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Abstract. The relative impact of model quality and ensemble validation often requires a comparison of the performance of
deficiencies, on the performance of ensemble based prob@&nsembles run in meteorological centres where the research
bilistic forecasts, is investigated from a set of idealized exper-strategy differs significantly (e.g. Mullen and Buizza, 2001).
iments. Data are generated according to a statistical modelThis is the case for example when comparing the perfor-
the validation of which is achieved by comparing generatedmance of the two operational ensembles that have been run
data to ECMWF ensemble forecasts and analyses. The pesince the early 1990’s, at the U.S. National Centers for En-
formance of probabilistic forecasts is evaluated through thevironmental Prediction (NCEP) (Tracton and Kalnay 1993),
reliability and resolution terms of the Brier score. Results areand at the European Centre for Medium-range Weather Fore-
as follows. (i) Resolution appears essentially attributable tocasts (ECMWF) (Palmer et al., 1993).

the average level of forecast skill. (ii) The lack of reliabil-  On the other hand, operational ensembles run by different
ity comes primarily from forecast bias, and to a lower extentcentres are generally based on different forecasting systems,
from the ensemble being systematically under-dispersive (of.e. numerical models and assimilation systems (including
over-dispersive). (i) Forecast skill contributes very little to the way available observations are collected and selected)
reliability in the absence of forecast bias, and this impact isthat differ sufficiently for giving different forecasts in a given
entirely due to the finiteness of the ensemble population. (iv)situation. The performance of these forecasting systems is
In the presence of forecast bias, reducing forecast skill leadfikely to differ, so that the results of a comparison between
to improve the reliability. This unexpected feature comestwo EPS may not reflect solely the differences related to the
from the fact that lower forecast skill leads to a larger en-strategy that has been followed for designing the ensemble.
semble spread, that compensates for the strong proportion dfhe performance of the underlying forecasting system obvi-
outliers consequent to forecast bias. (v) The lack of ensembl@usly contributes to the overall performance of an ensemble.
skill, i.e. non systematic errors affecting both ensemble meamormalization of the results allows to compensate for this
and ensemble spread, contributes little, but significantly, toeffect to a certain extent, e.g. when computing a skill-score
the lack of reliability and resolution. with respect to a control forecast (Atger, 1999). However,
interpretation of such normalized results may be problematic
if the relative impact of the quality of the forecasting system,
compared to deficiencies intrinsically related to the way the
EPS has been designed, remains unknown.

The validation of operational ensemble prediction systems A large variety of verification scores have been proposed
(EPS) has become an important field of research during théor evaluating the quality of an ensemble. Among these
past few years (e.g. Zhu et al., 2001 and references thereinfcOres, the most widely used is the Brier score (Brier, 1950),
Among other objectives, validation aims at pointing the ad-designed for quantifying the performance of a probabilistic
vantages and drawbacks of the scientific options that havéorecast of a dichotomous event. The Brier score is sim-
been adopted for the different aspects of the development df!Y the mean square error of forecast probabilities. The de-
an operational EPS: method for the selection of initial pertur-COMposition of the Brier score proposed by Murphy (1973)
bations, number of ensemble members, choice of a “stochad€@ds to two terms that represent the main attributes of the

tic’ physics vs. the multi-model approach, etc. Therefore quality of a probabilistic forecast. Reliability is the first at-
tribute, that quantifies the correspondence between a given

Correspondence td=. Atger probability p, and the observed frequency of an event that
(frederic.atger@meteo.fr) has been forecast with the probabiliy More generally,

1 Introduction
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Fig. 1. Distribution of the +96-hour ECMWF ensemble standard o
ensemble standard deviation

deviation, sampled with 67 intervals (solid line), fitted with a trans-

formation of the formo =« exdBN (0, 1)] with «=0.4 andB=0.5
(dashed line). Fig. 2. Correspondence between the +96-hour ECMWF ensemble

standard deviation (abcissa) and the ensemble mean RMSE (ordi-
nate). Data have been stratified into 61 classes according to the EPS

reliability indicates to which extent a given ensemble distri- standard deviation. The average standard deviation in each class is
bution proves close to the conditional pdf (probability den- plotted against the RMSE of the ensemble mean computed from the

sity function) of the future state of the atmosphere. An es-25€3 found in the class.

