximum.

With the Mechanistic model the C:N ratio, computed as
C/(U+L), evolves dynamically. Figure11 shows the C:N
ratio profiles at the same dates than the Chl profiles of Fig.8.
As for the C:Chl ratio, it strongly varies with depth and time
which is not at all the usual hypothesis made in such a bio-
geochemical model where this ratio is taken equal to 6.625
mmolC/mmolN. This variability is consistent with experi-
mental observations (Droop, 1968; Sciandra et al., 2000),
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Fig. 14. Monthly total production profiles for the Mechanistic model.
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Fig. 14. Monthly total production profiles for the Mechanistic model.

even if the values reach sometimes too low thresholds proba-
bly due to the higher carbon losses by respiration than nitro-
gen losses in strong light limitation conditions. Table8 gives
the mean C:Chl and C:N ratios computed with the Mecha-
nistic model. The low values reached by the C:N ratio lead
to a mean value of this ratio lower than the classical Redfield
ratio.

4.2 Variability of the predicted ratios

In order to better assess the results of the Mechanistic model,
and to first discuss the variability of the C:Chl ratio we com-
pare the obtained values with those computed as a function of
light, as proposed in (Doney et al.(1996), Lévy et al.(1998)).
With obvious notations this parameterization is written as
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Fig. 15. Monthly total production profiles for the Redfieldian NNPZD-DOM model.
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Fig. 15. Monthly total production profiles for the Redfieldian NNPZD-DOM model.

follows:

RC:Chl(I ) = 12.RC:N/RChl:N(I ), (27)

whereRC:N (in molC/molN) is fixed and

RChl:N(I ) =
[
Rmin

Chl:N−
(
Rmax

Chl:N−Rmin
Chl:N

)
I/Imax

]
if I<Imax,

= Rmin
Chl:N if I≥Imax,

(28)

whereRmin
Chl:N, Rmax

Chl:N andImax are fixed parameters.

Figure12shows the C:Chl ratio computed with the Mech-
anistic model. The light intensity was discretized in inter-
vals of 10 W/m2. In each interval the value of the consid-
ered ratio was computed as well as its standard deviation.
Two other C:Chl ratios are also plotted on the same figure:
the one that would have been obtained with parameterization
(Eq.27), and the one obtained inFaugeras et al.(2003). This
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Table 8. Mean C:Chl (mgC/mgChl) and C:N (mgN/mgN) ratios
and standard deviations computed with the Mechanistic model. The
average is taken over the whole year and over the 50 first meters of
the water column.

C:Chl C:N

82.0±39.1 4.2±1.5

latter which was originally computed as function of depth
was transposed to a function of light on the basis of mean
light intensity in the water column. This is the reason why
no value is given for large values of light intensity which do
not occur often in the simulation. The first remark is that the
general form of the curve obtained with Eq. (27) fits the data
cloud issued from the Mechanistic model. It is very prob-
able that adjusting the parameters provided inDoney et al.
(1996) andLévy et al.(1998) we would be able to have a
good adjustment. The second remark is that the curve ob-
tained inFaugeras et al.(2003) fits the data cloud even bet-
ter. However, the main outcome of this comparison is the
huge variability of this ratio as predicted by our model. The
variation can easily reach 100% of the predictions meaning
thus that the coupling between carbon and chlorophyll can
be very loose. Figure13 shows the Chl:N ratio. Again vari-
ability arises from the model compared to the values given
by parameterization (Eq.27).

4.3 Variability of the predicted fluxes

The variability of total production has been estimated each
month for both models as presented on Figs.14and15. First
it appears that this variability is much higher close to the
surface, with a maximum for the nitracline in summer. The
fluxes vary generally much more for our model than for the
previous model, especially at the surface. It is worth noting
that the total production in carbon units is approximately the
same for both model since this data has been used during the
assimilation step to constrain the data (Table4).

This higher variability probably reflects the ability of
the phytoplankton compartment in the BIOLOV model to
promptly react to optimal conditions for carbon incorpora-
tion. This faculty results from the partial uncoupling between
nitrogen and carbon incorporation as described by the BI-
OLOV model.

