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Abstract. The principal objective of hydrodynamical- model predicts higher production values in carbon unit than
biological models is to provide estimates of the main carbonthe Redfieldian NNPZD-DOM model. In winter the contrary
fluxes such as total and export oceanic production. Theséolds.

models are nitrogen based, that is to say that the variables
are expressed in terms of their nitrogen content. Moreover
models are calibrated using chlorophyll data sets. Therefore .
carbon to chlorophyll (C:Chl) and carbon to nitrogen (C:N) 1 Introduction
ratios have to be assumed. This paper addresses the proh: L i .
lem of the representation of these ratios. In a 1D frameworkih?aenskt;g]:gaﬂ;’f thsn?gou?ggzﬁ?r?g f:ixig by;?ﬁ?;”'%g?’
at the DYFAMED station (NW Mediterranean Sea) we pro- tifS the future ev%lztion g:‘gtmos heri by P T o?d
pose a model which enables the estimation of the basic bio; 7 . . pheric carbon. 10 address
geochemical fluxes and in which the spatio-temporal vari-thls issue b|ogeoch_em|cal mo_dels_are increasingly being used
ability of the C:Chl and C:N ratios is fully represented in anddaﬁ)plled toavarllety of reglclbnsmt.he oceﬂitrl;. ';]/IOSt of t?ese
a mechanical way. This is achieved through the introduc-TCUEIS aré more oriess compiex variants oftasham et al.

tion of new state variables coming from the embedding of a(199() model and are nitrogen based. That is to say that the

phytoplankton growth model in a more classical RedfieldianCompartments or state variables of_the model, anq n partic-
NNPZD-DOM model (in which the C:N ratio is assumed to ular phytoplanktonr%l, are expre_ssed In terms Of th_e|r mtrogen
be a constant). Following this modelling step, the parameteri:r (c))ntee:t I(;n?(;”g t'zzlal Trglee T]ac;r;er:g?gl;m t:slsalr? 't:atorr;;n ¢
of the model are estimated using the adjoint data assimilatioI gt P )t/ i it id ! ; ! gyTh ¢ ' p‘t .
method which enables the assimilation of chlorophyll and ni- Imiting nutrient in a wide range ot aréas. therefore 1t1s a
trate data sets collected at DYFAMED in 1997. natural currency fo_r modeliing blologlc_al fluxe_s.

Comparing the predictions of the new Mechanistic model However, if the aim of such a model is to estimate and pre-

with those of the classical Redfieldian NNPZD-DOM model dict carbon fluxes, then carbon to nitrogen ratios have to be

which was calibrated with the same data sets, we find tha{;\ssumed. It is therefore quite common to use the Redfield

both models reproduce the reference data in a comparabl%‘t'&;?(t%?]n\ég:;tg?trr:terg,?teong::r)éisn c;ﬁ;;g:te:;\:\?getr?hgh%_.
manner. Both fluxes and stocks can be equally well pre- P P '

dicted by either model. However if the models are coincid- trogen to carbon ratio is known to be highly variatilrgop,

ing on an average basis, they are diverging from a variability
prediction point of view. In the Mechanistic model biology

1968 Bury et al, 2007 both in time and space.
A second weakness of the classical approach is due to the
adapts much faster to its environment giving rise to higherIaCk of available measurements to calibrate and validate the

short term variations. Moreover the seasonal variability in model. Since the nitrogen of the phytoplanktonic compart-

total production differs from the Redfieldian NNPZD-DOM ment cannot be measured, the chloroplylheasurements

model to the Mechanistic model. In summer the Mechanistic®'® broadly used to_ assess the behaviour .Of this compart-
ment. Therefore a nitrogen to chlorophyll ratio has to be as-

Correspondence td. Faugeras sumed, or using the C:N already hypothesised, a C:Chl must
(blaise.faugeras@ifremer.fr) be supposed. In most simple models this ratio is assumed
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Fig. 1. Comparison of experimental data in chemostat Riftodomonas salingCryptophyceae) and the BIOLOV model output for particular
carbon (left) and chlorophyll (right). The dilution rate is successively set to 0, 0.3 and . EcomPawlowski et al(2002.

to be constantHasham et al.1990, and in more detailed ues and the transients for chemostat experiments with the
approaches it can be represented as a static function of ligh€ryptophyceae Rhodomonas salindhe considered cou-
and nitrogenDoney et al. 1996 Lévy et al, 1998. From pled hydrodynamical-biological model thus results from the
laboratory studies it was demonstrated that the C:Chl is alsembedding of this BIOLOV phytoplankton growth model,
highly variable, especially in conditions of nitrogen limita- in a 1D Redfieldian NNPZD-DOM model (Nitrate, Ammo-
tion (Rhee and Gothari981, Sciandra et al.1997). In the nium, Phytoplankton, Zooplankton Detritus, Dissolved Or-
end, the biochemical models which take explicitly into ac- ganic Matter) already validated at DYFAMED under con-
count the physiological plasticity of the phytoplankton are stant and fluctuating experimental conditions.

rather scarcelfefevre et al, 2003. The objective of this paper is not to fully compare this

Then the main question that we want to address in this pa“classical” 1D Redfieldian NNPZD-DOM model with our
per rises. What are the effect of the variability of the C:N and new model in terms of the quality of the simulated most im-
C:Chl ratio on the predictions of the biogeochemical modelsportant biogeochemical fluxes such as production and export.
and on their calibration? What is the benefit of complexi- Actually this would have been an interesting question to ad-
fying the model by predicting these ratio with a Mechanistic dress but as shown Raugeras et a(2003 production and
model integrating the phenomenon of coupling between lightexport fluxes estimates can not be recovered at DYFAMED
and nitrogen limitation? from stock (chlorophyll and nitrate) data. Indeed they have

The goal of this paper is to address this aspect using a cousshown that some measurements of these fluxes need to be in-
pled hydrodynamical-biological modelling. This work fol- cluded in the assimilation process in order to constrain pa-
lows another study where only the spatial variability of the rameter estimation and to guaranty consistent predictions.
C:Chl was considered~@ugeras et gl2003, and was es- As a consequence both models produce comparable average
timated through an assimilation step. Here we consider thdluxes values since these are constrained by data assimilation.
same 1D framework at the DYFAMED station, we propose Therefore we clearly concentrate on the spatial and temporal
a model which enables the estimation of the basic biogeovariability of the fluxes and ratios as predicted by the mod-
chemical fluxes and in which the spatio-temporal variability els. Then we estimate the benefit of using more complicated
of the C:Chl and C:N ratios is fully represented in a mechan-models if we want to account both the average value and the
ical way. variability of these quantities.