timate of the latter is given by the distribution of the atmo-

spherical states that are observed when a given ensemble dig_scg-hPa temperature anomaly at ‘ts grid points over Europe
tribution is forecast. The second attribute is the resolution,(35) N: 60°) N, 10°) W, 28°) E, 5x5°) have been retrieved

that quantifies the variability of the observed frequency of an'0" & period of 4 consecutive winter seasons (December to
event, when the forecast probability of this event varies. InFePruary), from 10 December 1996 to 28 February 2000, i.e.

a more general sense, resolution indicates the variability of>1 days. Sample size is 3528=16 848 cases, considered

the conditional pdf, sampled by the observations, when thdn this idealized study as independent realizations of a unique
ensemble distribution varies. random variable. During the considered period the opera-

The primary goal of the work presented in this article is t?onal version of the ECMWF EPS has been improved several

to determine to which extent the performance of ensembl Imes, as W_e" as the atmqspheric model onwhich itis based,
based probabilistic forecasts is conditioned by the qualitybUt the horizontal resolution remained the safiels9), as

of the underlying forecasting system, i.e. the atmosphericV€!l @s the number of ensemble membevs=50 perturbed
model and the assimilation system. The impact of certain asintégrations +1 control integration). Analyses come from the

pects of the quality of an EPS, that are assumed independeffCMWF high resolution model that was operational during

of the quality of the forecasting system, is investigated too._the same periodl{ 319). The climate reference, for the def-

Idealized experiments have been designed in order to evaILJpition of anomalies, has been computed from the ECMWF

ate the impact of these different factors. The performance of->-Year reanalysis (Gibson et al. 1997). All data have been
probabilistic forecasts is quantified through the computationStandardized with respect to the local analysis standard devi-
of the reliability and resolution terms of the Brier score. on
The article is organized as follows. The methodology is
exposed in Sect. 2. Results are exposed in Sect. 3, discussgo2

in Sect. 4, summarized in Sect. 5.

\erification

The performance of ensemble based probabilistic forecasts
has been estimated through reliability diagrams and the com-
putation of the Brier score. Unless otherwise stated, the con-
sidered event is a positive deviation above 1 standard devia-
2.1 Data tion from the origin.

The reliability curve indicates the correspondence between
Data for the idealized experiments have been generated a@ given probability, and the observed frequency when this
cording to a statistical model described in Sect. 2.3. The rel-probability is forecast. It is convenient to plot the reliability
evance of this statistical model has been tested by comparingurve together with an histogram showing the distribution of
the generated data to analyses and forecasts extracted froforecast probabilities. Examples of such reliability diagrams
the ECMWEF archive. Ensemble forecasts and analyses of thare shown in Fig. 5.

2 Data and methodology
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Fig. 3. Same as Fig. 2, but from generated data (10 0000 cases). Fig. 4. Same as Fig. 3, but non systematic ensemble deficiencies are
he generated ensemble is perfect with respect to any other aspeconsideredf&=0.5,fb=-0.16,sb=0.9,5v=0.2,ems-0.1,ess0.5).

than under-dispersionfs£0.5, fb=-0.16, sb=0.9, sv=0.2, ems=0,

ess0).

The Brier score BS) is defined for a dichotomous event and the horizontal line indicating the sample frequency of
as the mean square error of the probability forecast: the considered event. It indicates to which extent the fore-
cast probability discriminates between occurence and non-
1Y 2 occurence of the considered event.
BSZM Z (pi = 0i)", 1) The third part of the decomposition is the uncertainty term,
i=1 i.e. the variance of the observations, that does not depend on
whereM is the number of casep; is the forecast probabil- the forecast system but rather reflects the intrinsic difficulty
ity, o; is the verifying observatioro{=1 if the event occurs, in forecasting the observations.
0;=0 if it does not) (Brier 1950). The Brier score is tradition-  The resolution term is bounded by the uncertainty term, so
ally transformed into a decomposition of 3 terms, initially thatitis convenient to compute the standardized resolution as
proposed by Murphy (1973):
0(1-0)
BS— XT: %(Pk —op)? — XT: %(01{ — 02 +0(l-0),(2) take_s its maximum value (Eq. 1) in the case of a perfect deter-
= = ministic forecast, and more generally when only two proba-
bility categories are forecast, leading to observed frequencies
when the sample has been divided ifftocategories, each g and 1. On the other hand the resolution term equals 0 when
comprisingmy cases when the probabiligy, is forecast.o; the observed frequency of the event is the same whatever the
is the observed frequency of the considered event whées forecast probability.
forecasto is the observed frequency in the whole sample. Note that the reliability term is negatively oriented, as the