With Fig.16, showing the time evolution during year 1997
of total production for both the Redfieldian and the Mecha-
nistic model, and with Fig.17 showing the time evolution of
the C:N ratio, important points rise. First the seasonal vari-
ability of the C:N ratio follows the one measured in the north-
east Atlantic Ocean byKörtzinger et al.(2001): an increase
from low early bloom values to high post-bloom/oligotrophic
values. Second this seasonal variability enables the Mecha-
nistic model to simulate higher summer production in carbon
unit than the Redfieldian model (and thus lower in winter in
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Fig. 16. Total production (mmolC.m−2.s−1) integrated on 100 m,
computed with the Mechanistic model and with the Redfieldian
model.

order to give an annual value similar to the one given by the
Redfieldian model). This clearly is a central point in our re-
sults since it has already been noticed that Redfieldian mod-
els predicted too low production values in summer (Mémery
et al., 2002) and since the accurate prediction of production
is important in the study of the carbon cycle.

5 Conclusion: benefits of a more mechanistic model

It was shown inFaugeras et al.(2003) that the data assim-
ilation results could not be satisfying if the C:Chl ratio was
kept constant for the Monod type phytoplankton models. The
introduction of an empirical C:Chl ratio parameterized by
depth led to good results, especially when the fluxes data
were assimilated. However this empirical approach may re-
veal difficult to extrapolate to other areas.

In our approach the idea consisted in providing a mechan-
ical parameterization to this ratio by taking into account the
nonlinear coupling between limitation by light and by nitro-
gen. For this we used the BIOLOV model that was validated
in chemostat experiments.

It is worth noting that even if both the Redfieldian and
the Mechanistic model are comparable, the involved mecha-
nisms are really different since in the Mechanistic model the
algal physiology is taken into account especially by integrat-
ing the mechanisms of photoadaptation. As a consequence,
the Mechanistic model needs 8 state variables (3 of them
representing phytoplankton) and 33 parameters whereas the
Redfieldian model needs 6 state variables (one of them being
phytoplankton) and 28 parameters plus either the 20 param-
eters used to discretized the C:Chl ratio along depth or the 3
parameters used in the representation of the C:Chl ratio as a
function of light.

The first conclusion of our study was that the Mechanistic
model reproduces the reference data in a comparable manner
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Fig. 17. Average C:N ratio (mgC/mgN) over the 50 first meters of
the water column computed with the Mechanistic model.

than the previous Redfieldian model. Both fluxes and stocks
can be equally well predicted by both models.

However if the models are coinciding on an average basis,
they are diverging from a variability prediction point of view.
In the Mechanistic model biology adapts much faster to its
environment giving rise to higher short term variations and
finally to a higher variability.

As we have shown with e.g. C:Chl ratio versus light inten-
sity the average model predictions remain in line with other
empirical formulations.

At this point it can appear rather surprising that both sim-
ple and complicated model can reproduce accurate average
fluxes. Of course the benefit of the mechanical more com-
plex model is to provide a thinner time resolution of the phe-
nomena.

The second and main conclusion of this paper is that the
seasonal variability which appears in the C:N ratio computed
with the Mechanistic model and in the total production flux
expressed in carbon unit is in line with previous experimen-
tal studies (Körtzinger et al., 2001). For an annual carbon
production value similar to the one given by the Redfieldian
model, the Mechanistic model gives higher production val-
ues in summer than the Redfieldian model. According to
this point the Mechanistic model is better than the Redfiel-
dian model since it was remarked inMémery et al.(2002)
that this latter gave too low carbon production estimates in
summer.

Two points need to be addressed in future studies. First
the proposed Mechanistic model has to be confronted to an
independent data set from another period or another station,
in order to fully assess its prediction capability. Second, the
question of a possible higher variability on the variables and
fluxes needs to be investigated further, and especially the
possible implications on carbon cycle modelling studies as
well as on sampling strategies and data interpretation.

Edited by: F. G. Schmitt
Reviewed by: T. Neumann and another referee
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