This is achieved through the use of a new biological model There are several reasons why the DYFAMED station, lo-
(the BIOLOV model Pawlowski et al. 2002 Pawlowskj cated in the Northwestern Mediterranean Sea, is an inter-
20049) developed and validated in chemostat experimentsesting test case. First, several biogeochemical production
This phytoplanktonic model describes independently the beregimes that take place in the world ocean are found here.
haviour of phytoplanktonic carba®, nitrogenV and chloro-  Deep convection occurs during winter, leading to a spring
phyll L. It is an alternative to other existing models, like bloom. Oligotrophy prevails during summer while pertur-
the model presented iGeider et al.(1997 or in Baumert  bations in the meteorological forcing generate a secondary
(1996. Note that other more complicated phytoplankton bloom in fall. Secondly, the station is far enough away from
growth models predicting the behaviour of these variablesthe Ligurian Current to be sufficiently protected from lat-
could be usedZonneveld 1998 Flynn, 2001, but their  eral transport, thereby permitting a 1D studi§afty, 1993.
higher complexity make them much more difficult to inte- Moreover, DYFAMED is a JGOFS time-series station which
grate in the framework of a biogeochemical model. Figure means that a data base of biogeochemical and physical pa-
demonstrates the ability of the BIOLOV model to reproduce, rameters is available to carry out and validate simulations.
with a limited set of parameters, both the steady state valA final reason for using the DYFAMED station is that it is
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Fig. 2. Temperature profiles. Model results vs. data collected at DYFAMED in 1997; solid line: data; dashed line: simulation.

relatively well known (Deep-Sea Res. I, special issue, 49,2 Model presentation
11, 2002), and has been the subject of previous model stud-
ies (Lévy et al, 1998 Mémery et al.2002 Faugeras etal. 2.1 A one-dimensional NNPZD-DOM model
2003.
The main goal of this section is to briefly present the one-

The paper is organized as follows: Sect. 2 is devoted to th wpensmnal NNPZD-DOM biological model proposed in

construction of the new model by embedding the BIOLOV émery et al{200), originally q_uglitatively calibrat_ed for_
model into the 1D Redfieldian NNPZD-DOM model. In all 2YFAMED and then used to assimilate data from this station

this paper the Redfieldian NNPZD-DOM model is also sim- n Faugeras et al2003. This model is one Of_ the two ba-
ply referred to as “the Redfieldian model” or “the NNPZD- SIS element.f, of the new model proposed in this paper and for
DOM model”, and the new proposed model is referred to aSsake of clarity we,W|II recall a few eIemepts about it. How-
“the Mechanistic model”. ever, we refer tdémery et al(2002 andLévy et al.(1999
for details of the different modelled processes and for the
parameterizations used. Compared to other more complete
Section 3 discusses the calibration of the Mechanisticmodels Fasham et 11990 Spitz et al, 20017), the relative
model using data assimilation. Numerical results are presimplicity of this model is a trade-off to obtain a first approx-

sented in Sect. 4 and a Discussion section ends the paper. imation of the basic biogeochemical fluxes with a minimum
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Fig. 3. Schematic representation of the compartments and processes
of the NNPZD-DOM surface layer model.

number of prognostic variables. Nitrate and ammonium al-
low the estimation of new and regenerated production, zoo-
plankton mortality and detrital sedimentation feed the parti-
cle export flux.

The biological model is embedded in a 1D physical model, 200 L1 [ T N T T T T '
which simulates the evolution over time of velocity, temper- 83 44 55 66 77 8 99 110 121 132 143 154 165
ature, salinity and turbulent kinetic energy (TKE). Fig@re
shows temperature profiles (simulated profiles versus data
which were used to calibrate the physical model). As for dy- C/Chl ratio (mgC/mgChl)
namical processes, the only one taken into account is vertical ] ] ) _
diffusion. The mixing coefficientk , is obtained diagnOSti' Flg 4. Dasheq line: ]fIrSt gue_ss Con_sta_qt CChl ratio. Continuous
cally from TKE, with a 1.5 closure scheme in the Mellor Ya- Ilne_: Q:Chl ratio allowing vertical variability estimated through the
mada nomenclaturesaspar et aJ1990. The model covers assimilation of th(_e 1997 DYFAMED_data.set (frdF'aug_eras et_ al.

. ’ . . ) 2003. Also see Figl2for a plot of this ratio as a function of light.
the first 400 m of the water column, with a vertical discretiza-
tion of 5m.

Biological tracers are vertically mixed with the same dif- o
fusion coefficient as temperature and salinity. A specific bi-
ological reaction termf, is added to the diffusion equa- 7 . _ NOz + NHy4 3)
tion. Tracers are expressed in terms of their nitrogen contents > * " (kn + NO3 + NHa)’
(mmoINm3). For each of the state variables, B®IHy, P,
Z, D andDO M, the prognostic equation reads as follows:

we obtain for the expression of limitation by nitrate,

kyNO3
(kn + NHg) (ky, +NO3 + NHg)

. . _ . The function, L;, representing limitation by light is ex-

where B is one of the state variables i.e. one of the biolog- r . P g y 19
; . . i essed as follows:
ical tracer concentration. A schematic representation of thé)
model is shown on Figg and the parameters are presentediny,, — 1 — exp(—1(z, P)/kpar). (5)
Tablel.