~ The first part of the decomposition is the reliability term, grier score (the lower the better) while the resolution term is
i.e. the integration, over the whole range of forecast probabilyyssitively oriented.

ities, of the square difference between the probability and the

observed frequency of the event. The reliability term of the2 3  Statistical model

Brier score can be seen graphically as the weighted, squared

distance between the reliability curve and thé Hge. It in- 2.3.1 Assumptions and definitions

dicates to which extent the forecast probability is calibrated

with respect to thea posteriori observed frequency of the Observations are perfectly representative of the truth, the dis-

considered event. tribution of which is normalv (0, 1). The forecasting sys-
The second part of the decomposition is the resolutiontem under consideration consists in an imperfect model of

term, i.e. the variance, over the range of forecast probathe truth, run from an imperfect reference initial state. En-

bilities, of the observed frequency of the event. The res-sembles members are integrations of the same model, from

olution term of the Brier score can be seen graphically asnitial states that differ slightly from the reference, so that

the weighted, squared distance between the reliability curvehey are all consistent with the available observations. The

T
the ratio of the 2 terms, i.e-2— » %(ok —0)2. This ratio
k=1
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Fig. 5. Reliability diagrams. The main curve indicates the correspondence between a given forecast probability (abcissa) and the observed
frequency of the event when this probability is forecast (ordinate). The histogram shows the distribution of forecast probabilities. The event
is a positive deviation of 1 standard deviation from the orig#&).Probability based on +96-hour ECMWF ensemble forecasts (16848 cases).

(b) to (f) Probability based on generated data (1 million cases). Forecast skill iSse %, skill variability is set tesw=0.2. (b) No forecast

bias, perfect ensemble (no spread bemsess0). (c) Effect of forecast biasfb=-0.16, perfect ensembldd) Effect of spread bias: no

forecast biassb=0.9, perfect ensemble otherwisa{sess=0). (e) Effect of a strong lack of ensemble mean skill: no forecast bias, no spread
bias,ems0.2,ess0. (f) Effect of a strong lack of ensemble spread skill: no forecast bias, no spreaéti=§, ess=0.6. (g) Same as (b)
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to (f) but based on 16848 cases only, and with an arbitrary set of paranfetefs16,sb=0.9,ems0.1,ess0.5.
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forecast bias of ensemble members is thus identical to that 1 ‘
of the reference run (i.e. the integration from the reference L 0.6
initial state). Ensemble members are normally distributed. s | r 0.4
Unless otherwise stated, the number of ensemble members is ' 0.2
fixed to 51 (in order to facilitate comparisons to the ECMWF g “ 0
ensemble). % 0.6
2.3.2 Perfect ensemble k5
5 0.4
[%2]
In this section the forecasting system is assumed not to be bi- s
ased, i.e. the mean error of the reference run is zero, as well 0.2
as that of any ensemble member. The perfect ensemble is
defined as an idealized, perfectly reliable ensemble, whose ‘ ‘ ‘ ‘
members are assumed to be drawn it ,, s,,), accord- % 0.2 0.4 0.6 0.8 1
ing to the normal assumption mentioned above. Since there forecast probability