The formulation of phytoplankton growth takes into ac- The photosynthetic available radiatiai(z, P), is predicted
count limitation by both nutrients and light. Followitgurtt from surface irradiance and phytoplankton pigment content

9B 0 0B Lno,y =
___(KB_Z):FB’ (1) 3

(4)

and Armstrong1996, a Michaelis-Menten functiorf,nn,, according to a simplified version of a light absorption model
is used to express limitation by ammonium: detailed inMorel (1988. Two different wavelengths corre-
sponding to green and red are considered and the associated
L, = NH4 . ?) absorption coefficients;, andk,, depend on the local phy-
4"k, +NHg toplankton concentrations:

Based on the hypothesis that the total limitation, by both am-k _k ‘ 12Pr,
monium and nitrateLno, + LnH,. follows the same law, g = kgo +kgp(

), (6)

rpigrc
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Table 1. The 28 parameters of the NNPZD-DOM model (excluding the 20 parameters of the C:Chl profile).

parameter name value unit

half-saturation const. for nutrients kn 0.01 mmolN.nT3

carbon/chlorophyll ratio re 55 mgC.mgChlal

phyto. exudation fraction y 0.05

z00. nominal preference for phyto food r 0.7

max. specific zoo. grazing rate g.  8.68E-6 sl

half-saturation const. for grazing k; 1 mmolN.nt3

non-assimilated phyto. by zoo. ap 0.3

non-assimilated detritus by zoo. ag 0.5

zoo. specific exudation rate e 1.16E-6 st

phyto. mortality rate mp  9.027E-7 sl

z00. mortality rate my 1.0E-7 mmolN.n3.s—1

detritus breakdown rate ng  1.04E-6 si

detritus sedimentation speed V4 5.8E-5 m.s1

max. phyto. growth rate np  2.31E-5 st

light half-saturation const. kpr 33.33 W.nm2

decay rate below the euphotic layer T 5.80E-5 st

ratio of inorganic exudation fn 0.8

nitrification rate un  3.81E-7 sl

slow remineral. rate oD O M to NH4 Wdm 6.43E-8 st

coeff. for Martin’s remineralization profile &, —0.858

pigment absorption in red krp 0.037  nmrl(mgChl.nm3)—h

pigment absorption in green kep 0.074  m 1 (mgChln3)~l

power law for absorption in red Iy 0.629

power law for absorption in green lg 0.674

contribution of Chl to absorbing pigments  rpjg 0.7

water absorption in green kgo 0.0232 nml

water absorption in red kro 0.225 nrl

carbon/nitrogen ratio rq 6.625 mmolC.mmolIN1
ke = ko + ki (o, (1) Gu=Gu(P,Z, D)= s B2 5 (13)

pighe k,(r P+(1—r)D)+r P+(1—r)D

Then(z, P) is written as the sum of the contribution from Other modelled biogeochemical interactions include phyto-

each of the two considered wave lengths:

plankton mortality, phytoplankton exudation, zooplankton

1 P)=1,(z, P) + Ig(z, P).

Given an initial condition on the surfacd(z=0) propor-

tional to the solar flux and split equally into

mortality (considered as large particles which are supposed
to be instantaneously exported below the productive layer
and remineralized in the water column), zooplankton exuda-
tion, fecal pellet production, detritus sedimentation, detritus
breakdown, nitrification, and dissolved organic matter rem-

I(z=0=1(z=0)=1(z=0)/2, 9)

I.(z, P) andl,(z, P) are computed recursively according to
the following absorption equations:

I(z, P) = I,(z — Az, P)(1 — exp(—ky A2)), (10)

ineralization (Fig.3).

Below a depth of 150 m, remineralization processes are
preponderant and the surface model does not apply. Instead,
decay of phytoplankton, zooplankton and detritus in nutri-
ents with a rate, and a vertical redistribution of zooplankton

mortality according to Martin’s profileMartin and Fitzwa-

I, (z, P) = I,(z — Az, P)(1 — exp(—k,Az)), (11)

whereAz is the space discretization step along the water col-
umn.

Grazing of phytoplankton and detritus is formulated fol-
lowing Fasham et a[1990:

ter, 1992 parameterize remineralization below the surface
layer. This parameterization conserves total nitrogen.

An important point in the formulation of this NNPZD-
DOM model concerns the C:Chl ratie,. It is a parame-
ter which enters the model through the light limitation term
L; (Egs.6 and7). It is used to convert phytoplanktoR

g.rPZ into Chl which is one of the measured quantity to which

G,=G,(P,Z,D)= :
p=0l )kz(rP+(1—r)D)—|—rP2—|—(l—r)D2

(12) the model’s output can be compared. The simplest way to
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chooser, is to take a constant (in space and time) value.
However as with earlier studiesG;éider et al. 1997, it is o
quantitatively shown irFaugeras et al2003 assimilating
data from the DYFAMED station that it is impossible to sim-
ulate a correct surface chlorophyll bloom intensity together
with a correct summer subsurface chlorophyll maximum in
an oligotrophic regime using this constant C:Chl ratio. This
is also in agreement with experimental observations show¢onditions for which they have been validated. The BIOLOV
ing a large increase of the C:Chl ratio with respect to light model Pawlowski et al. 2002 is a phytoplankton growth
(Cullen, 199Q Chalup and Laws1990. To overcome this model which was developed and validated in chemostat ex-
difficulty the authors gave a vertical variability to this ratio periments, under unbalanced growth conditions (seelfig.
(Fig. 4). This lead to a significant improvement of the data In the BIOLOV model phytoplankton is represented by
assimilation results. However this is expensive from a com-3 variables: the carbo@’, the non-chlorophyllian nitrogen
putational point of view since a function of depth involving U and the chlorophyllian nitrogeh. It was originally for-

20 parameters has to be estimated instead of a single paramulated for a chemostat as a system of ordinary differen-
eter. Moreover the obtained profile of C:Chl ratio is strongly tial equations describing the evolution of 4 state varialiles
site dependent and extrapolation of the model to other areagexpressed in mmolC.n¥), U, L andS, the nitrogen source

is therefore delicate. Some other studi@sifey et al. 1996 (expressed in mmolN.fP). Let £ (mmolN.mmol Chlal)

Lévy et al, 1998 propose to parameterize the C:Chl ratio as denote the conversion factor from chlorophyllian nitrogen to
a static function of light in the water column. It is therefore chlorophylla (see Table8): Chl=f L. The model integrates
varying in space and time. Here we propose a mechanicaboth limitation by light and nitrogen and has been designed
and more realistic representation of the dynamical variationgo have a simple formulation with few parameters and state
of the C:Chl ratio with respect to environmental conditions. variables representing measurable quantities in a photobiore-
The main tool we use to achieve this objective is the BIOLOV actor or in the open ocean. Figueshows a schematic rep-

organic exudation
(1= f)vp(I)(Lnos + Lnuy)C winter
convection

Fig. 6. Schematic representation of the compartments and processes
of the new model.

model presented in the following section. resentation of the model and its parameters are presented in
Table2.
2.2 The BIOLOV model Phytoplankton growth is assumed to be triggered by two

distinct metabolic pathways: uptake and assimilation of ni-
Modelling growth of phytoplankton both limited by light and trogen on one hand and carbon fixation through photosynthe-
nitrogen has been an active research field in the previou§is on the other hand. o o
years. It resulted in several models of various complexity. The full nitrogen pathway consists in three steps. First ni-
Some works describe with much details the involved mech-trogen ) is uptaken by the cell into the cellular nitrogen
anisms of coupling between carbon and nitrogen assimilaPo0! (U). The uptake rate is classically represented by a
tion, resulting in complex models where many state vari-Monod kinetics,
ables are necessary to describe phytoplankton graggh-( S
neveld 1998 Flynn, 200). These models are less con- pmm.

venient to integrate in a biogeochemical framework sinceln a second step, the nitrogen pool is used to produce chloro-
they considerably increase the computational cost. More-

=1V, o phyllian proteins [). The chlorophyll synthesis is assumed
over the calibration of such models becomes a critic issue L

since the large number of parameters to be estimated malp be dependent on light intensity, and on the ratio-. It
jeopardize the classical assimilation techniques. On the othes also proportional to the nitrogen pobl. The rate of the
hand there exists simpler models that focus on the main vari
ables of interest: total cellular carbon, nitrogen and chloro-
phyll (Baumert 1996 Geider et al.1997). The application aKil K¢

of these models have so far been limited to balanced grovvtﬁ’(l) K +1Ke+1 (15)

(14)

- Lo . L
reaction is therefore assumed to be glverybg/)UE where
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Table 2. Parameters of the BIOLOV model.

parameter name value unit

max. assimilation rate pm  5.787E-6  mmoIN.mmolcl.s—1
half-saturation const. for assimilation Ky 0.43 mmolN 3
max. Chl synthesis rate Ky, 6.59

Chl. synthesis threshold coefficient K¢ 33.0 w mol quantamz.s*1
max. fixation rate for carbon o 2.7894 E-4 51
half-saturation const. for carbon fixation K; 2085  umol quanta.m?.s—1
respiration rate A 6.25 E-7 st

Chl. degradation rate B 3.9931E-6 51

T T
Mechanistic model first guess
Mechanistic model assimilated run -------
Redfieldian model --------

surface data ~ +

profile data =

Finally, a natural degradation of chlorophyll is also taken into :
account through a raféL.

The carbon pathway results from two reactions. First, in- °[
organic carbon®/C Dissolved Inorganic Carbon) is incor-
porated into the cell through photosynthesis to form particu- «
late carbon(.

For sake of simplicity we assume a constant quantum .|
yield, resulting thus in the photosynthesis rate per carbon unit

T

mgChla/m3

a(I)L/C with n ]
al
a(l) = K+l (16)

This rate is highly dependent on light level and chlorophyll '
pigments which act as catalyzers for this reaction. This very | . , et
simple expression compared to the one used e.g@®y-( %o s 100 150 days 200 T
der et al, 1997 allows to keep the model simple avoiding

additional parameters that may limit the efficiency of the as-Fig. 7. Surface chlorophyll (mgChla/% computed with the Mech-
similation procedure. anistic model (first guess and assimilated run) and with the Red-

Inorganic carbon is considered as non-limiting for phyto- fieldian model. Crosses are the surface observations. Squa_lres are
plankton growth in marine environment and therefore it doesth_e surface measurements taken from the chlorophyll profile set
not intervene. Second, a proportion of the carbon is lost by(F'g'S)'
respiration. The respiration rate is proportional to the carbon
biomass and is writtehC. FnHy = —pp () LNH,C + fuypp(I)(LNOs + LNH,)C (18)

+fuizZ + fapka D — unNHa + pgom DOM,

2.3 Combining the 1D NNPZD-DOM model and the BI-

OLOV model Fir = 05 (D LnosC+0p (D L C~Fuypp (1) (Lo L) C
Now that we have briefly described the 1D NNPZD-DOM —(— f)ypp(D(Lnog+Lnn,)C—y (DU =+BL  (19)
C
model and the BIOLOV model we are able to construct our ~G,(U+L, D, Z)U~m,U,

new model. Our goal is to embed the BIOLOV model into
the NNPZD-DOM model, in order to obtain a mode_l whlc_h F = y(I)U£ —BL—myL—G,(U+L,D,Z)L, (20)
can be compared to the DYFAMED data set and in which C
the carbon/chlorophyll ratio evolves dynamically. In line Fe =a(I)L —AC —m,C —G,(U + L, D, Z)C, (21)
with our objective to compare the effect of different phyto-
plankton parametrization on prediction variability we kept
unchanged the hydrodynamical model as well as the othe
compartments of the biological model.