is no forecast bias, the perfect ensemble megns a draw

from the truth distribution, i.e (0, 1). The perfect ensemble

standard deviatios), is arbitrarily drawn fromxexp[8N(O,

1)] (log-normal distribution). Figure 1 shows that this choice

is consistent with the actual distribution of the standard devi-

ation of the ECMWF operational ensemble. Secondly, a systematic (negative) spread ks8k (. a sys-
Since the perfect ensemble is perfectly reliable, the vertematic under-dispersion, is taken into accountgb<1 for

ifying observation is also drawn from¥ (m ,,s,,). The stan-  the sake of realism, but with no loss of generality):

dard deviation of this distribution indicates the level of uncer-

tainty related to the forecast of the verifying observation (the’e = Sp5?- 4)

ensemble being perfect, this uncertainty is indeed perfectly The parameteib is a characteristic of the forecasting sys-

related to the ensemble spread). Therefore, the meap of tem that is independent on the way the ensemble is designed

indicates the average level of forecast uncertainty, given thgunder the assumptions given in Sect. 2.3.1), whiés a

forecasting system under consideration, called forecast skiltharacteristic of the ensemble that has no reason to depend

(fs) in the following. Similarly, the standard deviation _Q]( on the qua“ty of the forecagting system.

indicates the variability of the level of forecast uncertainty, At this stage, the generated ensemble is perfect with re-

called skill variability &V in the following. The parame- spect to any other aspect of the performance than the system-

tersfs andsvindicate two characteristics of the forecasting atic lack of dispersion. As a consequence the relationship be-

system that are independent of other parameters that mighfveen ensemble spread and forecast skill is virtually perfect,

(8

Fig. 5. Continued.

characterize the way an ensemble is designed. although systematically biased wheb<1 (Fig. 3). This is
From the above definitions, it comes that= _fs2 clearly not a realistic feature when compared to an opera-
5 Vst tional ensemble as the ECMWF EPS (Fig. 2). Non system-
andp? = log(z + 1. atic aspects of the “intrinsic” quality of the generated ensem-

The average level of forecast skifk), as well as the vari-  ble (i.e. independent on the quality of the underlying fore-
ability of the forecast skill §v), are related to the level of casting system) are taken into account by modifying Egs. (3)
atmospheric predictability. However, in the present study,and (4):
predictability is not seen as an intrinsic property of the atmo- ,
sphere, but rather reflects the ability of a given forecastingme = &m(mp + fb) (3)
system to predict the evolution of the atmosphere. Although,, — £5psb, &)
it is obviously constrained by the actual initial conditions,
forecast skill is thus an attribute of the quality of a forecast-Whereg,, andé; are drawn from a uniform distribution cen-
ing system. And its variability, highly dependent on the at- tered in 1. The half-amplitude of the distribution &f(&;)
mosphere dynamics, is still a characteristic of the forecastings the parameteems(es$ standing for ensemble mean skill
system.Generated ensembles Imperfect ensembles are gené@nsemble spread skill), that indicates to which extent the
ated from a (potentially) biased forecasting system. Specifiensemble fails to sample the pdf because of non systematic
cally, ensemble members are drawn from a normal distribu-€rrors affecting the ensemble mean (spread). The parameters
tion N(m,,s.) that differs fromN(m,,s,) according to sys- emsandessindicate two intrinsic characteristics of the en-
tematic deficiencies of both the forecasting system and th&emble and are independent of parameters that characterize

ensemble. First, a systematic forecast bfapié taken into  the performance of the forecasting system. When ensembles
account: are generated from Eqgs./J&nd (4) the relationship between

spread and skill (Fig. 4) resembles that observed in ECMWF
me=mp+ fb. 3) data (Fig. 2).
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Fig. 6. Reliability term of the Brier score as a function of the different factors. The forecast skill is arbitrarily fss0t5, except when

it varies. The skill variability is arbitrarily set tev=0.2, except when it varies. The impact of forecast skill is evaluated in the case of a
perfect ensemblesb=1, emsess0), with no forecast biasl{=0, solid curve) or in the case of a moderate negative forecastfbrs@.16,
dashed curve). The impact of forecast bias is evaluated in the case of a perfect ensbribknfs-ess=0). The impact of skill variability

is evaluated in the absence of forecast bibs@) and with a perfect ensemblebél, emsess0). The impact of spread bias is evaluated in
the absence of forecast bidb£0) and with a perfect ensemble skiéiissess0). The impact of ensemble mean skill and ensemble spread
skill is evaluated separately in the absence of forecast fiia®)and with no spread biaslkE1).