Phytoplankton is not anymore represented by a single vari-
able P but by the 3 variable#/, L andC. Figure6 shows a
complete representation of the compartments and processerD =1-a)G,U+L,D,Z)(U+L)

er =G,(U+L,D,Z)(U+L)+G4(U+L, D, Z)D
~(1~a,)G,(U+L, D, Z)(U+L)—m 2%, Z,

of the new model, and all parameters are presented in Bable +(Q-a)Ga(U + L, D, Z)D 23
The different reaction terms can now be written as follows. —GaU+L,D,2)D + mp(Ua—I—DL) (23)
Fnos = —pp(I)LNosC + 14nNHa, 17) ~famaD = (L= fu)maD = va=,
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Table 3. 33 parameters of the Mechanistic model.

B. Faugeras et al.:

Mechanistic modelling and data assimilation

parameter name value unit
half-saturation const. for nutrients kn 0.3208 mmolN nt3
phyto. exudation fraction y 0.0649

zoo. nominal preference for phyto food r 0.6279

max. specific zoo. grazing rate gz 1.2152E-5 51
half-saturation const. for grazing ky 1.291 mmolIN.nT3
non-assimilated phyto. by zoo. ap 0.333

non-assimilated detritus by zoo. ag 0.555

z0o0. specific exudation rate Uz 8.120E-7 sl

phyto. mortality rate mp  1.354E-6 sl

Z00. mortality rate mg 1.058E-7 mmolIN.m3.s~1
detritus breakdown rate wd 1.352E-6 51

detritus sedimentation speed v 4.1122E-5 ms!

decay rate below the euphotic layer T 5.5738E-5 51

ratio of inorganic exudation fn 0.7488

nitrification rate un  3.0213E-7 51

slow remineral. rate oD O M to NHy nam  4.8675E-8 51

coeff. for Martin’s remineralization profile &, -0.858

pigment absorption in red krp 0.037 nmL.(mgChl.n3)~/r
pigment absorption in green kep 0.074 nrL.(mgChl.nT3)~/
power law for absorption in red Iy 0.629

power law for absorption in green lg 0.674

contribution of Chl to absorbing pigments  rpig 0.7

water absorptions in green kgo 0.0232 nrl

water absorptions in red kro 0.225 mrl

max. assimilation rate om  8.6805E-6  mmoIN.mmolCl.s™1
light half-saturation const. for assimilation Ko 104.25 w mol quanta.rﬁz.s_l
Chl. synthesis threshold coefficient Kc 33.0 w mol quanta.m2.s-1
max. fixation rate for carbon a 2.7894 E-4 51

max. Chl. synthesis rate oK 1.800E-3 51
half-saturation const. for carbon fixation  K; 208.5 « mol quanta.rﬁz.s*l
respiration rate A 6.25 E-7 sl

Chl. degradation rate B 7.9862 E-7 51

L/Chl ratio f 0.43 mmolIN.n3/mgChl.nT3

Fpom = (1= fu)ypp(I)(LNOs+LNH,)C

+(A= f) e Z+ (A fy) g D—ptaomDOM, Y
where
Gp:Gp(U-i-L,D, Z), (25)
and
Gy=Ga(U+L,D, 7). (26)

Let us make a few comments on some important modelled
processes:

— nutrient uptake:

Contrary to the BIOLOV model not only nitrate but also
ammonium is represented in the model. However the
uptake rate still uses a Monod kinetics as in the BI-
OLOV model (hences = NOs + NHy),

NO3 + NH4

L Lap, = ———o -4
NOz + LNHs = 4 NG, - NH,

Concerning the BIOLOV model the new varialileap-
pears in the formulation of the uptake rate,

pp(I)(LNog + LNH,)C.

However in the simplest version of the BIOLOV model
the maximum uptake rate is a constasnt, and the up-
take rate does not depend explicitly on light. Numeri-
cal sensitivity studies reinforced by light dark chemo-
stat experiments suggested that this is a too raw approx-
imation in our 1D DYFAMED context. We therefore
choose to allow light dependence of the maximum up-
take rate through the following formulation:

Poml
K2 '
— Concerning the NNPZDDOM model phytoplankton or-

ganic and inorganic exudation are proportional to the
total uptake of nitrate and ammonium (Eld).

pp) =
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Fig. 8. Chlorophyll profiles (mgChIa/ﬁ) computed with the Mechanistic model (first guess and assimilated run) and with the Redfieldian
model. Depth in meters.

— Phytoplankton mortality and zooplankton grazing: is the C:N ratio and, the C:Chl ratio), in which the poorly

Phytoplankton mortality appears in the 3 equations forknown C:Chl ratio played a crucial role.

U,L andC. The mortality ratem,, is the same for

each of these variables. 3 Calibration of the new model using data assimilation
In the same way, zooplankton grazing on phytoplankton

now appears in each of the 3 equationstfor. andc. 3.1 The DYFAMED data set

The grazing rat& ,(U + L, D, Z) is the same for each
of these variablesl{ + L represents total phytoplank-
tonic nitrogen).

The model general set up is the same aMiemery et al.

(2002 andFaugeras et a{2003. The standard run consists

of the simulation of year 1997. The simulation is forced with
The carbon/chlorophyll ratio in mgC.mg Chta (com- ECMWEF atmospheric data, which give the wind stresses and

puted as 12%) is now a diagnostic variable of the model heat fluxes every 6 h.

and evolves dynamically in space and time. Chlorophyll The data used in this study are monthly chlorophyll and

data can be directly compared to the varialglé. of the nitrate profiles collected during year 1997 at the DYFAMED

model, whereas in former studies phytoplankton and chloro-station, and surface fluorescence data measured by the Cari-

phyll were related through a linear relatiojﬁ% (wherery oca buoy Hood and Merlivat2001) moored at DYFAMED
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Fig. 9. NO3 profiles (mmoIN/n‘?r) computed with the Mechanistic model (first guess and assimilated run) and with the Redfieldian model.
Depth in meters.

in 1997 (Figs7, 8, 9). Following the conclusions dfaugeras  adjoint method has already been applied in marine biogeo-
et al. (2003 concerning the necessity to use flux and zoo-chemistry by several authors (skawson et al. 1995 for
plankton data in the parameter estimation process, we alsexample).

make use of annual estimates of total production (TP), nitrate  As shown in Table8, the biological parameters have very
uptake (NU) and export fluxes (EF, estimated from disparatedifferent orders of magnitude. To avoid any numerical diffi-
measurements undertaken in the 90s), and of the zooplankeulties which might arise from this during the minimization,
ton content estimated during a special cruise in May 1995yve adimensionalise the parameter vedkar dividing each
(Andersen and Priep2000). paramete; by its first guess valu&?, k; = K;/K?. Such

a non-dimensionalisation procedure can be regarded as a pre-
conditioning for minimization. The control variable ksof

S . sizep, wherep is the number of parameters, ahi dimen-
The purpose of parameter estimation is to find a set of op- P P P

timal parameters that minimises a cost functidn,which sionless. - .
measures the distance, in a weighted least-squares sense, berThe model-data m|§f|t parlp, 9f the cost function can be
tween the model’s solution and the observations. The Opyvrltten as the sum of five terms:
timisation is carried out using the quasi-Newton algorithm
implemented in the1gn3 Fortran subroutine d&ilbert and Jotk) = Jse (k) + Jep (k) + Jup (k) + Jzo0(k) + Jiiux (k).
Lemagchal(1989. The computation of the gradient df )

with respect to control parameters is required at each step dfét @ denote the data and the operator which, to a set of
the minimisation. This gradient results in one integration of Parametek, associates the equivalents to the data computed
the adjoint model. The adjoint code was partially obtainedPY the modelg (k). Then JSC_' the cost related to thesc
using the automatic differentiation program OdsmgFaure  Surface chlorophyll observationssc reads:

and Papegayl997 Griewank 2000, which is an efficient nes

tool for c.>bta|n|ngl a_djo_mt codgs since |.t enables the aqtqmatlcjsc(k) _ } Z Wee (pse (k)i — dsci)2.

production of adjoint instructions. This so called variational 24

3.2 Parameter estimation
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Fig. 10. Mean carbon to chlorophyll ratio profiles for year 1997 at DYFAMED. Thin dashed lines indicate that the algal biomass is very
weak, and thus that the ratio is computed with very small values of C or Chl.

Jep is related to thecp chlorophyll profile observationgcp Jux is related to the TP, NU and EF data estimates.
(mcp measurement points on the vertical),

nep mep Wtp 2, Wnu 2
Jep®) =5 3 wep @epR)is — depi)?, M) = 5" @up () = dip)” 4 == G () = )™
241 of (¢ef (k) — def)?.

. , . 2
Jyp is related to thenp NOs profile observationsinp (mnp

measurement points on the vertical), . .
P ) The different weightsv are composed of the square of the

nnp map ) assumed a priori observation errors and of a scaling factor ac-
Tnp (k) = 2 Z Z Wap (fnp k)it — dnpi)*. counting for the number of each type of observation. There-
i=11=1 1 1
. . fore, we havew., = — Wep = and
Jzo001S related to the single zooplankton data, nes.of (ncp.mep)o,
1
Wzoo

Jzoo(k) = =22 (bz00(k) — dZ00?. = Ganp mnp)oZ,

2
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Fig. 11. Mean carbon to nitrogen ratio profiles for year 1997 at DYFAMED. Thin dashed lines indicate that the algal biomass is very weak,
and thus that the ratio is computed with very small values of C, Chl or N.

We also add two penalty terms fig. The first term, where n refers to time andj to space, is added to pe-
12 nalize carbon/chlorophyll ratio values greater than 250
Jp(k) = > Z w; (k; — kio)z’ mgC.mg Chlal Whigh is consider_ed as an upper_bound by
i=1 biologists. The choice of the weight,. is not straightfor-

accounts for the a priori parameter values and their standar&’ar‘:' ﬁincg a cgmpromi:e ha(sj to bI? fpugd bedtvaeerr;the qual-
deviationsp; = —=—. This term forces the minimization to ity of the minimization ofJo and realistic bound for the car-

L ! i . bon/chlorophyll ratios. In practicey,. was chosen so that
avoid biologically absurd optimal parameter values. . : o
the data misfit part of the cost and its regularization part are
The second term, balanced

e Y (A2F(C/L) i — 2502
Jjoon

Jre(k) =
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Fig. 13. Chlorophyll to nitrogen ratio versus light intensity. Mean
values and standard deviation by interval of light intensity of length
10 Watt/n? computed for the whole water column during year 1997.
The dashed line corresponds to the parameterization of this ratio as
?unction of light given by Eqs.47) and @8).

Fig. 12. Carbon to chlorophyll ratio versus light intensity. Mean
values and standard deviation by interval of light intensity of length
10 Watt/n? calculated for the whole water column during year
1997. The thin dashed line corresponds to the parameterizatio
of this ratio as function of light given by Eq27) and £8). The
bold dashed line corresponds to the ratio obtaindehimgeras et al.
(2003 plotted against the mean light intensity in the water column.
sake of completeness the results given by the Redfieldian
model with the light dependent C:Chl ratio described in Sec-
tion 4.2 are also depicted on the same figures). The seasonal
variability is well reproduced, but the spring bloom appears
to be too strong and the transition towards oligotrophy poorly
represented. This first guess run predicts reasonably good
flux data Redfieldian Mech. Mech. TP and NU ﬂ“’fes estimatgs (Tabl: Qn the other han_d,
model model model the export qu_x is underestimated and is associated with an
first guess opt. underestimation of the zooplankton content (Tei)le