2.4 Experiments trol forecast, therefore varying mainly according to the fore-
cast lead-time. Typical values of the error are 0.3/0.7 for

6 parameters determine the statistical model that has beet?8/+144-hour ECMWF forecasts (0.5 for +96-hour).

used for running the experiments. The 3 paramédtefore- Skill variability (parametesy) is assumed not to be very

cast bias)fs (forecast skill) angv (skill variability) indicate  different from the day-to-day variability of the operational

the quality of the underlying forecasting system. They areensemble standard deviation. Typical values of spread vari-

independent of the characteristics of the generated ensemblebility are 0.1/0.2 for +48/+144-hour ECMWF forecasts.

The parametersb (spread bias)gms(ensemble mean skill) There is empirical evidence indicating thett is moder-

and ess(ensemble spread skill) are related to the intrinsic ately negative in operational ensembles, i.e. ensembles gen-

quality of the ensemble, since they are not attributable to theyrg|ly suffer from a limited under-dispersion (e.g. Buizza,

underlying forecasting system. 1997; Toth and Kalnay, 1997).

~ The method for generating the data, as described above, parametersmsandesshave been tuned empirically in or-

implies that the modification of certain parametés®f(dsV)  ger to reproduce the characteristics of operational ensembles,

have an impact on the distribution of observations. In orderin particular the shape of the reliability curve and the rela-

to get comparable results, all generated data have been stagsnship between ensemble spread and forecast skill, when
dardized with respect to the standard deviation of the generyiner parameters vary.

ated observations. ) _ In the experimentéb ranges from 0 (no forecast bias) to
ECMWF ensemble forecasts at different lead-times have_g 3 (large negative forecast biags ranges from 0.1 (al-

been compared to generated data in order to determine a reyost perfect forecast, e.g. very short range forecast) to 1
alistic range for the different parameters. (very poor forecast, e.g. late medium range forecast).
The definition of the parameté allows a direct estima-  ranges from 0 (no variability of forecast skill) to 0.3 (high
tion, as the algebraic mean of the forecast error. Typicalariability of forecast skill).sbranges from 0.6 (severe un-
values are-0.1/-0.2 for +48/+144-hour ECMWF forecasts derdispersion) to 1 (no spread biasgmsranges from 0
(—0.16 for +96-hour). (no error affecting the ensemble mean, other than systematic
The parametefs is assumed to be of the same order asforecast bias) to 0.5 (large, non systematic errors affecting
the standard deviation of the forecast error of the EPS conthe ensemble meankssranges from 0 (no error affecting
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Fig. 7. Same as Fig. 6, but for the resolution term of the Brier score. The effect of a negative forecast bias on the impact of the forecast skill
is not shown (undistinguishable).

the ensemble spread, other than the systematic lack of dissemble members. Lower probabilities are slightly underesti-

persion) to 1 (large, non systematic errors affecting the enmated (this effect is hardly visible) while higher probabilities

semble spread). are slightly overestimated. The significance of this feature is
discussed in Sect. 4.

(ii) Realistic forecast biadflj=—0.16) and perfect ensem-
3 Results ble (Fig. 5¢). The typical effect of a negative bias is similar to
) . o that observed for ECMWF data (Fig. 5a). Because the sign
Unless otherwise stated, one million verification cases hav%f the bias is opposite to that of the considered event (pos-

been generated for each experiment. The impact of the difye geviation larger than 1 standard deviation) the forecast

ferent factors iz invelstig.atedhby vafrying the vaflue ct;f the 6 probability is systematically underestimated.
parameters and evaluating the performance of probabilistic (iii) No forecast bias, realistic spread biast¢0.9), per-
fect ensemble otherwise i.emsess0 (Fig. 5d). The effect

forecasts through reliability curves and the reliability and res-
of spread bias is typical too: because of the systematic un-

olution terms of the Brier score. Qualitatively, forecast skill
and skill variability are expected to have an impact on res_derdispersion, lower probabilities are underestimated while

olution. Forecast bias and spread bias are expected to haye

\fu her probabilities are overestimated. Combined to that of a
an impact on reliability. Ensemble mean skill and ensemble gherp