NU 42415 296 187 472 The evo!utlon over time of the chlorophyll a.nd.n.|trate data
TP 156£30 136.2 928 106.3 profiles (Figs.8, 9) reflects the seasonal variability at DY-
EF 210.8 24 0.2 >5 FAMED. Winter mixing brings nutrients to the surface, but
the short residence time of algae in the euphotic layer, swept
along by strong vertical motions, prevents the development
of biomass. As the year progresses, the surface layer be-
comes more stable, thus allowing the winter nutrient enrich-
ment to be utilized continuously and finally allowing the al-
4.1 Model fit to the DYFAMED data gae bloom. From mid-May to November, the situation re-
mains fairly stable with the upper layer nutrient content very
An a priori parameter set is constructed in the following way: low, and the system mainly oligotrophic and characterized
parameters which were already included in the NNPZD-by a deep chlorophyll maximum. It may be noticed that the
DOM model are given the values estimated using data fronfitrate profiles show strong variability below 100m. This
the DYFAMED station inFaugeras et a(2003. Parameters  Variability cannot be attributed to biological processes since
Coming from the BIOLOV model are given the values pro- these occur closer to the surface, and it is therefore most
posed inPawlowski et al.(2009. A few parameters were likely due to horizontal advection. It cannot therefore be cap-
then hand-tuned empirically in order to obtain a qualitatively tured by the model. During the oligotrophic period, the loca-
correct first guess simulation. Note that since paramiter ~ tion of the nitracline and the deep chlorophyll maximum is
(Tab|e 2) 0n|y enters the equations of the BIOLOV model falrly constant. This may be an indication of the absence of
in thea K, product form (Eqa5), for the sake of parameter Strong Ekman pumping and a crude justification for neglect-
estimation those two parameters are concatenated in a sing|Bg vertical advection.
parametetig . In order to calibrate the simulation we estimated 25 pa-
A first run is carried out using the a priori parameter setrameters among the 33 parameters of the model. Following
and without any data assimilation. Figurgs8 and9 show  the sensitivity analysis conducted Faugeras et al(2003
surface chlorophyll, chlorophyll and nitrate profiles com- which proved that the optical model parameters as well as
puted with the Mechanistic model versus the data (for theparameteh, can not be recovered from the DYFAMED data

Table 4. Flux data (from Marty and Chiaverini, 2002) and com-
puted fluxes at 200m with the Redfieldian NNPZD-DOM model
and the Mechanistic model. Values are given in gC2m—1. NU
stands for N@ uptake, TP for total production, EF for export flux.

4 Numerical results
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Table 5. Zooplankton content data and computed values at 200 m,Table 7. Total production computed at 200 m with the Redfieldian

with the Redfieldian NNPZD-DOM model and the Mechanistic model and the Mechanistic model. “TP in C” is the flux computed

model, for May 1997, in mmolIN m?. in carbon unit (gC.m2.y—1) and “TP in N” is the flux computed in
nitrogen unit (gN.m2.y~1).

data Redfieldian Mech. Mech.
model model first model flux Redfieldian model Mechanistic model
guess opt. TPinC 136.2 106.3
204+10 33.3 1.3 19.1 TPinN 23.9 28.5

Table 6. Optimal adimensionalizedk(/k®) parameters of the model to predict correct zooplankton quantities (Ta¥lend

Mechanistic model. correct fluxes estimates (Tab#e Concerning the total pro-
duction flux (TP), it is worth to notice that if in the Redfiel-
parameter optimal set dian model it is computed in nitrogen unit and then converted
kOt to carbon unit using a constant C:N ratio, in the Mechanistic
kn 0.944 model this flux is directly computed in carbon unit through
% 0.971 the formulation
r 0.404 3
P 1.314 TP =a(I)L — AC (mmolC/m°/s).
k; 1.135 . . . .
a 0.855 This formulation can also lead to negative production values
aZ 0.802 when respiration is stronger than photosynthesis. This situ-
1Lz 1.220 ation occurs at least every night in the model whéh)=0.
mp 1.394 Table7 shows total production for both the mechanistic and
my 0.850 the Redfieldian model computed in carbon unit or nitrogen
Ud 0.867 unit. Total production in carbon unit is higher for the Red-
Vd 0.347 fieldian model than for the Mechanistic model whereas the
T 1.003 contrary holds for this flux computed in nitrogen unit. How-
Jn 0.947 ever this difference cannot be considered as significant with
Hn 0.993 regard to the uncertainty of the data. The same remark holds
Hdm i;g?, for the differences which appear in Figs.8 and9 between
I’?;"z 0:590 the Mechanistic model and the Redfieldian model.
Ke 0.740 Figure10 shows the C:Chl ratio profiles at the same dates
o 1.218 than the Chl profiles of Fig8. The Mechanistic model sim-
oK 0.464 ulates values which are in accordance with what one should
K 1.041 have expected. Globally the ratio decreases with depth that
X 1.121 is to say with light. This is certainly a consequence of the
B 1.059 BIOLOV model's structure which was designed to simu-
f 0.948 late these features observed experimentally at steady state

(Pawlowski et al(2002, Geider et al(1998, Chalup and

Laws (1990). The bloom and post-bloom period corre-

spond to relatively low C:Chl ratio values (lower than 100
set, we did not include them in the control vector. The opti- mgC/mgChl) and relatively homogeneous profiles. On the
mal parameter set is shown on Table contrary during summer when the oligotrophic regime occurs

The parameter estimation procedure resulted in several imsurface values are high (between 200 and 250 mgC/mgChl)

provements in the simulation. Bloom intensity is divided by and the ratio rapidly decreases with depth from O to about
a factor of two, in agreement with the observations (F)g. 50 m which corresponds to the depth of the subsurface
Chlorophyll profiles during the bloom (dates 2 and 21 March chlorophyll maximum.
on Fig. 8) also show a better fit with the data. The subsur- With the Mechanistic model the C:N ratio, computed as
face chlorophyll maximum is well simulated in oligotrophic C/(U+L), evolves dynamically. Figurél shows the C:N
regime (dates 19 June, 12 July and 1 September). This rematio profiles at the same dates than the Chl profiles of8:ig.
sults from the use of a variable C:Chl ratio. ConcerninggNO As for the C:Chl ratio, it strongly varies with depth and time
profiles the improvement is less significant. This problemwhich is not at all the usual hypothesis made in such a bio-
already occurred in former studies and was attributed to theggeochemical model where this ratio is taken equal to 6.625
fact that these profiles are affected by 3D physics not takeimmolC/mmolN. This variability is consistent with experi-
into account in the model. Data assimilation also forces themental observationsDfoop 1968 Sciandra et al.2000),
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Fig. 14. Monthly total production profiles for the Mechanistic model.
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even if the values reach sometimes too low thresholds proba4.2 Variability of the predicted ratios
bly due to the higher carbon losses by respiration than nitro-
In order to better assess the results of the Mechanistic model,
the mean C:Chl and C:N ratios computed with the Mecha-and to first discuss the variability of the C:Chl ratio we com-

nistic model. The low values reached by the C:N ratio leadpare the obtained values with those computed as a function of

gen losses in strong light limitation conditions. TaBlgives

to a mean value of this ratio lower than the classical Redfieldight, as proposed ifoney et al(1996), Lévy et al.(1998).

ratio.