. . ... “negative forecast bias (Fig. 5¢) this effect leads to a reliability

Zﬁ:je?efiszll(lljl':igae expected to have an impact both on reIIabIII'[ycurve close to that obtained from ECMWF data (Fig. 5a).
' (iv) No forecast bias, no spread bias, but a strong lack
of skill affects the ensemble mean onlgn{s-0.2, ess=0)
(Fig. 5e). The impact is similar to that of a moderate spread
Figure 5 shows the reliability curve obtained from +96-hour bias: underestimation of lower probabilities, overestimation
ECMWF ensemble forecasts, as a reference (Fig. 5a), tof higher probabilities.
gether with those obtained with generated data. Forecast (v) No forecast bias, no spread bias, but a strong lack
skill and skill variability have been arbitrarily fixeds€0.5,  of skill affects the ensemble spread onn(s-0, ess-0.6)
s\=0.2), since these two parameters are not expected to hau&ig. 5f). The typical impact is an overall overestimation of
any impact on reliability. The other parameters have been seforecast probabilities, of the same amplitude as caused by a
as follows: moderate spread bias.

(i) No forecast biasfp=0) and perfect ensemble, ish=1 The combined effect of the different factors allows to re-
andemsess0 (Fig. 5b). Reliability is not perfect, although produce the main characteristics of the reliability curve ob-
the observation is drawn from the same distribution as entained from ECMWF data (Fig. 5g). As in the example

3.1 Reliability curves
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shown in Sect. 2.3.3 (Fig. 4) the parameters have been set -2

empirically as follows: fs=0.5, fb=—0.16, sv=0.2, sb=0.9, 10
ems0.1, ess0.5. In order to get a similar level of 3 f 1
“noise”, when plotting the reliability curve, as obtained from 107 ene—~——
ECMWF data, the experiment consists here in generating » B ]
16848 cases only. 0 == =
107 B
3.2 Reliability 0.1 0.3 05 0.7 0.9

forecast skill

Figure 6 shows the impact of the different factors, consid-

ered separately, on the reliability term of the Brier score. Thelows alogarithmic scale), but the curves have been obtained by gen-

lack of reliability comes mainly from the forecast bias, and erating 10000 cases (solid line) and 1 million cases (dashed line).
to a lower extent from the spread bias. The lack of ensem-

ble skill, attributable to non systematic errors affecting both
the ensemble mean and the ensemble spread, has a Iimit%d
impact. There is no impact of the forecast skill variability,
as expected. In the absence of forecast bias the impact of
forecast skill is very small, as expected, but reliability does#1  Impact of the number of generated cases

improve slightly when the skill increases. This result is dis-

cussed in Sect. 4. The results presented in the previous section have been ob-
tained by generating a very large number of cases for each
experiment (one million). In the real world the number of
verification cases that can be considered as independent real-

f‘hel Brier srclzore r'ls numerlca;clé regl%ll;:ed. This 'mpg?ve_mentizations of the same random variable is rather limited, espe-
Is larger when the parameteisandib are comparable, 1.€.  ¢ig)ly jf one wants to take into account space and time cor-

when forega_st bias anc_i forecast error have the Same ampliyjations (Atger, 2003). A critical issue is thus whether the
tude, and it is emphasized when the forecast bias increasgsg its presented above have any chance to be confirmed by

(not shown). This rather unexpected feature can be explainegerformance evaluations based on real EPS data.
by the fact that increasing the forecast skill has the primary

effect of decreasing the ensemble spread, provided the rela- T?edrfelanvi éng)%%ct Of.;.h e?n‘ferent fagtorts hgs l]?ien !Ir:yes-
tionship between spread and skill exists. When the forecas&'/ga. ed irom verimeation cases instead ot 1 miion.
ariations of the reliability term of the Brier score are re-

skill is high, the spread tends to be small and the ensembl% d when th ber of d | ticul
distribution is sharp. The shift of the ensemble distribution uced when the number ol cases decreases. 1n particuar,
the slight degradation of reliability when the forecast skill

with respect to the verification, attributable to the forecast decreases (in the absence of forecast bias) cannot be demon
bias, leads to a strong proportion of outliers. This induces a ( )

systematic underestimation of the forecast probability of anstrated with a sample consisting of 10 000 cases (Fig. 8). This

. . . to be due to the fact that this degradation is so tiny that
infrequent event (such as the event considered in the prese Fems .
q ( P it tends to be of the same order as the noise due to the lack of

study). When the forecast skill is lower, the spread tends to molin
be large and the ensemble distribution is flatter. The propor-Sa piing. ] ] o
tion of outliers due to the forecast bias (i.e. related to the shift [t was mentioned in Sect. 2 that a lack of resolution, in our

of the distribution) is thus reduced, so that the underestima$ase almost entirely due to a decrease of the forecast skill,
tion of the forecast probability is limited. makes the reliability curve closer to the horizontal line that

indicates the sample frequency of the event. Assuming a per-
fect ensemble and no forecast bias, this means that the lack of
3.3 Resolution resolution makes the reliability curve pivot clockwise around
the point of correspondence of the average forecast probabil-
ity with the overall frequency of the event. This effect is
Figure 7 shows the impact of the different factors on the resowisible in Fig. 5b, but it is clear from this figure that a very
lution term of the Brier score, after standardization by the un-large sample is needed for this effect to have any significant
certainty term (Sect. 2.2). The main resultis that resolution isimpact on the reliability term of the Brier score. Figure 9
almost entirely due to the forecast skill. Ensemble skill (pa-shows for example the reliability curve obtained in the same
rametere&msandess has a definite impact, although smallin configuration as in Fig. 5b, but from a sample of 10 000 cases
amplitude. Resolution does increase with the skill variabil- instead of 1 million. Given the level of noise of the curve, it
ity, but the impact is hardly visible. On the other hand thereis not surprising that Fig. 8 shows a constant level of relia-
is a slight decrease of resolution when the forecast bias or thbility when the forecast skill grows from 0.1 to 1. Note that
spread bias grows. This last effect is discussed in Sect. 4. this level of noise is similar to that shown in Fig. 5a, obtained

Fig. 8. Same as Fig. 6 (forecast skill panel only, y-coordinate fol-

Discussion

When the forecast bias is setfte=—0.16, reliabilityim-
proveswhen the skill decreases, i.e. the reliability term of
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Fig. 9. Same as Fig. 5b but computed from 10 000 generated casekig. 10. Same as Fig. 5b but the number of ensemble members is

instead of 1 million. set to 33 (solid line, circles), 11 (dotted line, squares) and 5 (dashed
line, diamonds). The distribution of forecast probabilities is not
shown.

from 16 848 ECMWF cases accumulated over 4 winter seaother words, whemV is small, extra ensemble members are
sons over Europe. missing that could sample the tails of the pdf. Similarly, ex-
On the contrary, little effect has been found when reducingtra members are missing that could sample the pdf between
the size of the sample for evaluating the resolution term of2 consecutive existing members.
the Brier score. Estimating resolution seems much easier, In fact, one would expect the reliability term of the Brier
even from limited samples, than estimating reliability. This score to be zero and the reliability curve to be perfectly
can be explained again by graphical considerations, the 45aligned along the 45line in the case of a perfect ensemble.
line being generally closer to the reliability curve (due to the If it is not exactly the case in Fig. 5b, and not at all the case
high level of reliability) than the horizontal line indicating in Fig. 10, it is just becaus¥ is finite. This effect is empha-

the sample frequency of the event (Atger, 2004). sized when the forecast skill decreases (Fig. 11, forecast skill
panel): because the uncertainty becomes larger, the number
4.2 Impact of the number of ensemble members of members that are needed for sampling the pdf increases.