(0]
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With obvious notations this parameterization is written as
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Fig. 15. Monthly total production profiles for the Redfieldian NNPZD-DOM model.

follows: Figure12 shows the C:Chl ratio computed with the Mech-
anistic model. The light intensity was discretized in inter-
Rec.chi(l) = 12 RN/ Rehin(), 27 . .
ceni(h) _ cN/ Ch"N(_ ) _ 27) vals of 10 W/nf. In each interval the value of the consid-
whereRc:\ (in molC/molN) is fixed and ered ratio was computed as well as its standard deviation.
Renn(D) = [REWN— (RgﬁxN_Rai]rﬂN) 1/ Imax] if 1 <Imax, Two other C:Chl ratios are also plotted on the same figure:
= RE”%TN ' ' it 1> Imaxe (28)  the one that would have been obtained with parameterization

, (Eq.27), and the one obtained Faugeras et a{2003. This
whereRT\ . RGN @andImax are fixed parameters.
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1,60E-03 -
Table 8. Mean C:Chl (mgC/mgChl) and C:N (mgN/mgN) ratios
and standard deviations computed with the Mechanistic model. The  1.40€-03 —__ Mechanistic model
average is taken over the whole year and over the 50 first metersot | & | Redfieldian model
the water column. 1,20E-03 -

1,00E-03 +

C:Chl C:N
82.0:39.1 4.2£1.5

8,00E-04 -

6,00E-04 -

Total Production

latter which was originally computed as function of depth R

was transposed to a function of light on the basis of mean g |
light intensity in the water column. This is the reason why
no value is given for large values of light intensity which do ~ ooogso0 #8 /~~ ~ "% =
not occur often in the simulation. The first remark is that the 0 %0 60 %0 120 150 dl;;s 210 240 270300 330 360
general form of the curve obtained with EQ7J fits the data

cloud issued from the Mechanistic model. It is very prob- gy 16 Total production (mmolC.m2.s~1) integrated on 100 m,
able that adjusting the parameters providedoney et al.  computed with the Mechanistic model and with the Redfieldian
(1996 andLévy et al.(1998 we would be able to have a model.

good adjustment. The second remark is that the curve ob-

tained inFaugeras et a{2003 fits the data cloud even bet-

ter. However, the main outcome of this comparison is theorder to give an annual value similar to the one given by the
huge variability of this ratio as predicted by our model. The Redfieldian model). This clearly is a central point in our re-
variation can easily reach 100% of the predictions meaningsurfs since it has already been noticed that Redfieldian mod-
thus that the coupling between carbon and chlorophyll carf!s predicted too low production values in sumnidéfery

be very loose. Figuré3 shows the Chl:N ratio. Again vari- €t al, 2009 and since the accurate prediction of production
ability arises from the model compared to the values giveniS importantin the study of the carbon cycle.

by parameterization (EQ.7).

N ) 5 Conclusion: benefits of a more mechanistic model
4.3 Variability of the predicted fluxes

It was shown inFaugeras et a[2003 that the data assim-

The variability of total production has been estimated eachjation results could not be satisfying if the C:Chl ratio was
month for both models as presented on Figkand15. First  kept constant for the Monod type phytoplankton models. The
it appears that this variability is much higher close to thejntroduction of an empirical C:Chl ratio parameterized by
Surface, W|th a maXimum fOI’ the nitl’acline in summer. The depth |ed to good resu'tsl especia”y When the f|uxes data
fluxes vary generally much more for our model than for the were assimilated. However this empirical approach may re-
previous model, especially at the surface. It is worth notingyea| difficult to extrapolate to other areas.
that the total prOdUCtion in carbon units is apprOXimately the In our approach the idea consisted in providing a mechan-
same for both model since this data has been used during thea| parameterization to this ratio by taking into account the
assimilation step to constrain the data (Tad)le nonlinear coupling between limitation by light and by nitro-

This higher variability probably reflects the ability of gen. For this we used the BIOLOV model that was validated
the phytoplankton compartment in the BIOLOV model to in chemostat experiments.
promptly react to optimal conditions for carbon incorpora- It is worth noting that even if both the Redfieldian and
tion. This faculty results from the partial uncoupling between the Mechanistic model are comparable, the involved mecha-
nitrogen and carbon incorporation as described by the Blmnisms are really different since in the Mechanistic model the
OLOV model. algal physiology is taken into account especially by integrat-

With Fig. 16, showing the time evolution during year 1997 ing the mechanisms of photoadaptation. As a consequence,
of total production for both the Redfieldian and the Mecha-the Mechanistic model needs 8 state variables (3 of them
nistic model, and with Figl7 showing the time evolution of representing phytoplankton) and 33 parameters whereas the
the C:N ratio, important points rise. First the seasonal vari-Redfieldian model needs 6 state variables (one of them being
ability of the C:N ratio follows the one measured in the north- phytoplankton) and 28 parameters plus either the 20 param-
east Atlantic Ocean bigortzinger et al(2001): an increase eters used to discretized the C:Chl ratio along depth or the 3
from low early bloom values to high post-bloom/oligotrophic parameters used in the representation of the C:Chl ratio as a
values. Second this seasonal variability enables the Mechdunction of light.
nistic model to simulate higher summer production in carbon The first conclusion of our study was that the Mechanistic
unit than the Redfieldian model (and thus lower in winter in model reproduces the reference data in a comparable manner
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