When the error is low, even small (perfect) ensembles are

For facilitating comparisons with the ECMWF operational gpje to sample the pdf, while a large number of (perfect) en-
EPS, the number of members of the generated ensemblegmple members is required when the error is high. Because
has been set t&/=51 in the previous section. Increasing the number of ensemble members is finite, only when the res-
or decreasingV may have an effect on the performance of qytion is perfect, i.e. whefs=0, the reliability term of the
ensemble based probabilistic forecasts, and consequently Q8yier score is zero in the case of a perfect ensemble (Figs. 6
the relative impact of the different factors that have been conyng 11, forecast skill panel).
side'red. . The forecast bias panel of Fig. 11 shows that above a cer-

Richardson (2001) has shown that decreasing the ensemajn |evel of systematic bias (approx. 0.05) the impact of re-
ble population results in a numerical increase of the relia-qycing the number of ensemble members is reverse: reliabil-
bility term of the Brier score, at least when the number of it improves when the population is reduced. This is because
verification cases is large. It was mentioned in the previ-ihe effect of a “negative” forecast bias compensates that of
ous section how the lack of resolution makes the reliability reducing the ensemble population, as shown in Fig. 12a. The
curve pivot around the point indicating the correspondencggormer leads to an underestimation of the probability of a
between the average forecast probability and the overall fre«positive” deviation from the origin, while the latter leads
quency of the event, thus increasing the reliability term. Fig-tg an overestimation of forecast probabilities above the fre-
ure 10 shows that this slope effect is emphasized Whés  guency of the considered event, as discussed above. On the
reduced, leading to an increasing overestimation of probabiltontrary, these two effects would cumulate if the sign of the
ities above the frequency of the event. This can be seen agyecast bias was the same as that of the forecast deviation.
an effect of a poorer sampling of the pdf, due to the reduc-thjs might be the case, for example, when evaluating prob-

tion of the ensemble population. For example, when all thegpjjistic precipitation forecasts produced with a model over-
members forecast the event, the probability for the event tcforecasting precipitation amounts.

occur should not be 1 but “more than—1/N" since there is
no way to estimate a probability betweah-1/N and 1. In
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Fig. 11. Same as Fig. 6 (forecast skill, forecast bias and spread bias panels only), but generated ensembles consisting of 11 members (dashe
line) and 51 members (solid line).
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Fig. 12. Same as Figs. 5c and d, respectively, but the number of ensemble members is set to 33 (solid line, circles), 11 (dotted line, squares)
and 5 (dashed line, diamonds). The distribution of forecast probabilities is not shown.

An increase of the spread bias also tends to attenuate th&.3
impact on reliability of a reduction of the number of ensem-
ble members (Fig. 11, spread bias panel). Only in the caséll the results presented above have been obtained for an
of a strong spread bias the reliability term of the Brier scoreevent occurring with an overall frequency close to 16% (pos-
increases with the number of ensemble members. Again, thigive deviation above 1 standard deviation). Considering less
is because the effect of underdispersion compensates that fequent events (e.g. a positive deviation above 2 standard
reducing the number of ensemble members (Fig. 12b). Theleviations) has the effect of decreasing the reliability term
former leads to an underestimation of forecast probabilities of the Brier score, especially when the forecast bias and/or
for an infrequent event, while the latter leads to an overestithe spread bias is high (not shown). However, the relative
mation of probabilities above the frequency of the consideredmpact of the different factors is roughly unchanged, except
event. that forecast bias and spread bias contribute at a closer level
to the reliability term of the Brier score (not shown).
Decreasing the ensemble population has only little (nega-
tive) effect on resolution. The relative impact of the different
factors is unchanged, i.e. the forecast skill explains almostalb  Summary
the variations of the resolution term of the Brier score.

Impact of the frequency of the forecast event

The impact of model quality and ensemble deficiencies on
The combined effect of limiting both the number of en- the performance of ensemble based probabilistic forecasts
semble members and the number of verification cases is bdias been investigated from a series of idealized experiments.
yond the scope of this paper. This is a crucial issue for theData are generated according to a statistical model validated
validation of operational ensembles that has been extensivelthrough a comparison with ECMWF ensemble forecasts and
studied by Candille (2003a, b). analyses. The performance is evaluated from reliability
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